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Abstract
Noncoding sequence contains pathogenic mutations. Yet, compared with mutations in pro-

tein-coding sequence, pathogenic regulatory mutations are notoriously difficult to recog-

nize. Most fundamentally, we are not yet adept at recognizing the sequence stretches in

the human genome that are most important in regulating the expression of genes. For

this reason, it is difficult to apply to the regulatory regions the same kinds of analytical para-

digms that are being successfully applied to identify mutations among protein-coding

regions that influence risk. To determine whether dosage sensitive genes have distinct pat-

terns among their noncoding sequence, we present two primary approaches that focus

solely on a gene’s proximal noncoding regulatory sequence. The first approach is a regula-

tory sequence analogue of the recently introduced residual variation intolerance score

(RVIS), termed noncoding RVIS, or ncRVIS. The ncRVIS compares observed and pre-

dicted levels of standing variation in the regulatory sequence of human genes. The second

approach, termed ncGERP, reflects the phylogenetic conservation of a gene’s regulatory

sequence using GERP++. We assess how well these two approaches correlate with four

gene lists that use different ways to identify genes known or likely to cause disease through

changes in expression: 1) genes that are known to cause disease through haploinsuffi-

ciency, 2) genes curated as dosage sensitive in ClinGen’s Genome Dosage Map, 3) genes

judged likely to be under purifying selection for mutations that change expression levels

because they are statistically depleted of loss-of-function variants in the general population,

and 4) genes judged unlikely to cause disease based on the presence of copy number vari-

ants in the general population. We find that both noncoding scores are highly predictive of

dosage sensitivity using any of these criteria. In a similar way to ncGERP, we assess two

ensemble-based predictors of regional noncoding importance, ncCADD and ncGWAVA,

and find both scores are significantly predictive of human dosage sensitive genes and

PLOSGenetics | DOI:10.1371/journal.pgen.1005492 September 2, 2015 1 / 25

OPEN ACCESS

Citation: Petrovski S, Gussow AB, Wang Q,
Halvorsen M, Han Y, Weir WH, et al. (2015) The
Intolerance of Regulatory Sequence to Genetic
Variation Predicts Gene Dosage Sensitivity. PLoS
Genet 11(9): e1005492. doi:10.1371/journal.
pgen.1005492

Editor: Chris Cotsapas, Yale School of Medicine,
UNITED STATES

Received: March 17, 2015

Accepted: August 11, 2015

Published: September 2, 2015

Copyright: © 2015 Petrovski et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This work was supported in part by Biogen
Idec MA and the NIH NINDS Epi4K Sequencing,
Bioinformatics and Biostatistics Core grant number
U01NS077303. SP is a National Health and Medical
Research Council of Australia (NHMRC) (CJ Martin)
Early Career Fellow (1035130). ABG is supported by
the National Institute Of Neurological Disorders and
Stroke of the National Institutes of Health under
Award Number F31NS092362. The collection of
control samples was funded in part by Bryan ADRC

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1005492&domain=pdf
http://creativecommons.org/licenses/by/4.0/


appear to carry information beyond conservation, as assessed by ncGERP. These results

highlight that the intolerance of noncoding sequence stretches in the human genome can

provide a critical complementary tool to other genome annotation approaches to help iden-

tify the parts of the human genome increasingly likely to harbor mutations that influence risk

of disease.

Author Summary

Mutations in noncoding sequence can cause disease but are very difficult to recognize.
Here, we present two approaches intended to help identify noncoding regions of the
genome that may carry mutations influencing disease. The first approach is based on com-
paring observed and predicted levels of standing human variation in the noncoding exome
sequence of a gene. The second approach is based on the phylogenetic conservation of a
gene’s noncoding exome sequence using GERP++. We find that both approaches can pre-
dict genes known to cause disease through changes in expression level, genes depleted of
loss-of-function alleles in the general population, and genes permissive of copy number
variants in the general population. We find that both scores aid in interpreting loss-of-
function mutations and in defining regions of noncoding sequence that are more likely to
harbor mutations that influence risk of disease.

Introduction
Despite strong evidence that regulatory regions can be affected by pathogenic mutations, such
as in fragile-X syndrome, β-thalassemia, Charcot-Marie-Tooth neuropathy, breast cancer and
others [1–5], little has been done to quantify stretches of regulatory sequence in the context of
both phylogenetic conservation and human-specific intolerance to variation, and then correlate
it back to disease causing potential. While methods to assess phylogenetic conservation at a sin-
gle site are established, such as GERP++ [6,7], purely phylogenetic approaches are at a risk of
ignoring human specific regulatory sequence [8,9]. Furthermore, while efforts have been made
to create predictors that seek to identify variants in noncoding sequence that might influence
expression or have higher chance of causing disease [10–13], no framework has been intro-
duced that focuses on standing variation in the human population to estimate the relative intol-
erance of a gene’s noncoding exome sequence to genetic variation. Since this regional-based
approach proved effective for protein coding genes, it is natural to assess its application to non-
coding exome sequence.

To assess whether noncoding sequence can predict genes that cause human disease through
gene dosage aberration, we derive two measures: a phylogenetic conservation based score and a
score reflecting intolerance to standing variation in a human population. To permit an unam-
biguous comparison to gene lists, we concentrate on each gene’s proximal regulatory regions:
5’ UTR, 3’UTR, and the 250bp upstream of the transcription start site; recognizing that these
three regions are only a subset of the relevant regulatory sequence for protein-coding genes.
We generate a GERP++ region-based conservation score to assess the overall conservation of
each gene’s proximal noncoding sequence [6,7]. To capture regulatory function that might be
human-specific we formulate a novel human population genetic approach (ncRVIS). We then
assess each gene’s proximal noncoding region for phylogenetic conservation and intolerance to
genetic variation in the human population, and tie these scores back to genes known to cause
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disease due to a gene dosage aberration. An important clarification is that the current RVIS
framework is a regional-based measure of intolerance to variation, and as such is complemen-
tary to traditional variant-level predictions. More recent ensemble-based predictors, such as
CADD [12] and GWAVA [13] leverage multiple features including phylogenetic conservation
to make predictions of functionality even for noncoding variants. To assess the levels of contri-
bution from information beyond conservation, we adapted CADD and GWAVA into regional-
ized scores in a way analogous to ncGERP by taking the average CADD and subsequently the
average GWAVA score across a gene’s noncoding proximal regulatory sequence as its
ncCADD and ncGWAVA score, respectively (Methods).

Our results show that it is possible to use a combination of phylogenetic and human stand-
ing variation to identify regions of noncoding sequence that associate with gene-dosage sensi-
tivity. Beyond the immediate noncoding flanking sequence of protein-coding genes, the
framework introduced in this paper can be elaborated to include stretches of regulatory
sequence beyond UTRs. Another important goal of this work is to illustrate that in addition to
traditional phylogenetic signatures of important noncoding sequence, we can use signatures
from human standing variation to help define boundaries of noncoding sequence that when
considered as a unit might show an excess of mutations identified in cases compared to con-
trols—similar to what is currently done in exome-sequencing studies where we assess excess
mutations per each protein-coding gene.[14]

Results

Gene dosage lists
To evaluate whether a gene’s regulatory sequence can predict dosage sensitivity, we took four
gene lists derived from independent sources. The first list contained OMIM disease-associated
genes previously characterized as “haploinsufficient” [15]. The second list took a set of genes
curated as dosage sensitive in ClinGen’s Genome Dosage Map (http://www.ncbi.nlm.nih.gov/
projects/dbvar/clingen/). The third list—a novel list introduced here—relies solely on human
polymorphism data from the 6503 whole exome sequences made available by the NHLBI
Exome Sequencing Project (ESP) [16] to identify genes where, based on the sequence context
and mutability, we observed fewer loss-of-function variants than we expected to observe.
Finally, to look at the opposite end of the dosage sensitivity spectrum, we identified genes that
are tolerant to copy number variations (CNVs) based on the CNV data from two large Data-
base of Genomic Variants (DGV) studies [17–19].

Deriving the noncoding genic scores
We used pre-calculated hg19 GERP++ scores (accessed January 2014) to calculate a single
average GERP++ score across a gene’s noncoding sequence (3’ UTR, 5’UTR and immediate
promoter region). We refer to this score as the noncoding GERP (ncGERP) score. We then
constructed a protein-coding conservation based score for each gene, pcGERP, by using the
same methodology across the gene’s protein-coding sequence. As described in the relevant
papers, GERP++ provides a score per nucleotide base, which has been shown to reflect a base’s
conservation across the mammalian lineage [6,7].

