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ABSTRACT

Tumor heterogeneity plays a pivotal role in tumor progression and resistance to clinical treatment.
Single-cell RNA sequencing (scRNA-seq) enables us to explore heterogeneity within a cell population and
identify rare cell types, thereby improving our design of targeted therapeutic strategies. Here, we use a
pan-cancer and pan-tissue single-cell transcriptional landscape to reveal heterogeneous expression patterns
within malignant cells, precancerous cells, as well as cancer-associated stromal and endothelial cells. We
introduce a deep learning framework named Shennong for in silico screening of anticancer drugs for
targeting each of the landscape cell clusters. Utilizing Shennong, we could predict individual cell responses
to pharmacologic compounds, evaluate drug candidates’ tissue damaging effects, and investigate their
corresponding action mechanisms. Prioritized compounds in Shennong’s prediction results include
FDA-approved drugs currently undergoing clinical trials for new indications, as well as drug candidates
reporting anti-tumor activity. Furthermore, the tissue damaging effect prediction aligns with documented
injuries and terminated discovery events. This robust and explainable framework has the potential to
accelerate the drug discovery process and enhance the accuracy and efficiency of drug screening.
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INTRODUCTION

The extensive heterogeneity of tumors plays a piv-

High-throughput single-cell RNA-sequencing
(scRNA-seq) enables the capture of unbiased in-
dividual cell transcriptomes [6,7]. It allows us to

otal role in cancer progression and resistance to clin- o ! .
identify intra-tumor heterogeneity and characterize

ical treatment [1]. The dynamic interplay between

L . rare cancer cells hidden in traditional bulk analyses
cancer cells and their microenvironment forms an

o . . .scRNA-seq reveals the multifaceted interactions
intricate ecosystem [2]. Unraveling the mechanisms [4] ! o d )
between cancer cells and their microenvironment,
including the roles of non-malignant and immune

cells, as well as the extracellular matrix, which signif-

underpinning tumor progression is crucial for pre-
cise diagnosis, prognosis, and therapy. Pan-cancer
analyses, utilizing data across various cancer types, ] T >
could reveal common underlying drivers of onco- icantly influences tumor initiation and progression.
genesis and progression. This illuminates common
genomic alterations, signaling pathways, and cel-
lular processes across diverse cancer types [3,4].
A comprehensive understanding of the pan-cancer

These insights can uncover mechanisms of resis-
tance and lead to the discovery of novel diagnostic
and prognostic markers. Tracking development and
responses of individual cancer cells over time could

o . . . nhan r understanding of tumor dynamics an
landscape assists in guiding therapeutic strategies, enhance our understanding of tumor dynamics and

discovering novel targeted treatment cancer types,
and advancing personalized medicine [4,5].

inform therapeutic strategies, ultimately improving
cancer treatment precision and efficacy [2].
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Recent pan-cancer studies based on scRNA-seq
have focused primarily on tumor microenviron-
ments (TMEs), especially immune cells, while often
neglecting intra-tumor heterogeneity and complex
inter-component interactions.

Artificial intelligence, specifically machine learn-
ing, has been playing important roles in cancer
research and pharmaceutical innovation [8-10].
It can integrate extensive cancer datasets, decode
the complex biological systems, and identify com-
mon and unique tumor patterns. In drug discovery,
machine learning enhances our understanding of
drug-target interactions, improves therapeutic
strategies, enriches assessments of drug effective-
ness and potential side effects, and accelerates the
identification of new drug candidates [8,10]. Large
perturbation datasets are beneficial tools to explore
how human diseases and their gene expression
profiles are affected by different kinds of chemical
compounds, including potential drugs [11].

Several computational tools have emerged in
drug response predictions. For example, scRANK
ranks cell types based on their gene network activ-
ity in response to drugs, but its reliance on prior
knowledge limits its use for compounds with un-
clear targets [12]. BeyondCell identifies cellular
contexts that influence drug sensitivity but lacks in-
terpretability and specific drug targets, complicating
clinical application. scDEAL employs a deep trans-
fer learning to model drug responses by integrating
bulk and single-cell RNA-seq data, though harmo-
nizing these data types can be challenging and may
introduce biases. These advancements underscore
the potential of machine learning to enhance drug
discovery and personalize cancer treatment.

In this study, we profiled the pan-cancer single-
cell transcriptional landscape using Microwell-seq,
with 303 351 cells across 7 common solid cancer
types (Fig. 1a). Integrating public scRNA-seq data of
corresponding normal tissues, we characterized the
heterogeneous expression patterns within malignant
and precancerous cells, as well as cancer-associated
stromal and endothelial cells. We found that precan-
cerous cells not only originate from adjacent tissue
but undergo molecular alterations associated with
nearby tumor tissue, reflecting an intermediate state
from normal to tumor.

The pan-cancer single-cell landscape offers valu-
able resources for anticancer drug development.
By utilizing this detailed cellular atlas, we aim to
enhance the design of targeted therapeutic strategies
that aligns drug responses with specific cellular
contexts. We introduced Shennong, a deep learning
framework that allows large-scale screening of anti-
cancer drugs for targeting each of the landscape cell
clusters. By leveraging pan-cancer data to predict
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single cells’ responses to pharmacological pertur-
bations, we further screened both broad-spectrum
and cancer-specific drug candidates, identified new
indications for marketed drugs, evaluated drug
candidates’ tissue damaging effects, and explored
their corresponding action mechanisms.

Prioritized compounds in Shennong’s prediction
results include FDA-approved drugs undergoing
clinical trials for new indications, such as azacitidine
and irinotecan, along with drug candidates like
parbendazole. Tissue damaging effect predictions
were consistent with reported injuries or termi-
nated discovery events, like vemurafenib, lopinavir,
and GSK-690693. Our framework was robust and
highly interpretable, revealing hidden mechanisms
of action and efhiciently predicting pharmaceutical
effects on specific cell types.

Overall, we profiled the pan-cancer landscape,
explored its heterogeneous expression patterns, and
proposed the Shennong framework, a single-cell
level drug screening framework to enhance the ac-
curacy and efficiency of drug screening, expediting
drug repurposing and discovery. The pan-cancer
landscape and training and prediction results of the
Shennong framework are available on our website

(http://bis.zju.edu.cn/shennong/index.html).

RESULTS

Construction of the pan-cancer
single-cell landscape using
Microwell-seq

To investigate cell type diversity across different
cancer types, we compiled a pan-cancer single-cell
landscape using Microwell-seq. Tumor (CA) and
adjacent (ADJ) tissues were dissociated to single-
cell suspension for scRNA-seq profiles without
initial sorting. After quality control and filtering,
our landscape consisted of 303 351 cells from 15
patients spanning 7 tumor types, with 51.7% of
cells originating from tumor tissues (Fig. 1b and
Tables S1-SS). Our tumor collection included
lung adenocarcinoma (LUAD), colorectal cancer
(CRC), hepatocellular carcinoma (HCC), intra-
hepatic cholangiocarcinoma (ICC), bladder cancer
(BC), pancreatic ductal adenocarcinoma (PDAC),
and gallbladder cancer (GBC), containing the high-
est morbidity and mortality tumor types in China.
Using unsupervised clustering, we identified S1
major cell clusters (Fig. 1c, Fig. Sla, b and Table S6).
These clusters were classified based on cell type-
specific markers into S main lineages: lymphoid
(CD3D, CD3E, CD79A, JCHAIN), myeloid (CD68,
CD14), stromal (DCN, COL1AI, ACTA2), en-
dothelial (VWF, PLVAP), and epithelial (EPCAM,
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Figure 1. The pan-cancer cell landscape was constructed using Microwell-seq. (a) Overview of scRNA-seq experiments and bioinformatics workflow.
Created with BioRender.com. (b) Stacked bar chart showing the number of analyzed cells from each tumor type and each patient, and pie chart showing
the percentage of analyzed cells in tumor (CA) and adjacent (ADJ) tissues. (c) -SNE visualization of 303 351 single cells from the pan-cancer landscape,
colored by cluster identity (n = 51) and tumor type (n = 7). (d) Hierarchical clustering tree (top) showing the similarity among 51 cell clusters, and
histogram (bottom) showing the percentage of tissue source for each cell cluster.