A limitation of phylogenetic approaches is that they are unable to capture sequence with
human specific function. To address this, we used the pattern of standing genetic variation in a
human population. This approach is a noncoding formulation of the Residual Variance Intol-
erance Score (RVIS), a regression framework we recently developed to score the protein-coding
sequence of genes in terms of their tolerance to functional genetic variation. We showed in Pet-
rovski et al (2013) that this approach provides significant information for which genes are
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likely to carry protein-coding pathogenic mutations [15]. To adapt this approach to noncoding
sequence, however, several changes are needed (Methods). First, instead of using the total
number of observed variants to predict the expected number of common variants, we used the
estimated mutation rate to reflect the mutability of the noncoding sequence. Second, since we
cannot reliably distinguish functional and non-functional UTR variation we compared the pre-
diction to all possible common noncoding variants. Finally, because most currently available
exome kits do not provide sufficient coverage of UTRs, we relied on whole-genome sequence
(WGS) data from 690 samples generated at the Duke Center for Human Genome Variation
(CHGV (S1 Table). We first demonstrated that the RVIS itself when applied to protein-coding
sequence of genes still has predictive utility when each of these adjustments are made, suggest-
ing that a similar approach is possible for regulatory sequence (S2 and S3 Tables). For compari-
sons to our previously published protein-coding RVIS, we also generated RVIS-CHGV, a score
that is the exact formulation of the published RVIS [15], but is dependent on the 690 CHGV
whole-genome sequenced samples used to construct the ncRVIS score and similarly to ncRVIS,
adopts the mutation rate of the effectively sequenced sites (Methods). We found that the non-
coding ncRVIS and protein-coding RVIS-CHGV scores are weakly correlated (Pearson’s r2

correlation of 0.04, S1A Fig). The ncRVIS (Fig 1), RVIS-CHGV and ncGERP scores and their
corresponding genome-wide percentile scores can be found in S1 Data and at http://igm.cumc.
columbia.edu/GenicIntolerance/.

OMIM haploinsufficiency
To evaluate whether the ncGERP and ncRVIS scores correlate with known disease genes, we
used the same gene lists as previously described [15]. We found that, using a logistic regression
model, RVIS-CHGV, ncRVIS and ncGERP significantly predict OMIM haploinsufficient
genes that have been linked through de novomutations: p = 4.7x10-21 (AUC = 0.75),
p = 2.4x10-7 (AUC = 0.63) and p = 2.7x10-24 (AUC = 0.78), respectively. A joint model of the
three scores achieved an AUC of 0.816 when predicting OMIM haploinsufficient genes that
have been linked through de novomutations (Table 1). However, based on the other OMIM
gene sets it does not appear that the noncoding sequence of genes can currently distinguish the
broader set of OMIM disease genes, indicating that the patterns within the noncoding sequence
are likely to be for the most part specific to diseases linked to haploinsufficiency (Table 1).

ClinGen dosage sensitivity map
ClinGen’s dosage sensitivity map is another growing resource for genes that are curated by
experts as being haploinsufficient or triplosensitive (http://www.ncbi.nlm.nih.gov/projects/
dbvar/clingen/). As of the 1st of May 2015, 263 genes had been annotated as having either
“Some evidence for dosage pathogenicity” or “Sufficient evidence for dosage pathogenicity” (S2
Data). We repeated the gene dosage sensitivity assessment using this better curated set of 263
genes. We again observed that both protein and noncoding RVIS and GERP scores were signif-
icantly associated (p< 1x10-16) with genes curated to be dosage sensitive in ClinGen (Fig 2).
ncGERP had the highest AUC (0.78) among the set of scores (Table 1 and Fig 2). Based on the
curated ClinGen list this indicates that genes with highly conserved noncoding sequence rela-
tive to the rest of the genome are strongly correlated with gene dosage sensitivity.

Additional noncoding scores were constructed for both CADD [12] and GWAVA [13], by
taking the average of the nucleotide-level score across a gene’s noncoding sequence (Methods).
These are designated ncCADD and ncGWAVA, respectively. These scores were assessed
against ClinGen’s dosage sensitivity genes as well; both ncCADD (p = 1.5x10-12; AUC = 0.63)
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and ncGWAVA (p = 4.7x10-17; AUC = 0.66) were also found to be significantly predictive of
ClinGen’s dosage sensitivity genes (Fig 2).

We performed a joint logistic regression model to investigate performance in predicting
ClinGen dosage sensitive genes from the genome-wide background using six features: the two
RVIS and two GERP scores supplemented with two additional noncoding scores derived from
ncCADD and ncGWAVA (S4 Table, Fig 2). There was modest improvement (AUC = 0.83)

Fig 1. A regression plot that shows the regression of noncoding polymorphisms (Y) on an estimate of the noncoding sequence mutability (X) (S1
Data). Each dot represents the position of a gene in the regression plot and the corresponding regression line is provided. Annotations are made for the 5%
extremes: red = 5%most intolerant, blue = 5%most tolerant.

doi:10.1371/journal.pgen.1005492.g001
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compared to a joint model using three features: ncGERP, ncRVIS and RVIS-CHGV
(AUC = 0.82, Table 1).

Loss-of-function deficient genes
The haploinsufficiency gene lists in the previous section relied on known Mendelian gene-dis-
ease relationships. Another way to identify a list of genes sensitive to gene dosage is to use the
absence, where expected, of protein-coding loss-of-function (LoF) variants in a large human
population (Methods). Such a population-based LoF deficient gene list highlights genes where
changes in expression levels could be selected against, yet are independent of known gene-dis-
ease associations.

Using the standing variation from the ESP6500SI reference population we identified 1,235
LoF deficient genes (FDR< 1%) and 1,762 LoF control genes that had both an ncRVIS and
ncGERP score assigned (Methods). We found that 2.3% of the 1,235 LoF deficient genes over-
lap with known OMIM “haploinsufficient” genes compared to one (0.06%) of the 1,762 control
genes (Fisher’s Exact test, two-tailed p = 2.4x10-10). Given that the construction of the LoF defi-
cient gene list is independent of gene-disease databases, this list could include genes where hap-
loinsufficiency might be incompatible with life (non-viable), genes that are yet to be associated
to disease through haploinsufficiency, or genes that cause disease through mechanisms other
than haploinsufficiency. The overlaps of the 1,235 LoF deficient genes and the 1,762 control
genes with the OMIM disease gene list (minus haploinsufficiency genes) were 26.6% and
13.2%, respectively (Fisher’s Exact two-tail p = 3.1x10-20).

We find that the median ncRVIS of the collective 2,997 genes is 50.8%. By comparing the
distribution of ncRVIS scores between the 1,235 LoF deficient genes and the 1,762 LoF control
genes we demonstrated that LoF deficient genes have significantly more intolerant noncoding
sequence (median 37.9% vs. 58.1%; Mann-Whitney U test, p = 7.1x10-34, Fig 3A and S2A Fig).

We repeated the LoF deficient assessment with ncGERP, which showed that LoF deficient
protein-coding genes preferentially have a more phylogenetically conserved regulatory
sequence (median ncGERP 23.4% vs. 64.5%; Mann-Whitney U test, p = 3.4x10-171, S2B Fig. To

Table 1. Comparing protein-coding and noncoding genic intolerance scores.

14,567
CCDS genes
scored for:

OMIM disease
(1845 genes)

Recessive
(721 genes)

HIa (144
genes)

Dominant
negative (306

genes)

HIa and de
novo (82
genes)

Essential
Gene List

(1919 genes)

ClinGen
Dosage (181

genes)

Pearson’s r
(r2) to RVIS
(EVS6503)

protein-
coding

RVIS-CHGV

p = 1.4x10-6

AUC = 0.543
[0.53–0.56]

p = 0.87
AUC = 0.512
[0.49–0.53]

p = 3.1x10-23

AUC = 0.712
[0.67–0.76]

p = 4.7x10-12

AUC = 0.631
[0.60–0.66]

p = 4.7x10-21

AUC = 0.753
[0.70–0.81]

p = 8.8x10-86

AUC = 0.665
[0.65–0.68]

p = 7.9x10-42

AUC = 0.748
[0.72–0.78]

0.80 (0.63)

noncoding
RVIS

(ncRVIS)

p = 0.61
AUC = 0.496
[0.48–0.51]

p = 0.13
AUC = 0.482
[0.46–0.50]

p = 9.5x10-6

AUC = 0.599
[0.55–0.65]

p = 0.08
AUC = 0.523
[0.49–0.56]

p = 2.4x10-7

AUC = 0.633
[0.57–0.69]

p = 4.7x10-15

AUC = 0.570
[0.56–0.58]

p = 1.3x10-19

AUC = 0.664
[0.62–0.71]