KRT18) (Fig. Slc—e and Table S7). The cell-type hi-
erarchy tree showed that cell clusters from the same
cell lineage tended to converge together beyond the
tissue type (Fig. 1d and Fig. SIf).

Upon observing the composition of each cluster,
we found that nearly all epithelial cells displayed tis-
sue type-specific characteristics, with contributions
from multiple patients, while some clusters showed
patient-specific patterns (Fig. Slg). For example,
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C9, C21, and C43 were multi-patient contributed
enterocytes, while C33 was primarily contributed
by patient CRC_901S. In terms of hepatocytes, each
cluster (C30, C35, and C39) was predominantly
contributed by a single patient. Interestingly, C36
was identified as ductal cells with contributions from
multiple tumor types, consisting of cells from HCC,
ICC, and PDAC patients. However, no significant
differences in the TME were observed, regardless of
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malignant status and tissue type (Fig. 1d and Fig. S1f,
g). Stromal, endothelial, and immune clusters de-
rived from different tumor types and patients were
well integrated, respectively. Clusters C11 and C24
were myofibroblast/fibroblast, and C15 and C42
were endothelial cells. The lymphoid lineage mainly
included T cells, B cells, and plasma cells, while the
myeloid lineage primarily included macrophages,
monocytes, and dendritic cells. Notably, C46 had
T cells derived from multiple HCC patients, while
Cl1, C38, and C47 mainly originated from LUAD
patients, particularly C47. These results indicated
that, although sharing many commonalities in the
pan-cancer landscape, cell types exhibited distinct
features across tumor types and individual patients.
This underscores the significance of considering
both tumor types and patient characteristics in
cancer research and treatment strategies.

Heterogeneous expression patterns
within malignant and precancerous cells

Understanding intra-tumor heterogeneity is impor-
tant to decipher cancer progression and improving
treatment efficacy. By integrating scRNA-seq data
of corresponding normal tissues from our previous
work, Human Cell Landscape (HCL) [7], we in-
vestigated the cellular heterogeneity of tumor cells
and their TMEs. All scRNA-seq data were generated
using the same platform Microwell-seq, in other
words, this excludes possible technology-induced
bias. Our merged dataset included 388 646 cells,
with approximately one-third originating from
CA, ADJ, and normal tissue samples (Fig. 2a and
Fig. S2a—c). Cells from HCL accounted for 22%
of the dataset. Cell-cell communication analysis
revealed that interactions significantly increased
(p < 0.05) in the order of normal, ADJ, and CA
tissues (Fig. 2b, c and Fig. S2d), suggesting that ad-
jacent tissue might be in transitional states between
normal and tumor tissues.

Accurate definition of malignant cells is essential
for characterizing tumor heterogeneity patterns.
Given that simply classifying cells as epithelial is
inadequate for identifying malignant cells in tumor
tissues [13], we simultaneously employed three ap-
proaches to accurately identify malignant cells and
annotate other cells (Fig. 2d, e and Figs S3, S4; see
Materials and Methods). Using patient ICC_1012
as an example, we first assigned cells to distinct cell
types and identified significantly highly expression
genes in different epithelial clusters (Fig. 2d). Then,
we inferred copy number variation (CNV) scores in
these epithelial clusters using normal colon epithe-
lial cells from HCL as references (Fig. 2e). Third,
potential malignant cells forming separate clusters
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in dimensionality reduction. Compared to non-
malignant epithelial cells, malignant cells exhibited
higher CNV scores and formed separate clusters
in ICC_1012, despite both EPCAM and CDISI
[14] being overexpressed in these epithelial cells
(Fig. 24, e).

Interestingly, almost all non-malignant epithelial
cells showed high expressed of cancer-related genes
and exhibited borderline CNV scores. For example,
clusters C18 in BC_ 1790, C6 and C15in ICC_1012,
and C4, C11,and C20in PDAC_ 5108 (Fig. 2d, eand
Figs S3, S4). Analyses of cell—cell communication
and metabolic activity indicated that these cells
resembled malignant cells (Fig. 2f, g, Fig. SSa—c, and
Tables S8-S10), showing close interactions with
TMEs and a downregulation of oxidative phospho-
rylation, alongside an upregulation of glycolysis and
gluconeogenesis. The majority of these cells origi-
nated from adjacent tissues and did not cluster with
malignant cells. Notably, non-malignant epithelial
cells originating from tumor tissues displayed in-
termediate CNV scores, such as C15 in ICC_1012,
C13 and C22 in LUAD_ 1610, C16 and C20 in
LUAD_5777, and C20 in PDAC_5108 (Fig. 2d, e
and Figs S3, S4). The C20 cluster in PDAC_5108
might be undergoing epithelial-to-mesenchymal
transition (EMT), as indicated by the highest EMT
scores (Fig. SSd). These observations were also
supported by published scRNA-seq tumor datasets
[15,16] from the 10x Chromium platform (Fig. SSe—~
j), using corresponding tissues from Tabula Sapiens
as healthy normal tissues.

Therefore, our CNV analyses, combined with
tumor marker gene expression, cell-cell communi-
cation, and metabolic activity assessments, indicate
that non-malignant epithelial cells resembling
malignant cells might signify an early stage of can-
cerization [17], representing a transitional state from
normal to tumor tissue. We termed these cells ‘pre-
cancerous cells” in our study, distinguishing them
from both normal epithelial and malignant cells.
Overall, we identified 34 926 high-confidence malig-
nant cells and 23 034 non-malignant (precancerous)
cells across the pan-cancer landscape (Fig. 2h).

Next, we re-clustered all malignant, precancer-
ous, and normal epithelial cells from each patient in
our pan-cancer landscape and HCL. Malignant, pre-
cancerous, and normal epithelial cells accounted for
38.9%, 25.6%, and 35.5%, respectively. We identified
23 clusters (C0-C22) through unsupervised cluster-
ing, annotating them according to cell type-specific
markers (Fig. 3a, b, Fig. S6a—c, and Table S11).
Clusters dominated by normal cells (C3, CS, C20,
C21, C16) contained cells from multiple donors and
tissues (Fig. 3b and Fig. S6a, b), indicating mini-
mal batch effects. However, clusters dominated by
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Figure 2. Identification of malignant and precancerous cells via single-sample analyses. (a) Stacked bar chart showing the number of samples from
each tissue type and source in the pan-cancer landscape and HCL, and pie chart showing the percentage of analyzed samples in CA, ADJ, and normal
(HCL) tissues. (b) The mutual cell interaction among 5 main cell lineages in TMEs from different tissue sources. (c) Interactions between 5 main cell
lineages in TME. The length of arcs represents the predicted interaction counts. (d) UMAP visualization of 24 628 single cells from patient ICC_1012 (top
left), colored by CD757 and EPCAM enrichment (top right), tissue sources (bottom left), and cell lineages (bottom right). (e) Malignant type classification
(top) and tissue source distribution (bottom) of inferred CNV scores (x-axis) and CNV correlations (y-axis) for all epithelial cells of patient ICC_1012.
(f) The cell interactions between cell clusters for patient ICC_1012. Malignant cell types are colored orange and non-malignant epithelial cell types are
colored green. (g) Boxplot showing enrichment scores of ‘oxidative phosphorylation’, ‘glycolysis/gluconeogenesis’ and ‘pentose phosphate pathway’
metabolism pathways in epithelial clusters of corresponding normal tissue and patient ICC_1012. (h) Malignant type classification (left) and tissue
source distribution (right) of inferred CNV scores (x-axis) and CNV correlations (y-axis) for all epithelial cells in the pan-cancer landscape.