0.17 (0.03)

noncoding
GERP

(ncGERP)

p = 0.027
AUC = 0.516
[0.50–0.53]

p = 0.80
AUC = 0.497
[0.48–0.52]

p = 1.4x10-24

AUC = 0.720
[0.68–0.76]

p = 8.6x10-14

AUC = 0.627
[0.60–0.66]

p = 2.7x10-24

AUC = 0.780
[0.73–0.83]

p = 3.8x10-105

AUC = 0.659
[0.65–0.67]

p = 5.7x10-61

AUC = 0.778
[0.75–0.81]

-0.25 (0.063)

Joint Model AUC = 0.547 AUC = 0.515 AUC = 0.755 AUC = 0.652 AUC = 0.816 AUC = 0.695 AUC = 0.820 N/A

To enable a matched comparison, the estimates in this table are based on a set of 14,567 CCDS genes with assessable scores across RVIS-CHGV,

ncRVIS and ncGERP formulations. Both RVIS-CHGV and ncRVIS are based on the same population of 690 whole-genome sequenced samples from the

CHGV.
aHI = Haploinsufficiency. To obtain the presented levels of significance, we used a logistic regression model to regress the presence or absence of a gene

within the corresponding gene list on each of the genic scores.

Joint Model: The AUC of a combined logistic regression model that uses all three features. Correlation plots for the pairs of scores are available in S1 Fig.

doi:10.1371/journal.pgen.1005492.t001
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understand whether information can be gained from combining ncRVIS and ncGERP scores,
we used a multivariate logistic regression model, which showed that ncRVIS (p = 5.4x10-6)
maintains a significant signal for predicting LoF deficient genes. This supports the expectation
that regulatory functions specific to humans may not always be captured by ncGERP, while
ncRVIS is likely picking up such patterns of human-specific selection within the regulatory
sequence of genes where regulated dosage is critical to normal function. An investigation of

Fig 2. Receiver operating characteristic (ROC) curves to measure the ability of RVIS-CHGV, ncRVIS, pcGERP, ncGERP, ncCADD, ncGWAVA
scores and two joint models to discriminate genes reported among ClinGen’s dosage sensitivity map from the rest of the human genome.Here, for
a given score, all assessable genes were used. To obtain the presented levels of significance, we use a logistic regression model to regress the presence or
absence of a gene among the ClinGen dosage sensitivity map list on each of the genic scores.

doi:10.1371/journal.pgen.1005492.g002
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alternative noncoding scores showed that both ncCADD and ncGWAVA were also signifi-
cantly associated with LoF deficient genes (Fig 3B and S2 Fig).

Taken together, these data advocate prioritizing coding LoF mutations and potentially the
regulatory region mutations among LoF deficient genes that have conserved or intolerant non-
coding sequence (Fig 3B). This conclusion is corroborated by earlier results showing that
ncRVIS and ncGERP are both significantly predictive of OMIM and ClinGen disease genes
with a primary mechanism of haploinsufficiency.

Copy Number Variant: Dosage insensitive genes
Individual CNVs distorting single or contiguous gene dosage have been linked to human dis-
eases [20]. Inversely, genes that tolerate CNVs in the general population are unlikely to be dos-
age sensitive [21]. In this section we extended our assessment of ncRVIS and ncGERP to CNVs
by asking whether a relationship exists between genes that have been shown to overlap (�50%
of the consensus coding sequence [CCDS]) with a deletion/duplication based on two study
populations from Database of Genome Variation (DGV) [18]: Conrad et al (2010) and the 1K
Genomes Project (2012) [17,19]. These two studies amass 1,602 individuals with comprehen-
sive CNV data across 14,714 assessable CCDS genes. Of these assessable genes, 861 genes were
found to have at least one CNV overlap among the combined population of 1,602 samples.

Genic tolerance to CNVs shows a clear relationship with the genes whose regulatory
sequence also tolerates variation. We found that, on average, the 861 genes with a CNV overlap
in these public databases have significantly higher ncRVIS (p = 2.3x10-28; AUC = 0.61) and
ncGERP percentile scores (p = 9.2x10-31; AUC = 0.62) than the 13,853 genes without a
reported CNV overlap in those data. Moreover, in a multivariate logistic regression model,

Fig 3. (A) Distribution of ncRVIS scores for the 1,235 loss-of-function deficient genes (left) compared to the 1,762 loss-of-function control genes
(right). Median 37.95% vs. 58.09%; Mann-Whitney U test, p = 6.6x10-34. (B) Receiver operating characteristic (ROC) curvesmeasuring the ability of
RVIS, ncRVIS, pcGERP and ncGERP to discriminate between loss-of-function deficient and loss-of-function control genes. To obtain the presented
levels of significance in (B), we used a logistic regression model to regress loss-of-function deficient or control gene status for the combined 2,997 genes on
each of the four genic scores.

doi:10.1371/journal.pgen.1005492.g003
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RVIS (p = 3.1x10-26), ncRVIS (p = 1.9x10-9) and ncGERP (p = 8.9x10-12) each individually con-
tribute to an improved overall prediction of genes that tolerate CNVs (AUC = 0.68).

The current data indicates that genes tolerating CNVs in the general population are also
more likely to tolerate variation in their noncoding regulatory sequence. With 13,853 genes
reporting no CNV overlap in this CNV dataset, much larger populations of high-quality,
genome-wide CNV data are required to appropriately assess the question of whether intoler-
ance in the regulatory sequence of a gene can strongly predict intolerance to specifically CNV
deletions.

Utilizing protein and noncoding RVIS
The correlation between RVIS-CHGV and ncRVIS is r2 = 0.04 (S1A Fig). We included
RVIS-CHGV and ncRVIS in a multivariate logistic regression model and found that the signals
from RVIS-CHGV and ncRVIS provided significant independent information in predicting
OMIM haploinsufficiency genes annotated as carrying de novo pathogenic mutations. This
multivariate logistic regression achieves an AUC estimate of 0.77; higher than each of the
RVIS-CHGV (AUC = 0.75) and ncRVIS (AUC = 0.63) models. Next, we generated two addi-
tional scores for each gene (Fig 4A). The first was a combined genic intolerance assessment
that considers the sum of the regulatory and protein-coding sequence by summing the values
corresponding to a gene’s RVIS-CHGV and ncRVIS genome-wide percentiles, termed “RVIS-
sum.” Using the list of OMIM haploinsufficient genes, we found that 84% of genes are in the
lower 50th percentile of RVIS-sum scores (Fig 4B). The second score is meant to reflect the

Fig 4. (A) Scatterplot of RVIS-sum (RVIS-CHGV + ncRVIS) and RVIS-diff (RVIS-CHGV–ncRVIS) scores. Each dot represents a gene. The grey dots
represent the background genome-wide distribution. The red dots highlight the 82 OMIM haploinsufficiency genes with reported causal de novo
mutations. A higher (positive Y-axis value) RVIS-diff score indicates genes where we might have a greater expectation of gene dosage aberrations
being important compared with protein structure aberrations. A lower RVIS-sum (X-axis value) highlights genes that are increasingly intolerant in
both their noncoding and protein-coding sequence. (B) A cumulative percentage plot for the RVIS-sum percentile accommodating the 82 OMIM
halpoinsufficiency genes. At any given point on the X-axis (RVIS-sum percentile) we can determine what percentage of the 82 OMIM haploinsufficiency
genes are accounted for.

doi:10.1371/journal.pgen.1005492.g004
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extent to which these two measures diverge, which we term “RVIS-diff.” A positive RVIS-diff
score indicates that the noncoding regulatory sequence of the gene is ranked as more intolerant
than the protein-coding sequence of the same gene (Fig 4A).