malignant cells (C9, C11, C17, C12, C1S, C22) were
primarily composed of cells from single patients,
displaying extensive inter-tumor heterogeneity. Pre-
cancerous cells clustered with normal or malignant
cells, forming independent clusters from specific
tissues (C2, C6, C10, C19) or structures (C13),
reflecting diverse intermediary malignant states. Un-
surprisingly, epithelial cells were involved in distinct
pathways (Fig. S6d). Hallmark and metabolism
analyses revealed downregulation of oxidative phos-
phorylation in malignant and precancerous clusters,
contrasted by increased glycolysis and mTORC1
signaling (Fig. 3c and Fig. S6d), consistent with typi-
cal observations in cancer cell bioenergetics [18,19].
Meanwhile, cell proliferation-related gene sets were
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enriched in malignant clusters, including E2F tar-
gets, G2M checkpoint, and MYC targets. Pathways
known to be involved in tumor initiation and pro-
gression [20], such as Wnt, Notch, and TGF-, were
also enriched in malignant and precancerous clus-
ters. We then investigated the regulatory patterns in
tumor development, focusing on potential regulon
involvement in malignant and precancerous clusters
(Fig. 3d). Malignant and normal clusters showed dis-
tinct regulatory patterns, while precancerous clusters
displayed shared patterns with both. Regulators as-
sociated with tumorigenesis and tumor progression,
such as EGR1, FOSL, BATF, and HOXB3, were
enriched in malignant clusters [21,22]. In contrast,
normal clusters were enriched in regulators related to
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Figure 3. Profiling malignant and tumor-associated stromal cells via pan-cancer analyses. (a) UMAP visualization of clusters (n = 23) for all epithelial

cells from the pan-cancer landscape and HCL. (b) Bar plot showing the percentage of malignant type classification (left), tissue source (middle), and
tissue type (right) for each epithelial cluster. (c) Boxplot showing enrichment scores for the ‘oxidative phosphorylation’ and ‘glycolysis/gluconeogenesis’
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Figure 3. (Continued) metabolism pathways in all epithelial clusters. (d) Heatmap showing cell type-specific TFs detected by SCENIC analysis. Malignant
cell types are colored orange and precancerous cell types are colored blue. (e) Gene regulatory networks showing relationships between TFs and their
target genes for epithelial cell clusters mainly originating in the lung. (f) UMAP visualization of all stromal cells from the pan-cancer landscape and
HCL, colored by clusters (n = 11, top), tissue source (bottom left), and main cell type (bottom right). (g) Dot plots showing scaled average expression
levels of cell type-specific markers in fibroblast/myofibroblast clusters. (h) Heatmap showing cell type-specific TFs detected in fibroblast/myofibroblast
clusters by SCENIC analysis.

cell development and differentiation, such as TCF4.
Precancerous clusters showed enrichment in tumor
progression-related regulons, including transcrip-
tion factors (TFs) linked to tumor proliferation and
cell cycle progression (STAT1, BCL6, ETVS) and
potential tumor suppressors (ELFS, LTF, RXRG,
CEBPD), as well as EMT-related regulons. In the cell
clusters collected from the lung (C2, C3, C12, C13,
and C19), shared TFs among malignant and precan-
cerous cells included LTF, IRXS, SIX1, and RUNX1,
associated with tumor invasion and metastasis. The
potential tumor suppressor ELFS was found only in
precancerous clusters (Fig. 3e). The EMT regula-
tors, SOX2 and TCF4, were shared in both normal
and precancerous clusters (Fig. 3e). The distinct
regulatory patterns observed in malignant, precan-
cerous, and normal clusters highlight the intermedi-
ate states of precancerous cells between tumor and
healthy normal tissue, emphasizing the importance
of precise precancerous cell identification.

Characterization of cancer-associated
fibroblasts and endothelial cells through
pan-cancer analyses

Similar to malignant cells, the heterogeneity of TME
composites is an important part of tumors, whose in-
teraction with malignant cells significantly affects tu-
mor progression and metastasis. Our analysis of cell-
cell communication revealed that crosstalk among
stromal, endothelial, and myeloid cells predomi-
nated in the TME with stromal cells interacting most
with the other components across tumor and adja-
cent samples, regardless of tissue type (allp < 0.05)
(Fig. 2c and Fig. S2d). This indicated the important
role of communication among TME components.

To characterize stromal cells in the TME, we
re-clustered all stromal cells from each patient in
the pan-cancer landscape and HCL. We found a
clear separation between normal tissues and tumor-
associated tissues (Fig. 3f and Fig. S7a). Different
from epithelial cells, the CNV scores of stromal cells
in tumor and adjacent tissues were not significantly
different, but were significantly higher than those
of normal stromal cells from HCL (Fig. S7b). This
lack of significant difference indicated that stromal
cells in adjacent tissues may exhibit characteristics
similar to those in tumors, likely due to the complex
interactions within the TME [23].
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These 35661 stromal cells could be divided
into 11 distinct clusters (Fig. 3f, g, Fig. S7c, d, and
Table S12). C1 (myofibroblast) and CO (fibrob-
last MGST1 high) primarily originated from tumor
tissues and normal tissues, respectively. Other
fibroblasts (C3, C4, C7, C8, and C10) included
cells from both tumor and adjacent tissues, ex-
pressing markers associated with cancer-associated
fibroblasts (CAFs) (Fig. 3g). C3 was identified
as inflammatory CAF, marked by high expression
of cytokines and chemokines, such as CXCL14,
CXCL12, PLAT, and FOXF1. CXCL12 and CXCL14
have previously been used as CAF markers related
to immune and inflammatory regulation [24,25].
C4 expressed FBLN1, a classical CAF marker, while
C7, a rare reticular-like CAF cluster, showed strong
expression of CCL19 and CCL21, markers of reticu-
lar fibroblasts in lymphoid tissues that contribute to
the homing of naive T cells [26].

Gene Set Enrichment Analysis (GSEA) indi-
cated that myofibroblasts had significantly higher
EMT scores compared to other stromal cells, CAFs
(C3, C4, C7, and C8), and normal fibroblasts
(Fig. $7d), indicating that the general dedifferenti-
ated process of myofibroblast along CAF activation
[27]. This also suggested that epithelial transdif-
ferentiation might be a possible major source of
myofibroblast and provided new potential targets
for therapeutic strategies. Hallmark analyses showed
downregulation of oxidative phosphorylation and
upregulation of glycolytic signaling in CAFs, with
enrichment in tumorigenesis and progression-
related pathways (Fig. S7e), which was consistent
with the results in malignant and precancerous cells
(Fig. 3b and Fig. S6d). Additionally, cell-cycle and
cell proliferation-related gene sets were enriched in
CAFs (C1, C3, C4, C7,and C8), as well as pericytes
(CS) and vascular smooth muscle cells (VSMC,
C2), all of which originated from tumor and adjacent
tissues. When focusing on regulatory patterns, we
found that CAFs displayed distinct cell type-specific
TFs alongside shared TFs widely involved in carcino-
genesis (Fig. 3h), including various tumor promoters
or tumor suppressors, such as KLF4, NFIA, TCF21,
NFKB1, and EGR1. These suggested that CAFs may
have different differentiated states and effects on the
TME, while sharing similar regulatory patterns.