Interpreting neuropsychiatric loss-of-function de novomutations
To assess how ncRVIS may be useful in interpreting mutations among patients, we specifically
evaluated ncRVIS in the context of loss-of-function (LoF) de novomutations reported across
cohorts of individuals ascertained for the presence[22–33] and absence[30–34] of neuropsychi-
atric disorders. Here, loss-of-function de novomutations were defined as nonsense, canonical
splice and protein-coding indels that occurred within CCDS sequence and were absent in the
ESP6500SI database. Firstly, among controls, we identified 180 LoF de novomutations and the
median ncRVIS percentile score of the genes those mutations were found in was 45.8%. When
we considered the 494 LoF DNMs identified across cohorts of simplex trios ascertained for var-
ious neuropsychiatric disorders, we found that the LoF DNMs preferentially occurred among
noncoding intolerant genes, with the median ncRVIS being 36.2%. No single LoF de novo
mutation was observed twice among controls. Among cases, a SCN1A splice-donor de novo
mutation was found among two probands, both ascertained for an epileptic encephalopathy
[28]. Taking the combination of ncRVIS and protein-coding RVIS, the RVIS-sum vector, we
found that among controls the median RVIS-sum was 85.91, while among neuro-ascertained
cases it was 70.30 (Mann-Whitney U 2-tail test p = 0.001, S3A Fig). The significance remained
even after excluding 19 loss-of-function de novomutations among six previously known dis-
ease genes: CDKL5, NRXN1, SCN1A, SCN2A, STXBP1 and SYNGAP1 (Mann-Whitney U 2-tail
test p = 0.008).

A similar assessment is to use the information from a gene’s noncoding and protein-coding
percentiles to calculate a single metric that reflects Euclidean distance from the most intolerant
coordinate (0,0). Genes close to the (0,0) coordinate are characterized as having both the most
intolerant noncoding and protein-coding sequence. We found that loss-of-function de novo
mutations among cases preferentially occurred among genes closer to (0,0) with a median
Euclidean distance for case-ascertained LoF DNMs of 0.588 compared to 0.698 for control LoF
DNMs (MannWhitney U test, p = 0.0035). A logistic regression model regressing case/control
LoF DNM assignment on the Euclidean distance achieved an AUC of 0.58 (S3B Fig). We then
combined the genic information from the Euclidean distance metric with the previously
defined loss-of-function deficiency bioinformatics signature. We took only the LoF de novo
mutations that fell in genes with a Euclidean distance�0.4 and also occurred in loss-of-func-
tion deficient genes with no more than a single LoF variant reported among the Exome Variant
Server (EVS) [16] (S5 Table). This identified nine observations among the controls—corre-
sponding to 5.0% of LoF DNMs—and 70 observations among cases, corresponding to 14.2% of
all LoF de novomutations among cases (Fisher’s Exact test two-tail p = 6.5x10-4; odds ratio of
3.2); a modest boost to what we got when we relied solely on the loss-of-function deficient bio-
informatics signature (Fisher’s Exact two-tail p = 9.5x10-4; odds ratio of 2.4).

The list of genes carrying one of the 70 case loss-of-function de novomutations includes
established genes: NRXN1, SCN1A and SCN2A. The list also includes recently implicated
genes: CHD2 [35], CHD8 [36], KMT2E [37], MBD5 [35], SETD5 [38], and WDFY3 [39]. It is
important to note that among the cases, the above six loss-of-function mediated pathogenic
genes were of unknown significance when the de novomutation data were first reported. This
helps highlight the utility of this loss-of-function bioinformatics signature. The remaining case
loss-of-function de novomutations include some Mendelian disease genes with an existing
neurological association, such as NIPBL, which is known to cause Cornelia de Lange syndrome
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[40] and KMT2A, which is known to cause Wiedemann-Steiner Syndrome [41]. The remaining
genes with the same bioinformatics signature as the above established genes are: ANK2, ARH-
GAP5, ASH1L, BRD4, BTAF1, DLL1, DNAJC6, DOT1L, EPHB2, FAM91A1, GIGYF2, INTS6,
ITGA5, KIAA1429, LARP4B,MED13,MED13L, NCKAP1, NOTCH1, PHF3, POGZ, RAL-
GAPA1, RALGAPB, RANBP2, RB1CC1, SPAG9, STAG1, UBN2, UBR5, ZC3H4 and ZNF292
(S5 Table). It is unclear which of these genes could have their gene-disease association con-
firmed in the coming years; however, five of these candidates already have multiple LoF de
novomutation observations across neuropsychiatric ascertained patients: ANK2,MED13L,
NCKAP1, POGZ and ZNF292.

Discussion
Developing methods to recognize functional mutations in the regulatory part of the human
genome is widely recognized as one of the central challenges facing modern human genetics.
The difficulty is well illustrated by the results of the ENCODE project. Considerable effort and
progress has been made in identifying parts of the genome with clear regulatory potential based
on experimentally confirmed transcription factor binding sites and related approaches. However,
since much of the genome is currently assigned a possible regulatory role it is difficult to use only
those data to prioritize mutations in the study of human disease. Here, we show that population
genetic and phylogenetic approaches can help fill this gap by adding further information about
the possible functional role of a noncoding stretch of sequence. Integrating these approaches
with the sequence regions identified by ENCODE [42] and related studies may ultimately prove
to be the most effective approach. There are many additional regulatory sequences that can be
included using the framework described here. Examples include distal enhancers, noncoding
RNAs and larger promoter regions. However, correctly and unambiguously associating distal
regulatory elements to the genes they regulate requires highly curated data, which is not yet
straightforward to acquire. Therefore, here we focus only on regulatory sequences that can be
unambiguously associated with specific genes in order to test the ability of the noncoding exome
sequence to predict genes that cause human disease via gene dosage aberrations.

Using multiple resources, we show that dosage sensitive genes have distinct patterns of
genetic variation in their proximal noncoding regulatory sequence. To the extent that more dis-
tant regulatory sequences may also carry variants that influence expression, we may expect a
correlation between the intolerance patterns of a gene’s proximal and distal regulatory
sequence. This possibility suggests that a sliding window of intolerance data throughout the
human genome may provide a valuable new tool for identifying important regulatory sequence.
Interpreting genome wide patterns of intolerance and relating those patterns to genes will not
be a trivial task, but our results imply that genome wide patterns of intolerance have the poten-
tial to provide an important complement to other tools [42] used to identify important regula-
tory parts of the genome.

ncRVIS is a ‘regional-based’ guide to patterns of standing variation in the proximal noncod-
ing sequence of a gene in the human population (Fig 1). It leverages the collective information
from the standing variation in a stretch of noncoding sequence to assess whether that stretch of
noncoding sequence has more or less polymorphic variation than expected. This is distinct
from variant based scores that look at individual variants. By identifying stretches of noncoding
sequence with preferential depletion of standing variation we are hypothesizing that in many
cases this is driven by purifying selection among the human population acting against variation
in that noncoding region as a whole, rather than at an individual variant site.

We and others have previously found that for the protein-coding sequence, RVIS and other
estimates of human constraint are more indicative of disease causing genes than mammalian
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conservation [15,43]. However, in its current formulation, ncGERP outperforms ncRVIS in all
current assessments. There can be a few explanations for this. Firstly, it is possible that the cod-
ing region is highly conserved throughout the genome to the point that there is limited allow-
ance for big enough deviations between genic conservation in order to create an informative
ranking. However, the noncoding regions may be more prone to allow such deviations. Sec-
ondly, the current ncRVIS formulation is based on a comparatively modest cohort (n = 690
samples).

There are two reasons we think ncRVIS remains important in light of the stronger signal
observed from ncGERP. First, as we have shown throughout this work, the two scores are only
weakly correlated (r2 = 0.06, S1K Fig) and ncRVIS can add information beyond ncGERP. This
is evidenced by the various dosage sensitive gene list assessments including the ClinGen assess-
ment where in a joint logistic regression model of just ncRVIS and ncGERP, ncRVIS had a sig-
nificant contribution (p = 7.2x10-7). This likely occurs, at least in part, for the interesting
reason that there are genomic regions that have important functions only in humans. Evolu-
tionary conservation will miss these regions, population genetic approaches will not. Second,
the performance of ncGERP is close to its limit, as we already have a fairly good assessment of
which sites are phylogenetically constrained, and which are not. ncRVIS, however, we antici-
pate will increase in predictive value as sample sizes of sequenced genomes grow, and thus a
more extensive dataset of noncoding standing variation is available.

Alternative noncoding predictors of dosage sensitive genes, which take the overall propen-
sity for a gene’s proximal noncoding sequence to score as more ‘functional’ based on the aver-
age nucleotide-level CADD or GWAVA scores, suggest that nucleotide-level predictors of
noncoding functionality do appear to detect additional signatures of regulatory function
beyond conservation. We observe correlation between a gene’s ncGERP and ncCADD score
(r2 = 0.32, S1V Fig), and to a lesser degree its ncGWAVA score (r2 = 0.06, S1AA Fig), as a result
of their dependence on conservation-based signals in their construction. In a joint model, how-
ever, we found that both ncCADD and ncGWAVA provide signal independent of ncGERP
and ncRVIS when predicting human dosage sensitive genes (Fig 2). This suggests that even
though conservation is a major component of their predictive signal for ClinGen’s dosage sen-
sitive genes, additional information not directly captured by conservation might be captured
by these two ensemble predictors (S4 Table).