We then obtained 17 564 endothelial cells from
pan-cancer landscape and HCL (Fig. S8a—c), which
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were divided into 10 cell clusters (Table S13).
Besides endothelial tip cells (COL4A1), we identi-
fied endothelial subtypes from traditional vascular
beds, including arterial (SEMA3G), capillary (CA4,
PRX), venous (ACKR1), and lymphatic endothelial
cells (CCL21, PROX1) [28] (Fig. S8b). We dis-
tinguished specialized sinusoidal endothelial cells
(FCN2) from normal and adjacent tissues, which
play roles in homeostatic, filtration, endocytic, and
immunological functions [29].

Our analysis revealed downregulation of oxida-
tive phosphorylation in cancer-associated endothe-
lial cells (CO, C1, C4, CS, and C6), primarily origi-
nated from tumor and adjacent tissues (Fig. $8d). In
these clusters, gene sets related to cell proliferation
and tumor initiation were enriched, including path-
ways such as E2F targets, G2M checkpoint, MYC
targets v2, Wnt, PI3K/AKT /mTOR, Notch, TGF-8,
and Hedgehog signaling (Fig. $8d). The cluster with
the highest cell composition of tumor tissue, C0 (en-
dothelial tip cells), showed significant enrichment
in processes regulating angiogenesis (Fig. S8e),
suggesting that cancer-associated endothelial cells
might contribute to tumor remodeling and pro-
gression through angiogenesis stimulation [30].
Additionally, sinusoidal endothelial cells from adja-
cent tissues (C4) displayed significant enrichment
in processes related to the ERK1 and ERK2 cascade,
epithelial cell migration and proliferation, and cell-
substrate adhesion compared to normal sinusoidal
endothelial cells (C3) (Fig. S8f).

These results once again emphasized the dif-
ferent states of cells in adjacent and normal tissue.
Understanding the differences between tumor-
adjacent tissues and healthy normal tissues helps
reveal the mechanisms of tumor development and
communication with surrounding tissues.

Interpretable single-cell level drug
perturbation prediction using the deep
learning framework

Construction of the pan-cancer single-cell landscape
and characterization of heterogeneous expression
patterns in malignant cells and TME allowed us
to observe the different states of both tumor cells
and normal cells. This helped to explore poten-
tial therapeutic pathways and potential targets for
various cancer types. Machine learning methods
combined with high-throughput and cost-effective
perturbation datasets allow efficient exploration of
how different classes of compounds, especially drug
candidates, affect human diseases and their gene
expression profiles. This integration improves the
design of targeted therapies. Therefore, we proposed
a deep learning framework called Shennong. This
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framework could describe the individual cancer
cells’ responses to pharmacologic perturbations,
screen potential anticancer drug targets, and evalu-
ate potential tissue damaging effects. Single-cell level
prediction with machine learning methods could
accelerate the drug discovery process and enhance
the accuracy and efficiency of drug screening.

The Shennong framework consists of three main
stages (Fig. 4a; see Materials and Methods). In brief,
we first integrated the scRNA-seq count matrix with
preprocessed perturbation data to obtain the pertur-
bation changes at the cell level. We created a binary
matrix representing genetic changes associated with
specific gene sets (referred to as terms) linked to var-
ious compounds. Each term captures a unique com-
bination of perturbations relevant to experimental
conditions. This matrix was extracted from high-
confidence signatures of CMap (2020 version) [11],
which contains ~8 billion gene expression profiles
from over 240 human cell lines exposed to >39 000
compounds. It retains features that were significantly
differentially expressed within each term (Fig. $9a).
Next, we used scRNA-seq gene expression profiles
and condition labels for each cell to encode a set of
terms, adopted variational autoencoder architecture
to prune and enrich terms and decoder architecture
to explain the genetic contributions of each term,
with the latent space dimension equal to the number
of terms. The model leverages a nonlinear encoder
for flexibility and a linear decoder for interpretabil-
ity, based on the publicly available model expiMap
[31]. Considering the large scale and potential
redundancy of perturbation data, the attention-like
mechanism was implemented in latent space to
focus on relevant perturbation terms for each cell
(see Materials and Methods). Finally, based on the
trained end-to-end model, we could predict the vari-
ation induced by term in the query data, as well as
the measure affection of the genes in each term. The
proposed framework takes advantage of large-scale
perturbation datasets to explore and capture the
gene expression variation induced by a diverse array
of compounds at the single-cell level and quantify
the contribution of affected genes in these variations.

To discover candidate drugs and their potential
targets, we applied Shennong to our pan-cancer
landscape and explored the response of the tu-
mor cells to pharmacologic compounds. We first
constructed the training set by randomly selecting
~90% of cells (346129 cells) in the pan-cancer
landscape and HCL and the remaining cells (42 517
cells) as the prediction set to evaluate whether Shen-
nong could correctly study the effect of single-cell
perturbations. Both the training and prediction sets
contained cells from tumor, adjacent, and healthy
normal tissues, covering epithelial, endothelial,
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Figure 4. Interpretable single-cell level drug perturbation prediction using Shennong. (a) Workflow of the Shennong framework. The framework employs

an interpretable conditional variational autoencoder, trained on perturbation data matrix and scRNA-seq count matrix for each cell to encode a set of
significant features representing terms. The terms are pruned and enriched by the framework using a group lasso and gene-level sparsity regularization
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Figure 4. (Continued) which was then fed into a linear decoder. The framework was interpretable by calculating the influence term score matrix of
specific terms for each cell and the contribution of individual genes in each term. (b) UMAP representation of the prediction set (n = 42517 cells)
embedded in latent space extracted from the framework, colored by cell type (left) and cell lineage (right). (c) Heatmaps showing the scaled influence
term scores of the top 10 significantly differential terms (columns) in stromal cells (left) and epithelial cells (right). (d) Dot plot showing counts of the
top 10 significantly differential terms in each cell type in the single-lineage analyses with the compounds corresponding to the terms labeled. (e) Bar
plot showing counts of the top 10 significantly differential terms in each cell type in stromal lineage. Terms that are further analyzed are colored blue.
(f) UMAP representation of the influence term scores of all cells for terms LJPO08_SKL_24H: G19_DOWN (top) and MOA0Q1_U20S_24H: P04_DOWN
(bottom), corresponding to the FDA-approved drugs azacitidine and palbendazole, respectively. (g) Visualization of selected cell types (CAFs) in the
context of the terms mentioned in (f). Each dot shows the influence term scores of each cell. (h) Violin plot showing the influence term scores for
terms mentioned in (e) for all cell types in the stromal and endothelial lineages. (i) Visualization of cell lineages (top) and tumor-associated stromal or
endothelial cell types (bottom) in the context of the terms mentioned in (e).

lymphoid, myeloid, and stromal cell lineages. Suc-
cessful learning should extract distinct and common
features of cells from different tissue sources and
map those cells to various cell types while calculating
the strong effect of terms. After training and pre-
diction, we could successfully extract features from
the training set and map them to the prediction set
(Fig. 4b and Fig. S9b-d). Cells in the prediction set
were divided into distinct clusters, and clusters from
the same lineage tended to cluster together (Fig. 4b).
The clustering and distribution of predicted cells
were consistent with the cell type annotations in the
single-lineage analyses of the pan-cancer landscape
and HCL (Fig. 3a, f and Fig. S8a). These clusters
originate primarily from a single tissue source or tis-
sue type in epithelial cells, whereas clusters in other
lineages span cells from different tissue sources and
tissue types (Fig. S9b). Furthermore, we applied
the trained framework to the entire number of cells
in the pan-cancer landscape and HCL (388 646
cells) and found that predicted cells were greatly
mapped onto the training cells that grouped into
individual clusters and were close to cells from the
same lineage (Fig. S9¢, d). These indicated that
the framework successfully learned the features of
tumor and normal cells and was easy to transfer and
accurately predict other data. Then we performed
10-fold cross-validation analysis, and the feature
extraction and cell clustering were highly repro-
ducible, indicating the robustness of the Shennong
framework (Fig. $10).

Based on the influence term scores for each cell,
which capture both the latent scores and directions,
we identified significantly differential terms in each
cell type using Bayes factors (Table S14). Using the
top 10 significantly differential terms of each cell
type, we could distinguish the different cell types
in the single-lineage analyses (Fig. 4c and Fig. S1la,
b). The term was a collection of significant features
extracted from perturbation data that reflect the ef-
fects of the compound treatment on cells. Counting
these top 10 terms, we found that some terms were
observed multiple times (Fig. 4d, the compounds
corresponding to the terms labeled), and small
molecules corresponding to these terms have been
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subjected to extensive laboratory experiments or
clinical trials in many cancer types. Notably, some
of these compounds have even been approved by
the United States Food and Drug Administration
(FDA). For example, azacitidine, an inhibitor of
DNA methylation, is approved for the treatment
of myelodysplastic syndromes and acute myeloid
leukemia, and has been in completed and ongoing
clinical trials for glioma (NCT03666559), CRC,
small-cell lung carcinomas, ovarian cancer, breast
cancer, and pancreatic cancer (NCT03264404).
Irinotecan is one of the most important cytotoxic
anticancer drugs for the treatment of advanced
cancers, in particular colon cancer and certain other
solid tumors [32]. Tosedostat is an aminopepti-
dase inhibitor that has shown efficacy in clinical
trials for the treatment of acute myeloid leukemia
[33] and solid tumors [34]. Interestingly, top sig-
nificantly differential terms were more recurrent
in stromal and endothelial cells than in epithelial
cells (Fig. 4e and Fig. Sllic). CAFs (C1, C3, C4,
and C7) had similar perturbation influences that
differed from normal fibroblasts and smooth muscle
cells (Fig. 4c), and similar results were also ob-
served in endothelial cells (Fig. S11b). Through
calculating the enrichment score of each term,
we found that LJP008_SKL 24H: G19_DOWN
and MOAOQO1_U20S 24H: P04 DOWN were
the most recurrent significantly differential terms
(Fig. 4e), corresponding to the significant features
extracted from azacitidine and palbendazole. Both
terms were enriched in CAFs instead of other stro-
mal cells or cells of other lineages (Fig. 4f) and
could separate CAFs from other cells (Fig. 4g). It
suggests that azacitidine and palbendazole were
sensitive to CAFs composed of cells from multiple
tissues and may have the potential of pan-cancer
therapies. Besides its FDA-approved indications,
azacitidine has been in clinical trials for various
cancer types. Parbendazole has been reported
to be a repurposed drug candidate for the treat-
ment of multiple cancers, including acute myeloid
leukemia, pancreatic cancer, and head and neck
squamous cell carcinoma [35,36], although it’s FDA-
approved for treating parasitic infections in animals.
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Furthermore, we found that the significantly dif-
ferential terms CPC006 HT29 6H: D19 UP
and CPC006_PC3 24H: J14 DOWN was recur-
rent in stromal cells and endothelial cells (Fig. 4e
and Fig. Sllc) and were particularly enriched in
cancer-associated stromal cells and endothelial cells
(Fig. 4h and Fig. S11d). Cancer-associated stromal
cells and endothelial cells could be easily separated
from normal stromal cells and endothelial cells or
cells of other lineages by these two terms (Fig. 4i
and Fig. Slle). The compound corresponding to
CPC006_PC3 24H: J14 DOWN, erastin, is a
ferroptosis inducer with potent anticancer activ-
ity and could induce iron-dependent cell death
of cancer cells in solid cancers and blood cancers
[37]. These results further indicated the effective-
ness of the Shennong framework in discovering
broad-spectrum anticancer drugs.

Identifying anticancer drugs and
potential targets with Shennong

Unlike CAFs originating from different tissues,
most malignant and precancerous cells were tissue-
specific. The significantly differential terms were dis-
tinct in each epithelial cell type, but some were recur-
rent across cell types primarily originating from the
same tissue (Fig. S12a). We found a series of terms
significantly enriched in lung malignant cells and
precancerous cells, but not in normal lung epithelial
cells (Fig. Sa). The compounds corresponding to
these terms include FDA-approval drugs, experi-
mental drugs, and experimental compounds, most
of which have been shown to inhibit tumor growth
and tumor expansion, particularly in lung cancer.
For example, the terms LPROT004 YAPC 6H:
BRD-A14634327:1 DOWN and PBIOA(18
AS49 24H: M02 DOWN were enriched in ma-
lignant and precancerous cells, including AT?2 cells
(C2), club cells (C13), and ciliated cells (C19),
corresponding to small molecular compounds
GSK-126 and volasertib, respectively (Fig. Sb).
Using these two terms, malignant and precan-
cerous cells originating from the lung could be
easily distinguished (Fig. Sc and Fig. S12b). In
contrast, these terms had low influence scores
in normal lung epithelial cells and in epithe-
lial cells of other tissue, indicating the corre-
sponding compounds were not sensitive to these
cells.

GSK-126 (GSK2816126) is a potent and highly
selective EZH2 inhibitor. Although a phase I clinical
trial (NCT02082977) with 41 patients indicated
insufficient clinical activity due to dosing limitations
[38], preclinical studies have shown promising
effects in lung cancer in both cell line and mouse
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experiments [39,40], suggesting potential efficacy
in specific contexts. Volasertib is also an exper-
imental drug that has demonstrated safety and
antitumor activity in clinical trials [41]. For exam-
ple, in a phase I trial (NCT00969761) involving
61 patients (14 with non-small cell lung cancer,
NSCLC), volasertib combined with cisplatin or
carboplatin showed an acceptable safety profile
and resulted in stable disease in 17 patients, includ-
ing S with NSCLC [42]. Additionally, a phase I
dose-escalation study of volasertib combined with
nintedanib reported a partial response in 1 of §
patients with NSCLC [43]. Besides GSK-126 and
volasertib, other drugs/compounds correspond-
ing to the significantly differential terms include
atorvastatin, exemestane, prednisolone, and fosta-
matinib (Fig. Sa). Atorvastatin is currently under
investigation for its potential in cancer therapy
[44], while exemestane has shown antiproliferative
effects on lung cancer cells [45,46]. A phase Ib trial
(NCTO01664754) reported an objective response
rate of 62.5% and the clinical benefit rate of 87.5%
for exemestane in combination with chemotherapy
in NSCLC patients, with the objective response rate
significantly correlated with exemestane (p = 0.02)
[47]. Fostamatinib has not been reported to have
antitumor activity against lung cancer. To further
investigate, we performed preliminary cell-based
screenings on A549 cell lines treated with these
compounds and chemotherapy agents (gemcitabine
and pemetrexed) at four doses over 6 to 48 hours.
Fostamatinib treatment resulted in decreased cell
viability (Fig. 5d), confirming its anti-lung cancer
activity. Notably, fostamatinib stood out due to its
highly excellent low cell viability values on cell lines,
which are under phase studies for the treatment
of warm antibody autoimmune hemolytic anemia
[48]. These results demonstrated the ability of our
framework to screen anticancer drug candidates and
identify new drug indications.