Currently, the basic paradigm to analyze protein-coding sequence is to use aggregate statis-
tics that integrate the effect of different rare mutations affecting the same functional unit, often
defined as the protein-coding sequence of a single human gene. This has proven effective in
whole-exome sequence data because we know the protein-coding sequence boundaries we
need to consider in order to effectively aggregate variants that affect the same functional unit
[14]. In order to effectively interpret whole-genome regulatory sequence data, and find the
noncoding regions that harbor risk-influencing mutations, we need to learn to recognize the
functional noncoding stretches of sequences that affect gene expression. Current annotations
lack specificity to define truly functional noncoding regions. Here, we have shown that a phylo-
genetic and population genetic framework can help define and prioritize the functional non-
coding regions, and this is expected to improve when combined with information about
sequences with regulatory potential from ENCODE [42] and related resources. Here, we also
explore additional signals beyond conservation and human standing variation by assessing the
dosage sensitivity predictive value of ncCADD and ncGWAVA scores, two nucleotide-level
scoring frameworks that in addition to capturing signals of conservation, leverage other fea-
tures and annotations from the noncoding sequence. Such an integrated framework will enable
the definition of intolerant noncoding regulatory regions that have been under both strong
evolutionary (ncGERP) and human population (ncRVIS) constraint. For these reasons,
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ncRVIS and related approaches are likely to play a key role in the development of a statistical
genetic framework to support the interpretation of large scale whole genome sequence data
that will soon emerge, for example through the recently announced National Human Genome
Research Institute (NHGRI) call for genomics of common disease centers. In this context, it is
essential to appreciate that the resolution of the ncRVIS approach depends critically on the
total number of individuals that have been sequenced, and therefore its value is expected to
continue to increase as whole-genome sequenced sample sizes increase.

Methods

Data
Eleven data sources were used to develop and assess noncoding RVIS (ncRVIS) and noncoding
GERP (ncGERP). As exome sequencing kits only capture a fraction of the untranslated region
(UTR) sequence of genes, we utilized human whole-genome sequenced samples from the Insti-
tute for Genomic Medicine, Columbia University database (formerly Center for Human
Genome Variation (CHGV), Duke University) to assess noncoding intolerance. We used Con-
sensus Coding Sequence (CCDS) release 14 as the set of protein-coding genes of interest for
scoring noncoding intolerance [44]. We used Ensembl 73 to define the UTR sequence of CCDS
genes that did not overlap with CCDS protein coding regions of the same or overlapping genes
[45]. We extracted gene-lists from OMIM database to reflect differing genetic models. We
extracted a heavily curated list of haploinsufficient or triplosensitive genes from ClinGen’s
Genome Dosage Map (http://www.ncbi.nlm.nih.gov/projects/dbvar/clingen/). For copy num-
ber variants (CNVs), we identified a set of deletions and duplications reported across two pub-
lished studies: The 1K Genomes Project and Conrad et al. (2010) [17,19]. We used the GERP+
+ database to derive noncoding and protein-coding regional GERP scores to compare to phylo-
genetic conservation at the genic level [6,7]. We also used two noncoding ensemble nucleotide-
level predictors, CADD [12] and GWAVA [13], to derive noncoding regional scores for each
gene’s noncoding sequence as done for GERP++. Finally, we relied on the ESP6500SI [16] data-
base to extrapolate a loss-of-function (LoF) deficient gene list, based on observing less than
expected LoF variants in a gene.

Defining the noncoding sequence of genes
To define the noncoding sequence for each gene, we relied on the Ensembl 73 noncoding anno-
tation from that gene’s canonical transcript (downloaded 19th September 2013). We refer to
noncoding exonic sequence of genes as the collection of 5'-UTR, 3'-UTR and an additional
non-exonic 250bp upstream of transcription start site (TSS). The 5’ and 3’UTR are derived
based on the canonical transcript annotation. The additional 250bp upstream of the TSS is
defined as the 250 bases upstream of the initial exon junction, taking into consideration
whether the transcript lies on the (+/-) strand. For three Ensembl genes (PKD1L2, SPIB, and
UGT2A1) that had multiple canonical transcripts, we took the larger of the two canonical
transcripts.

Given the challenge of defining the upstream promoter region, we opted to choose a rela-
tively small number of bases immediately adjacent to the TSS, and this was set at 250 for all
genes. Defining different sized promoters per gene guided by the distribution of conservation
(e.g., GERP++ scores) or human polymorphism density would create a situation where we spe-
cifically define the promoter region of the gene we are assessing based on the more intolerant
or more conserved set of bases upstream of the TSS. Evidently, this could create a bias towards
intolerant or conserved promoters in our score, and therefore we prefer for this formulation to
define the upstream promoter regions agnostic to the data we use for the assessments.
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The initial dataset was comprised of 56,715 noncoding units. These 56,715 units resulted in
19,563 unique Ensembl genes. We found that 18,507 genes had a 5’UTR (average = 260 bases,
median = 182 bases). 18,638 genes had a 3’UTR. And, by design, all 19,563 genes had a 250bp
promoter region. Of the 19,563 genes, 18,148 (92.77%) had all three noncoding units repre-
sented. 849 had only two units represented, whereas 566 were based solely on their promoter
unit, with no UTR boundaries defined.

The overall genomic noncoding sequence comprised of these 19,563 unique Ensembl genes
is 34,065,650 bases. These reflect the number of sites prior to exclusion of inadequately covered
sites and sites that overlap with protein-coding position among other genes, as discussed
below.

Whole-genome sequenced samples
We found that whole-exome sequencing is inadequate for capturing the noncoding exonic
sequence of protein-coding genes. To derive a noncoding RVIS, and to generate a comparative
protein-coding RVIS based on the same subset of samples, we selected 690 internally
sequenced (CHGV) control-approved whole genomes (78% Caucasian ancestry). For these 690
whole-genome sequenced samples, an average of 92.7% sites were covered, with at least 10-fold
coverage across the 34,065,650 Ensembl defined noncoding sites. Similarly, relying on CCDS
release 14 for the protein-coding sequence, we observed that these 690 whole-genome
sequenced samples covered on average 94.6% of the 33,266,994 protein-coding sites in CCDS
release 14 with at least 10-fold coverage.

The set of phenotypes contributing to the whole-genome sequenced set of 690 cases is sum-
marized in S1 Table.

Pruning the noncoding sites for inadequate coverage and protein-coding
overlap
It is our experience that sites sequenced with consistently good coverage represent sites with
more reliable alignment and variant calling than sites where coverage is sparse and inconsis-
tently represented among a population. S4A Fig (blue curve) represents the number of our 690
whole-genome sequenced samples that had at least 10-fold coverage (Y-axis) versus the cumu-
lative percentage of the 34.1Mbp Ensembl-defined UTR noncoding sites (X-axis). The intersec-
tion between the blue curve and green line (an illustrative cutoff) indicates that at this point
approximately 92% of samples have at least 10-fold read coverage at approximately 83% of the
Ensembl noncoding sites. Together, the green threshold line and the blue sample-site coverage
profile partition the space into four regions. Region II and region III represent the overall het-
erogeneity of coverage and the amount of noncoding sequence pruned from analysis, respec-
tively. Shifting the green line left retains noncoding sequence (smaller region III) at a cost of
increased coverage heterogeneity (larger region II). Moving the threshold right reduces the
noncoding sequence used in the analysis, but also reduces the noise from coverage heterogene-
ity. There are multiple ways to select a cutoff from these data; however, a balanced approach is
to choose a cutoff that ensures region II and region III are as close as possible in terms of area.

To evaluate the area for region II and region III, we first smooth the sample-coverage profile
(blue curve) by fitting smooth spines, as illustrated by S4B Fig where the blue dots represent
the original profile, while the red curve represents the smoothed splines. The smoothed curve
traces the original data well. We use the smoothed curve to compute the areas for region II and
region III (through numeric integrations) for a selection of evenly spaced cutoff values. The
areas for region II and region III for different cutoff values is shown in S4C Fig, with red and
blue curves representing region II and region III, respectively. We choose the balanced cutoff
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to be the point where the curves intersect, representing a balance between loss of data (noncod-
ing sequence sites) and variability from coverage heterogeneity. The method yields an optimal
value of 0.074 based on the noncoding sequence data. This suggests that removing the 7.4%
most inconsistently covered noncoding sites corresponds to requiring noncoding sites to have
at least 67% of samples with at least 10-fold read coverage. We selected 70% for the manuscript,
corresponding to removing the 8% ‘noisiest’ noncoding sites with respect to inadequate cover-
age at the population level (S4D Fig). We performed a sensitivity test varying the 70% threshold
to a threshold of 60% (r2 = 0.986) or 80% (r2 = 0.971) and show that the final ncRVIS score is
not highly sensitive to varying this threshold (S5 Fig).