To investigate mechanisms of drug action, we in-
vestigated individual gene contributions within each
term to elucidate potential targets of corresponding
compounds and associated signaling pathways.
For example, volasertib can cause downregu-
lated BCL2L1 expression, disrupt the interaction
between PLK1 and NEK7, or displacement of
HMGB2 from mitotic chromosomes, thereby af-
fecting mitotic arrest and apoptosis in cancer cells.
These genes were significant contributors to term
PBIOAOIS_AS49 24H: M02_DOWN (Fig. Se),
which corresponds to the polo-like kinase 1 (PLK1)
small molecule inhibitor drug volasertib. These in-
dicated the efficiency and accuracy of the Shennong
framework, as well as its ability to in silico screen
anticancer drugs and explore action mechanisms.
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Figure 5. [dentifying anticancer drugs and potential targets using Shennong. (a) Dot plot showing the influence term scores of terms across all epithelial
cell types that are significantly different in epithelial cell types mainly from lung. Compounds corresponding to the terms and epithelial cell types mainly
from lung are labeled. (b) UMAP representation of the influence term scores of all cells for terms LPROT004_YAPC_6H: BRD-A14634327: 1_DOWN (left)
and PBIOAQ18_A549_24H: M02_DOWN (right), corresponding to the compounds GSK-126 and volasertib, respectively. (c) Visualization of cell types
mainly from lung (left) and corresponding malignant types (right) in the terms mentioned in (b). Each dot shows the influence terms score of each cell.
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Figure 5. (Continued) (d) Bar plot showing cell viability of A549 cell lines treated with the compounds gemcitabine, pemetrexed, fostamatinib, and
volasertib across four dose regimens (1 wm, 5 wm, 10 um and 20 m) over time points of 6 hours (6 h), 12 h, 24 h and 48 h. Cell viability was
assessed using a standard assay, with control cells receiving DMSQ; data were presented as mean & SEM for each treatment group at the indicated
doses. (e) Dot plot showing the absolute weights of genes contribution to the term PBIOA018_A549_24H: M02_DOWN. (f) Dot plot showing the
influence term scores of terms across all epithelial cell types that are significantly different in epithelial cell types mainly from liver. Compounds
corresponding to the terms and epithelial cell types mainly from liver are labeled. (g) UMAP representation of the influence term scores of all cells for
terms PBIOAO19_HEPG2_24H: M19_DOWN (left) and LJPO05_HCC515_24H: B14_DOWN (right) corresponding to the compounds parbendazole and
tozasertib, respectively. (h) Bar plot showing cell viability of HepG2 cell lines treated with the compounds sorafenib, regorafenib, parbendazole and
tozasertib across four dose regimens (1 m, 5 m, 10 um and 20 wm) over time points of 6 h, 12 h, 24 h and 48 h. Cell viability was assessed using
a standard assay, with control cells receiving DMSO; data were presented as mean = SEM for each treatment group at the indicated doses. (i) UMAP
visualization of cells from the LUAD dataset (112 176 cells), colored by cell clusters. (j) UMAP representation of cells in the LUAD dataset embedded
in latent space extracted from the framework, colored by cell lineage (top) and tissue source (bottom). (k) Overlap of significantly different terms in
lung malignant cells between pan-cancer landscape (C12) and the third-party LUAD dataset (clusters 15, 26, 29, and 35; only terms observed in at least
two clusters were counted). (I) UMAP representation of influence term scores of all cells for terms CPC004_HCC515_24H: BRD-A27887842-001-03-2:
10_UP (left) and PBIOA018_A549_24H: M02_DOWN (right), corresponding to the compounds prednisolone and volasertib, respectively.

These results support future clinical trials to confirm
antitumor efficacy with this combination therapy.

Next, we focused on terms that had great ef-
fects on malignant cells in liver and collected the
top 10 significantly differential terms in malig-
nant hepatocytes (Fig. Sf). The majority of the
terms were significantly enriched in malignant
hepatocytes but not in normal hepatocytes, such
as  PBIOA019 HEPG2 24H: MI19 DOWN,
CPC002_HCCS1S_24H: BRD-K77987382-
001-08-2:10 DOWN,  LJP00S_HCCS1S_24H:
B14 DOWN, and CPCO017_HEPG2 6H: BRD-
K91509126-001-04-6:10 DOWN (Fig. Sg and
Fig. S12c). Compounds corresponding to these
terms were parbendazole, mebendazole, tozasertib,
and piceatannol. Malignant hepatocytes could be
separated from other cells using these four terms
(Fig. S12d, e), implicating the anticancer activity of
these compounds in liver tumors.

Tozasertib (VX-680, MK-0457) is the first po-
tent Aurora kinase inhibitor to undergo clinical trials
and preclinical studies have shown that it can inhibit
cell growth and increase apoptosis in solid tumors
and leukemia [49,50]. And a phase I clinical trial
(NCT00104351) with 21 patients indicated stable
disease in a subset of patients, supporting its poten-
tial as a therapeutic agent [S1]. Piceatannol is a phe-
nolic compound, a hydroxylated analogue of resver-
atrol that has potent antioxidant activity and has
chemopreventive and anticancer properties in cell
line experiments [52]. Mebendazole and parbenda-
zole are both FDA-approved drugs used to treat par-
asitic worm infections. Mebendazole has been exten-
sively studied as a repurposed anticancer drug due to
its interference with microtubule formations, which
are essential for cell division [53,54]. Experiment
and preclinical studies confirmed that mebendazole
has antitumor activity against a variety of cancers
and has entered the clinical stage. Like mebenda-
zole, parbendazole is an oral anthelmintic that has
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shown preclinical efficacy against cancers [54], but
parbendazole has not shown antitumor activity
in liver cancer cells in previous studies. The cell-
based screening on HepG2 cell lines confirmed the
anti-liver cancer activity of parbendazole (Fig. Sh),
comparable to standard therapies for advanced
HCC (sorafenib and regorafenib), as well as the clin-
ical trial drug tozasertib, which has demonstrated
clear antitumor activity in clinical studies. Although
tozasertib treatment has clear antitumor activity in
phase I/II clinical trials, studies were terminated due
to toxic adverse effects [55]. Based on the results
of our framework, these compounds (drugs) corre-
sponding to top significantly differential terms could
be prioritized for repositioning as anticancer drug
candidates, but challenges remained in large-scale
clinical trials, such as the discovery of tozasertib.