Requiring�70% of the 690 samples have at least 10-fold coverage at a site prunes the non-
coding sequence down to 31,355,520 (92.0%) of the initial 34,065,650 Ensembl-defined UTR
noncoding sites. For the CCDS release 14 protein-coding sites, we found that this pruning pro-
cess retained 31,528,600 (94.8%) of 33,266,994 CCDS sites.

Although it is expected that some variants in protein-coding sequence will affect gene regu-
lation and that these would be easily associated with the genes they fall in, we excluded all pro-
tein-coding regions in order not to confound the ncRVIS score with protein-coding sequence.
Through this additional step, we ultimately retained 31,112,586 (91.3%) of the 34,065,650 non-
coding sites. We find that on average each of the 690 genomes has at least 10-fold coverage
across 97.8% of the 31.1Mbps of noncoding sequence used to derive ncRVIS. Overall, the GC
content of the 5’UTR sequence is 61% in comparison to the GC content of the 3’ UTR
sequence which is 42.5%.

Combining the three noncoding components into a single genic noncoding unit resulted in
19,484 (99.6%) of the 19,563 Ensembl genes retaining at least one noncoding component. The
average length of noncoding sequence across the 19,484 Ensembl 73 genes was 1,597
(median = 1,096 sites).

Finally, we defined ncRVIS “assessable” genes as Ensembl genes not located on the Y chro-
mosome, and with at least 70% of their noncoding sequence surviving the aforementioned fil-
ters. Through this, we retained 16,273 CCDS release 14 protein-coding genes that fulfilled the
coverage requirements of having at least 10-fold coverage of at least 70% of the gene protein-
coding sites across at least 70% of the CHGV whole-genome sequenced samples. The overlap
between CHGV-derived RVIS and ncRVIS indicates that 15,471 genes were “assessable” for
both coding and noncoding RVIS (S1 Data).

Calculating the genic coding and noncoding sequence mutation rate (X)
To accommodate the uncertainty surrounding the percentage of noncoding sequence sites that
are neutral, we used an alternative metric to reflect mutability of a given sequence context in
our ncRVIS and RVIS-CHGV adaptations. For the sites reflecting a genic unit (noncoding or
coding) we use an in-house script developed by Dr Yujun Han. This script leverages the DNA
tri-mer mutation rate matrix (kindly provided by Drs. Shamil Sunyaev and Paz Polak of The
Broad Institute of MIT and Harvard, Cambridge) to generate a mutation rate for a given genic
unit, which is calculated for each gene by summing the point mutation rates across the effec-
tively captured sequence [28].

The mutation rate model provides an estimated rate of mutation per base. The rate is based
solely on three bases: the interrogated base, the base immediately before, and the base immedi-
ately after the interrogated base. The model is based on human, chimpanzee and baboon geno-
mic sequences [46]. The mutation rate model does not currently account for effects of larger
sequence context or biological processes that affect mutation rate, such as background selec-
tion, distance to CpG islands, or replication timing. At the level of the gene, like others [43], we
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find very high correlation (r2 = 0.95) between gene coding length and mutation rate. While the
high correlation suggests it is possible to use gene size as a proxy, we prefer leveraging the
mutation rate to accommodate for some additional information that is likely lost when using
gene size. The source code can be found in S3 Data.

Calculating the number of common variants in the noncoding sequence
All sequencing was performed on the Illumina HiSeq2000 platform (Illumina, San Diego, CA)
in the Genomic Analysis Facility in the Center for Human Genome Variation (CHGV) at
Duke University. After sequencing, reads were aligned to Genome Reference Consortium
Human Genome build 37 (GRCh37) using the Burrows-Wheeler Alignment Tool (BWA)[47]
and PCR duplicates were removed using Picard software (http://picard.sourceforge.net). The
reference sequence we used is identical to the 1000 Genomes Phase II reference and it consists
of chromosomes 1–22, X, Y, MT, unplaced and unlocalized contigs, the human herpesvirus 4
type 1 (NC_007605), and decoy sequences (hs37d5) derived from HuRef, Human Bac and Fos-
mid clones and NA12878. Variants were called using the Genome Analysis Toolkit[48]. SnpEff
was used to annotate the variants[49].

To construct the ncRVIS score, we defined the minor allele frequency threshold dividing “com-
mon” and “rare” variants as ρ. To identify the number of variants with a MAF> ρ in the noncod-
ing region of a gene, we use an in-house package, Analysis Tool for Annotated Variants (ATAV).
ATAV communicates with our in-house relational database that houses all the variant call (and
non-carrier) information for all sites across each of the 690 whole-genome sequenced samples.
Additional filtering consisted of excluding indel calls and requiring a minimum of 10-fold cover-
age to call a variant (or be confident that a variant wasn’t present in a non-carrier sample). To
increase confidence in called variants the following additional filters were applied: relying on
GATK VQSLOD “pass” and “intermediate tranches,” requiring a QUAL score of at least 30, a QD
(quality by depth) score of at least 2, a genotyping quality (GQ) score of at least 20, and a fisher
strand bias (FS) score of less than 60. For noncoding regions, we considered all common variants
residing in the noncoding sequence as contributors to (Y), the number of common variants.

For the CHGV-based protein-coding RVIS score (based upon the same 690 whole-genome
sequenced samples as ncRVIS), we adopted the same criteria as in our earlier work introducing
RVIS. That is, synonymous protein-coding variants did not contribute to the number of com-
mon ‘functional’ variants when deriving the CHGV protein-coding RVIS score. However, we
did assess a secondary score (RVIS-Yall) for comparison purposes. RVIS-Yall considered all
protein-coding variants as eligible to contribute to (Y), including the putatively neutral, synon-
ymous coding variants.

Deriving the noncoding RVIS (ncRVIS) score
We defined Y as the total number of common (Minor Allele Frequency [MAF]>ρ) SNVs in
the noncoding sequence of a gene, and X as the effective mutation rate of the noncoding
sequence of the gene, using the mutation matrix described previously. We then regressed Y on
X and took the studentized residual as the noncoding Residual Variation Intolerance Score
(ncRVIS). The raw residual was divided by an estimate of its standard deviation to account for
differences in variability that come with differing mutational burdens. The ncRVIS then pro-
vides a measure of the departure from the (genome-wide) average number of common variants
found in the noncoding sequence of genes with a similar amount of noncoding mutational bur-
den. When S = 0, the gene has the average number of common noncoding variants given its
total mutational burden; when S<0, the gene has fewer common noncoding variation than pre-
dicted; when S>0, it has more. Each ncRVIS is then translated to a corresponding percentile to
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reflect the relative position of that gene on the genome-wide spectrum of ncRVIS based on the
relative intolerance of that gene’s noncoding sequence. S1 Data contains the X and Y estimates
used to construct ncRVIS. The R code to reproduce ncRVIS relies on the MASS package [50]:
studres(glm(Y~X)).

As we only had 690 whole-genome sequenced samples available, we chose to adopt a MAF
threshold ρ of 1% for the noncoding RVIS and RVIS-CHGV.We had in our previous publication
explored the behavior of the original RVIS for ρ of 0.01% and 1%, and found both of these to be
strongly correlated with ρ = 0.1% (Pearson's r = 0.849 and Pearson's r = 0.813, respectively).

The collection of genomes used to derive ncRVIS includes various sample ascertainments
(S1 Table). Given that we use the mutation rate matrix to define the underlying mutation rate
(X), and only consider variants with a MAF>1% when determining (Y), we consider it highly
unlikely that case-ascertained variants could be systematically influencing the current ncRVIS
or RVIS-CHGV scores. We highlight F8 as the single gene that might require careful interpre-
tation due to our collection of WGS samples that were ascertained for haemophilia.

Under the residual variation intolerance framework, ncRVIS will not correlate with either
the noncoding mutability or noncoding sequence length. To confirm this, we find that the cor-
relation between ncRVIS and the corresponding mutability or size of the effective noncoding
sequence to be r2 = 3.0x10-8 and r2 = 2.0x10-5, respectively (S1B and S1C Fig). We further con-
firmed that the ncRVIS is not strongly correlated to the corresponding genes ‘protein-coding’
sequence size or ‘protein-coding’mutability: r2 = 0.0031 and r2 = 0.0026, respectively (S1D and
S1E Fig). We do note, however, that there is high correlation between a gene’s noncoding
sequence length (number of bases) and its derived mutability using the mutation rate matrix
(r2 = 0.9493, S1F Fig).