To enhance the robustness of our framework, we
compared the prediction results in our pan-cancer
landscape (ie. significant terms of malignant cells)
with those in third-party datasets [56,57] (Fig. S i-1
and Fig. S13a-d). The trained model successfully
extracted distinct and common features of cells
across different tissue sources in these datasets, and
the latent space showed that clusters from the same
lineage tended to cluster together after prediction
by the Shennong framework (Fig. Sj and Fig. S13b).
Notably, 30%~45% of significantly differential
terms in malignant cells from our pan-cancer land-
scape overlapped with those in corresponding
third-party datasets (Fig. Sk and Fig. S13c). Only
terms observed in at least two clusters were counted.
These overlapping terms included the experimental
drug volasertib and tozasertib (both in clinical tri-
als), as well as the new candidates prednisolone and
mebendazole (Fig. Sk and Fig. S13c). In summary,
comparisons of the prediction results between our
pan-cancer landscape and third-party datasets indi-
cated that the framework was robust and exhibited
great generalization capabilities.
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Figure 6. Identifying tissue damaging effects of anticancer drugs using Shennong. (a) UMAP representation of the influence term scores of all cells for
the term CPC006_A549_24H: BRD-K56343971-001-02—3:10_UP, corresponding to the compound vemurafenib. (b) Visualization of malignant hepato-
cytes (left) and each epithelial cell type mainly from pancreas (right) in the context of the terms CPC006_A549_24H: BRD-K56343971-001-02—3:10_UP
and PCLO01_HEPG2_24H: BRD-K11413513:10_DOWN, corresponding to the compounds vemurafenib and BRD-K11413513. Each dot shows the influ-
ence terms score of each cell. (c) UMAP representation of the influence term scores of all cells for terms LJP005_SKBR3_24H: F19_DOWN (top) and
ASGO03_MCF7_48H: E07_UP (bottom), corresponding to compounds GSK-690693 and lopinavir, respectively. (d) Box plot showing influence score of
the top 16 cell types in the term ASG003_MCF7_48H: EQ7_UP corresponding to the compound lopinavir. Epithelial cell types originating from HCL are
colored green. (e) Visualization of tumor-associated fibroblasts or malignant hepatocytes (top) and each epithelial cell type mainly from liver (bottom) in
the context of the terms LJP005_SKBR3_24H: F19_DOWN and ASG003_MCF7_48H: E07_UP. Each dot shows the influence terms score of each cell.

Evaluating tissue damaging effects of with our model’s predictions and raises potential

anticancer drugs using Shennong concerns about its clinical application.

Additionally, we discovered that some terms
were enriched not only in malignant hepatocytes
but also in cell types mainly originating from HCL.

Predicting potential side effects of anticancer drugs
could improve the accuracy and efficiency of drug
screening. When focusing on terms enriched in
cancer-associated stromal cells and endothelial
cells, we observed that CPC006 PC3 24H:
J14_DOWN was also enriched in normal endothe-
lial cells (C2 and C7) (Fig. 4h). This suggested
the potential tissue damaging effects of the small
molecular compound corresponding to the term.
Erastin, corresponding to CPC006_PC3 24H:
J14_DOWN, has demonstrated toxicity to healthy
tissue in preclinical studies, particularly regarding

These suggested that the small molecular com-
pounds corresponding to those terms might also
be sensitive to normal cells. For example, term
CPC006_AS549_24H: BRD-K56343971-001-02-
3:10_UP had significantly high influence term scores
in hepatocytes, acinar cells (C4), and exocrine cells
(C8) (Fig. 6a, b). Unlike malignant hepatocytes,
the acinar cells and exocrine cells originated from
the normal pancreas tissues, suggesting that the
related compound could have tissue damaging

ferroptosis induction [S8]. This finding  aligns effects on normal pancreatic epithelial cells. The
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term corresponding compound vemurafenib is
a BRAF inhibitor used as a targeted therapy for
Erdheim-Chester disease and melanoma. There
have been a few reported cases of pancreatitis asso-
ciated with the use of vemurafenib (Zelboraf) [59].
A safety review initiated after identifying 18 cases of
vemurafenib-associated pancreatitis during clinical
trials underscores the importance of monitoring
drug safety in patients. Consequently, the labeling
for vemurafenib was updated in Europe and Canada
to reflect these clinical implications.

In stromal and endothelial cells,
LJP00S_SKBR3 24H:  F19 DOWN  and
ASG003_MCF7 48H: EO07 UP were recur-

rent significantly differential terms (Fig. 4e and
Fig. Sllc). In addition to tumor-associated stromal
cells and endothelial cells, these two terms had sig-
nificantly highly influence term scores in malignant
and precancerous epithelial cells, as well as normal
fibroblasts and normal epithelial cells, such as fi-
broblast MGST1 high (stromal, C0), hepatocytes
(epithelial, C21), and ductal cells (epithelial, C18
and epithelial, C20) (Fig. 6c—e and Fig. S14a, b).
This suggested that the compounds corresponding
to these two terms had significant effects on normal
liver epithelial and stromal cells.

Lopinavir ~ corresponding to  ASG003_
MCF7_48H: E07_UP, is an antiretroviral drug
of the protease inhibitor class that may cause
liver injury. LJP00S_SKBR3_24H: F19 DOWN
was corresponding to GSK-690693, an ATP-
competitive pan-Akt inhibitor. In preclinical studies,
GSK-690693 was shown to inhibit the proliferation
of multiple cancers, including various hemato-
logic neoplasia [60], but clinical trials have been
withdrawn or terminated (NCT00666081 and
NCT00493818), most likely due to modest antitu-
mor activity [61] and side-effects associated with
transient hyperglycemia [62]. There is no doubt that
the term corresponding compound was sensitive to
normal hepatocytes, acinar cells, and exocrine cells,
which play important roles in the insulin signaling
pathway. These findings underscore the effective-
ness of the Shennong framework in the prediction
of tissue damaging effects.

DISCUSSION

Pan-cancer landscape is an essential resource for
advancing our understanding of cancer biology and
improving diagnosis and treatment. In this study,
we used Microwell-seq to profile the pan-cancer
single-cell landscape covering 303 351 cells, which
contained the highest morbidity and mortality
tumor types in China. This extensive dataset, com-
bined with normal healthy tissue data from our
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previous work [7], allowed for a robust identifica-
tion of malignant and precancerous cells, enhancing
our confidence in the defined cellular states.

Our findings indicated that precancerous cells,
originating not only from ADJ tissues but also
from CA tissues, reflect intermediate states from
normal to tumor. These precancerous cells ex-
hibit molecular alterations associated with nearby
tumors, suggesting they play a significant role in
tumorigenesis. The shared pathways and metabolic
patterns between precancerous and malignant cells
underscore the necessity of differentiating these cell
types, as they possess unique characteristics distinct
from normal epithelial cells, which were hidden in
bulk RNA sequencing.

Additionally, we comprehensively character-
ized cancer-associated fibroblasts and endothelial
cells through pan-cancer analyses. The expres-
sion analyses and regulatory patterns revealed
similarities between stromal or endothelial cells
from CA and AD] tissues, confirming the distinct
functionalities of cells from adjacent and normal
tissues.

To enhance accessibility and usability, we devel-
oped an interactive portal (http://bis.zju.edu.cn/
shennong/ landscape.html) for visualization and
querying of our integrative dataset.

Traditional methods for drug screening or drug
discovery are time-consuming and costly. Artifi-
cial intelligence and machine learning methods
accelerate the process of drug discovery and devel-
opment. The Shennong framework, designed for
in silico screening of anticancer drugs at the single-
cell level, exemplifies this approach. This robust
and explainable framework enables us to predict
cellular responses to pharmacologic compounds,
screen drug candidates, evaluate drug candidates’
tissue damaging effects, and explore their action
mechanisms.