Formulations of the protein-coding RVIS
We first assessed the likely impact of using the estimated mutation rate instead of the observed
variation by comparing two formulations of the original RVIS. To construct RVIS-mut we
replaced the observed variation among the EVS population with the estimated mutation rate
for that gene to represent (X) and kept the original Y variable from RVIS. Reassuringly, we find
that RVIS-mut, using the estimated mutation rate, correlates highly (Pearson’s r2 = 0.83) with
that using the total number of variants in each gene (RVIS) (S2 Table and S1G Fig).

We next evaluated the effect of not being able to identify functional mutations by comparing
RVIS to a third formulation (RVIS-YALL). For RVIS-YALL we again use the effective mutation
rate to represent X; however, we now permit all common protein-coding variants (including
synonymous variants) for the Y variable. We find that RVIS-YALL remains highly correlated
with the original RVIS (Pearson’s r2 = 0.59, S1H Fig); more importantly, it remains predictive
of genes causing Mendelian disease (S2 Table).

Finally, we show that a fourth formulation of RVIS, using an independent set of 690 whole-
genome samples that were sequenced at the CHGV (RVIS-CHGV), remains highly correlated
with the original RVIS (Pearson’s r2 of 0.63, S1I Fig) despite a decreased sample size, and con-
tinues to be significantly predictive of the disease gene lists, with the exception of genes causing
recessive disease (S2 Table).

These comparisons suggest that, in principle, the ncRVIS formulation should work similarly
to RVIS when regulatory sequences are subject to purifying selection.

Comparison to estimates of phylogenetic conservation
In our original RVIS paper we used omega (ω) as the phylogenetic approach to compare non-
synonymous substitutions per non-synonymous site (dN) to the synonymous substitutions per
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synonymous site (dS) (aka Ka/Ks, dN/dS). Given we are now interested in noncoding sequence,
we have generated an alternative estimate to assess whether correlation exists between the
ncRVIS and that of possible phylogenetic conservation at noncoding sites. For each gene we
constructed two conservation vectors: one reflecting the noncoding sequence of a gene after
excluding protein-coding overlapping sites (ncGERP), and the other reflecting the protein-cod-
ing sequence of a gene (pcGERP). Both conservation vectors were based on the average GERP+
+ score [6] of the qualifying chromosomal sites within the defined sequence.

We found that ncGERP and pcGERP were moderately correlated to each other (r2 = 0.30).
Compared to ncRVIS, both ncGERP and pcGERP had low correlation: r2 = 0.06 and r2 = 0.04,
respectively. Likewise, compared to previously described RVIS [15], both ncGERP and
pcGERP had relatively low correlation r2 = 0.06 and r2 = 0.15, respectively. These five correla-
tion tests were performed based on the 14,998 genes with the corresponding scatterplots avail-
able in S1J–S1N Fig.

Interestingly, we found that pcGERP was inferior to ncGERP when comparing the 1,235
LoF deficient genes to the 1,762 LoF control genes, as described above (median pcGERP
32.38% vs. 65.57%; Mann-Whitney U test, p = 5.6x10-141; in comparison to median ncGERP
23.39% vs. 64.49%; Mann-Whitney U test, p = 3.4x10-171). While protein-coding genes are gen-
erally fairly phylogenetically conserved overall, there is variability inside the protein-coding
genes in the phylogenetic conservation that correlates with whether a site causes disease or not.
Overall, however, the majority of protein-coding genes are reasonably conserved across species.
This leaves less scope for pcGERP variability among genes that can then be related to disease
gene status (Fig 5). This is less true for the regulatory regions, where single-site variation is
unlikely to systematically experience the same overall constraint as sites coding for structural
components of the proteins. As a consequence of this, there is more scope for variability
among the average ncGERP across the genome-wide spectrum of genes (Fig 5).

Alternative noncoding nucleotide-level scores
Literature includes alternatives to GERP++ for quantifying the degree of importance (some-
times referred to as functionality) of noncoding sequence in the human genome. Unlike GERP
++, which is a direct measure of the phylogenetic conservation of a single site or a stretch of
sequence, more recent alternatives include ensemble based predictors that leverage many fea-
tures beyond conservation.

Although we recognize that nucleotide-level scores were constructed specifically for variant-
level assessments; we nonetheless investigate whether a regionalized version of these scores
could add information to predicting dosage-sensitive gene lists as well or better than ncRVIS
or ncGERP. To this end, we calculated noncoding regional scores based on two popular nucle-
otide-level scoring frameworks: CADD [12] and GWAVA [13]. Using the same coordinates as
ncGERP, we took the average CADD and GWAVA scores across the defined noncoding
regions as a gene’s noncoding score.

To calculate regional noncoding CADD scores, referred to as ncCADD, we used the scaled
C-scores from CADD version 1.0 [12]. In a regionalized form, ncCADD reflects the average
CADD score for all possible single nucleotide substitutions across a gene’s defined noncoding
sequence.

For regionalized noncoding GWAVA, referred to here as ncGWAVA, we downloaded the
required training data and scripts from (ftp://ftp.sanger.ac.uk/pub/resources/software/gwava/)
and followed instructions given by the developers to generate the site-specific scores for all non-
coding exome sites. We were advised that for UTR sequence the TSS-distance matched training
set would be optimal (personal communication with Dr. Graham Ritchie). Using the TSS-distance
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matched training set we derived the GWAVA score for each noncoding nucleotide site in a gene’s
defined noncoding exome sequence and took the average to be the gene’s ncGWAVA score.

Neither CADD nor GWAVA were specifically developed to be interpreted as regional
assessments. However, understanding the overall importance of a gene’s noncoding sequence
as inferred from CADD or GWAVA could still be of interest. Both noncoding scores are pro-
vided in S1 Data. Scatterplots assessing correlations with other scores (including ncGERP) are
available in S1S–S1AA Fig.

Comparing ncRVIS across the noncoding sub-units
To assess the possible contributions of each ncRVIS subunit, we generated an ncRVIS score for
promoter regions, 5’ UTR regions, and 3’ UTR regions for the set of 10,726 genes that had
“assessable” sequence across all three distinct noncoding subunits. To permit comparisons
with the original RVIS score, we further restricted comparison to the 9,644 distinct genes that
also had a published RVIS score (Petrovski et al. 2013 [15]), an assessable ncRVIS score. We
find that the highest correlation with the ncRVIS score comes from the 3’UTR ncRVIS (r2 =
0.79), compared to promoter and 5’UTR regions, which had r2 correlation of 0.25 and 0.20,
respectively (S3 Table).

Using standing variation to identify loss-of-function deficient genes
To generate a loss-of-function (LoF) deficient gene list, we take the five distinct mutation rates
provided per gene by Samocha et al. (2014)[43] and calculate the expected frequency of

Fig 5. Overlaid histograms of ncGERP (blue) and pcGERP (red). These data show that the two form very different genome-wide distributions (medians:
ncGERP -0.02 versus pcGERP 2.64). Moreover, pcGERP tends to present with a slightly platykurtic, left-skewed distribution (γ2 = -0.10, γ1 = -0.66)
compared to ncGERP, which reflects a more leptokurtic, right-skewed distribution (γ2 = 0.97, γ1 = 0.96).

doi:10.1371/journal.pgen.1005492.g005
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protein-coding loss-of-function variants for each assessable consensus coding sequence
(CCDS) gene (Ps). We achieve this by first summing the mutation rates corresponding to the
three loss-of-function variant effect classes (nonsense, splice and frameshift) and dividing that
by the total sum of the mutation rates of every possible mutation effect in the gene. We then
use the resulting rate to determine the percentage of variants in a gene that we expect to result
in a LoF effect, accommodating for the mutation rate. Based on the above, the average percent-
age of possible protein-coding mutations in a gene that are expected to result in a loss-of-func-
tion annotated variant (whether it is subsequently selected against or not) is ~9.22% of the sum
of all possible protein-coding and canonical splice site mutation events. We then use the
ESP6500SI database (accessed 20th March 2013) to extract for each gene both the total number
of observed unique variants (n) and specifically the number of observed unique loss-of-func-
tion variants reported in the CCDS of each gene (x). This gives us our observed rate of LoF var-
iants given all the protein-coding variation identified in the gene. Taking a gene’s expected
percentage of unique loss-of-function variation under neutrality as calculated by (Ps), a subset
of 1,235 genes with ncRVIS and ncGERP scores were identified as being significantly deficient
of loss-of-function variants using a one-sided binomial exact test with Benjamini & Hochberg
false discovery rate multiple-testing correction (FDR = 1%)[51] (S4 Data). As a comparative
group, we identified a set of 1,762 ‘control’ genes where we observe greater than the expected
number of loss-of-function variants. While this list of LoF control genes cannot be interpreted
as significantly LoF tolerant, we consider the list a useful comparative group to the genes found
to be significantly LoF deficient. It is clear that we are currently missing some true LoF intoler-
ant genes due to insufficient resolution (power) from the EVS reference cohort. The result of
this reduced power is that the majority of the exome is considered non-informative for LoF
deficiency. Larger cohorts will enable better discrimination of truly LoF deficient genes. How-
ever, even though it is currently an incomplete list, the list of genes that are already significantly
LoF deficient is already a valuable resource.