Through our analysis, we identified FDA-
approved drugs with novel indications for cancer
treatment, such as azacitidine and irinotecan, show-
ing the framework’s potential for drug repurposing.
Moreover, our predictions of tissue damaging ef-
tects, which were consistent with reported clinical
injuries, demonstrated the framework’s capacity
for fine-grained analysis of drug effects, particu-
larly in healthy tissues. For example, our results
indicated that vemurafenib may adversely affect
normal pancreatic epithelial cells, highlighting the
importance of considering tissue damaging effects
in drug development.

Despite the promising results, we acknowledge
certain limitations inherent in our study. A critical
concern is the reliance on perturbation data. While
CMap provides valuable information, it primarily
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contains molecules with experimentally assessed
transcriptional profiles. The differences in data col-
lection platforms may introduce batch effects, and
the perturbation data, derived from bulk RNA-seq,
do not capture the influence on specific cell types,
which could affect the generalizability of our find-
ings. Our framework focuses on significant features
that change with perturbations, which may limit
its applicability if the perturbation datasets are not
sufficiently comprehensive. Future enhancements to
the framework could benefit from larger and more
diverse perturbation datasets, including ligands
and siRNAs, to refine predictions and deepen our
understanding of cellular responses at the single-
cell level. Additionally, drug treatment data from
mouse models and patients could provide valuable
perturbations for future studies. Moreover, many
common side effects manifest as systemic reac-
tions throughout the body, including fatigue, hair
loss, allergic reactions, nausea, and anemia. In our
analysis, the tissue damaging effects predominantly
focus on the potential cytotoxic effects on specific
cell types. This framework might only be partially
adequate for predicting side effects, as it does not
fully guarantee or anticipate all potential adverse
reactions.

In this context, we note that although cellular
experiments, comparisons with third-party datasets,
and linked recent clinical data support the robust-
ness of our predictions, experimental validation is
still needed. Follow-up studies, including in vitro or
animal model experiments, are essential to confirm
the biological effects, safety, and efficacy of these
predicted components.

In conclusion, our study made some substantial
progress in cancer research and drug development
through the Shennong framework, which provides
single-cell predictions to identify specific target cells
and genes, as well as novel indications, potential
drug resistance mechanisms, and tissue damaging
effects. This framework is particularly beneficial
for personalized treatment, especially for patients
with rare cancer subtypes, as it enhances efficiency
and cost-effectiveness in drug discovery by saving
time and resources. The use of perturbation data
allows the framework to have high accuracy in drug
repurposing. Although some predicted compounds
were discontinued in clinical trials due to antitu-
mor activity, highlighting the gap between clinical
practice and laboratory research, we successfully
predicted several FDA-approved drugs currently
in trials for other cancer types. This demonstrates
strong application potential and predictive accuracy,
which can be accessed on our website, offering new
insights and directions for targeted therapies and
personalized medicine.
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MATERIALS AND METHODS
Patients and sample collection

All patients gave their written informed consent for
scientific evaluations. The study was approved by
the Ethics Committee of the First Affiliated Hospital
and the Second Affiliated Hospital, Zhejiang Uni-
versity School of Medicine (IIT20210078B). The
cancer and adjacent paracancerous tissue samples
required for the experiment were obtained from the
patients after surgery, and stored in DMEM (Dul-
becco’s modified eagle’s medium, ThermoFisher)
at 4°C, and the scRNA-seq was performed within
2 hours. Detailed clinical information for these
patients is provided in Table S1.

scRNA sequencing and data processing

We used the Microwell-seq process to obtain single-
cell RNA data for each sample. The Microwell-seq
process included cell collection and lysis, reverse
transcription, exonuclease I treatment, second-
strand synthesis, cDNA amplification and trans-
posase fragmentation, and selective PCR to generate
barcoded single-cell libraries. The samples were
subjected to sequencing on the MGI DNBSEQ-T7.
We also replaced the official R1 sequencing primers
with our customized R1 sequencing primers A and B
(listed in Table S4) to ensure the completion of the
sequencing. Raw Microwell-seq data were processed
following the protocols in our previously published
work [7,63]. Reads were aligned to the Homo sapiens
GRCh38 genome. After filtering, dimension reduc-
tion, clustering, and differential gene expression
analysis was performed on the processed DGE
data using Seurat and Scanpy. Detailed methods are
described in Supplementary Materials and Methods.

Malignant cell identification

Malignant cells were identified simultaneously
using three methods. First, the DGE data of each
patient were merged and clustered using the Seurat
pipeline, cell types were classified into five lin-
eages, including epithelial, endothelial, stromal,
lymphoid, and myeloid. For epithelial cell types, the
expression patterns of each cluster were examined
to distinguish potential malignancy. Genes that
were overexpressed in malignant relative to normal
tissue for each cancer type were examined. Second,
RNA-based copy-number variation inference was
performed on all epithelial cells for each patient
in the inferCNV package, using epithelial cells of
corresponding normal tissues of the cancer type
in HCL as a reference. Third, dimensionality re-
duction was performed on the potential malignant
cells from different cancer types, which should form
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separate clusters. Detailed methods are described in
Supplementary Materials and Methods.

Shennong analytical workflow

The Shennong framework consists of three main
stages (Fig. 4a). In the first stage, the merged
scRNA-seq count matrix was integrated with the
preprocessed perturbation data to obtain pertur-
bation change features. The perturbation data was
saved in gmt file, each line in this file corresponds
to a term, which represents a unique and specific
gene set associated with particular compounds and
experimental conditions in our study.

In the second stage, Shennong established a
cellular perturbation predictive model to capture
cellular responses to pharmacological perturbations
at the single-cell level. The variational autoencoder
architecture was adopted to incorporate individual
cells from different conditions and ensure full cap-
ture of term variability, based on publicly available
model expiMap [31]. The model contained 4 hid-
den layers for the encoder network and the same
layers in reversed order for the decoder network,
with non-linear encoder for flexibility and masked
linear decoder for interoperability. In the bottleneck
network, the latent space dimension was equal to
term numbers. The model was trained on reference
scRNA-seq data and perturbation data.

In the third stage, the influence induced by each
term on each cell was measured based on the trained
end-to-end model. The absolute values of decoder
weights for genes in each term were extracted and
ranked to measure the genetic contributions of each
term.

Detailed methods are described in Supplemen-
tary Materials and Methods.

Application of Shennong to the
pan-cancer landscape

A total of 86 cell clusters from 388 646 cells across
6 tissues were collected. A total of 346129 cells
were selected for the training set and the rest for
the prediction set. The training set was integrated
with preprocessed perturbation data to generate
a perturbation binary matrix, which was then fed
into deep learning. A series of pre-training to op-
timize the hyperparameters of the model on the
training set, alpha_kl=0.00S, alpha = 0.95, and
hidden_layer_sizes = 512 were used.

In prediction, features from the prediction set
were extracted and mapped well to the training set
(Fig. 4b and Fig. S9b). Then entire amount cells
of pan-cancer landscape and HCL were fed into
the prediction model, and the latent space visual-
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ization showed great integration (Fig. S9¢, d). The
enrichment test was performed using Bayes Factors
to identify significantly differential terms across.
A term was considered significantly different if its
absolute log-Bayes factor was >2.3, which is referred
to as the enrichment score. The latent scores of a
term in all cells were visualized in UMAP, as well
as the latent variables of two terms in all cells. The
gene contributions of each term were extracted from
the decoder and sorted by their absolute weight,
visualized in the dot plot.

Detailed methods are described in Supple-
mentary Materials and Methods. The training and
prediction results can be obtained and queried
on our website (http:/ /bis.zju.edu.cn/shennong/
index.html).
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