Finally, to illustrate that this list is robust to false positives driven by how much of the gene
has been effectively sequenced, we repeated the exact implementation only this time asking
whether any genes were significantly deficient of synonymous (presumed neutral) variation. In
comparison to the LoF assessment where we identified 1,235 genes with an FDR< 1%,
genome-wide the lowest FDR among the synonymous assessment was an FDR of 61%, with no
other gene achieving an FDR< 99.99% for the synonymous assessment. This further highlights
the integrity of this approach to detect LoF deficient genes in the human genome.

Supporting Information
S1 Fig. Scatter plots. Scatter plots between different metrics and features used in this manu-
script. S1A: ncRVIS and RVIS-CHGV; S1B: ncRVIS and noncoding mutation rate; S1C:
ncRVIS and noncoding sequence size; S1D: ncRVIS and coding sequence size; S1E: ncRVIS
and coding mutation rate; S1F: noncoding sequence size and noncoding mutation rate; S1G:
RVIS and RVIS-mut; S1H: RVIS and RVIS-YALL; S1I: RVIS and RVIS-CHGV; S1J: ncGERP
and pcGERP; S1K: ncRVIS and ncGERP; S1L: ncRVIS and pcGERP; S1M: RVIS and ncGERP;
S1N: RVIS and pcGERP; S1O: ncRVIS and 3’UTR ncRVIS; S1P: ncRVIS and promoter
ncRVIS; S1Q: ncRVIS and 5’UTR ncRVIS; S1R: RVIS and ncRVIS; S1S: ncCADD and non-
coding sequence size; S1T: ncCADD and ncRVIS; S1U: ncCADD and RVIS-CHGV; S1V:
ncCADD and ncGERP; S1W: ncCADD and ncGWAVA; S1X: ncGWAVA and noncoding
sequence size; S1Y: ncGWAVA and ncRVIS; S1Z: ncGAVA and RVIS-CHGV; S1AA:
ncGWAVA and ncGERP.
(DOCX)
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S2 Fig. Distribution of genic percentile scores for LoF deficient and control genes. The dis-
tribution of genic score percentiles for the 1,235 LoF deficient (red distribution) compared to
the 1,762 LoF control (blue distribution) genes. (A) ncRVIS percentiles, (B) ncGERP percen-
tiles, (C) ncCADD percentiles and (D) ncGWAVA percentiles.
(TIF)

S3 Fig. De novo mutations among case and control trios. (A) Distribution of RVIS-sum
scores for genes affected by loss-of-function de novo mutations. A median RVIS-sum score of
70.3 observed among 494 case-ascertained de novo mutations and a median of 85.9 among 180
de novo mutations from controls not ascertained for a neuropsychiatric disorder (Mann-Whit-
ney U test p = 1.5x10-3). (B) Receiver operating characteristic (ROC) curve measuring the abil-
ity of the Euclidean distance for each LoF de novo mutation to discriminate between case and
control ascertained LoF DNMs (AUC = 0.58 [95% CI 0.53–0.63]).
(TIF)

S4 Fig. Threshold selection method. In S4A, S4B, S4D Figures the blue curve represents the
number of our 690 whole-genome sequenced samples that had at least 10-fold coverage (Y-
axis) versus the cumulative percentage of the 34.1Mbp Ensembl-defined UTR noncoding sites
(X-axis). For example, in S4A Fig the intersection between the blue curve and green line (an
illustrative cutoff) indicates that at this point approximately 92% of samples have at least
10-fold read coverage at approximately 83% of the Ensembl noncoding sites, and less than
10-fold coverage at approximately 17% of the Ensembl noncoding sites. S4C Fig represents the
area of region II (red) and region III (blue in S4A Fig) for different X-axis cutoffs. The optimal
threshold we decide to use as an x-axis cut-off in S4A Fig is selected by finding the intersection
between the blue and red curves in S4C Fig–as represented by the red line in S4D Fig.
(TIF)

S5 Fig. Threshold selection scatter plots. Scatter plots between three different ncRVIS sets,
each generated with a different threshold for the percentage of samples with 10-fold coverage
required at a given site for that site to be included. (A) compares the correlation between the
choice of a 70% or 60% cut-off (r2 = 0.99); (B) compares the correlation between the choice of a
80% or 60% cut-off (r2 = 0.95); and (C) compares the correlation between the choice of a 80%
or 70% cut-off (r2 = 0.97). These plots show that ncRVIS is not highly sensitive to varying this
threshold.
(TIFF)

S1 Table. Cohort summary. Cohort of whole-genome sequenced samples used to construct
the ncRVIS and RVIS-CHGV scores.
(DOCX)

S2 Table. Comparisons of deviations from original RVIS. Based on 16,275 consensus coding
sequence (CCDS) genes with assessable scores across all four RVIS formulations. Reflecting
96% of the CCDS release 9 genes scored in Petrovski et al (2013). Details on adopted gene-lists
can be found in Petrovski et al (2013). RVIS: Based on the ESP6500 dataset. X = observed pro-
tein-coding variants, Y = common (>0.1% minor allele frequency) functional variants [15].
RVIS-mut: Based on the ESP6500 dataset. X = Genic mutation rate calculated via the tri-mer
mutation matrix, Y = common (>0.1% minor allele frequency) functional variants. RVI-
S-YALL: Based on the ESP6500 dataset. X = Genic mutation rate calculated via the tri-mer
mutation matrix, Y = common (>0.1% minor allele frequency) protein-coding variants of all
effects (including synonymous variants). RVIS-CHGV: Based on an internally sequenced
cohort of 690 whole-genome sequenced samples. X = Genic mutation rate calculated via the
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tri-mer mutation matrix, Y = common (>1% minor allele frequency) functional variants. To
obtain the presented levels of significance, we used a logistic regression model to regress the
presence or absence of a gene, within the corresponding gene list, on each of the genic scores.
The [95% CI] for the AUC estimates are provided for each cell. Scatter plots for the pairs of
scores are available in S1 Fig.
(DOCX)

S3 Table. Comparing the sub-regions of noncoding RVIS. Based on the intersecting 9,644
(57%) CCDS release 9 genes that had all the following RVIS “assessable” formulations: an origi-
nal RVIS score (Petrovski et al 2013), an ncRVIS, a promoter ncRVIS, a 5’UTR ncRVIS, and a
3’ UTR ncRVIS. To obtain the presented levels of significance, we used a logistic regression
model to regress the presence or absence of a gene, within the corresponding gene list, on each
of the genic scores. The [95% CI] for the AUC estimates are provided for each cell. Scatter plots
for the pairs of scores are available in S1 Fig.
(DOCX)

S4 Table. Joint logistic regression model to predict ClinGen’s dosage sensitive genes. This
table contains the estimates achieved by six genic features in their ability to predict ClinGen’s
dosage sensitive genes from the remaining exome background. See accompanying Fig 2.
(DOCX)

S5 Table. Neuropsychiatric disorder ascertained loss-of-function de novo mutations. This
table contains the loss-of-function de novo mutations found among a collection of neuropsy-
chiatric disorder ascertained patients, that both occur in genes that are loss-of-function defi-
cient and have a Euclidean distance from (0,0)� 0.4.
(DOCX)

S1 Data. Collection of RVIS and GERP scores and their corresponding percentiles.
(XLSX)

S2 Data. ClinGen Genome Dosage Map assessment.
(XLSX)

S3 Data. Tri-mer mutation rate calculator.
(PL)

S4 Data. Significantly loss-of-function (LoF) depleted gene list.
(XLSX)

S5 Data. Noncoding RVIS (ncRVIS) genomic boundaries.
(TXT)
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