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ABSTRACT 

Tumor heterogeneity plays a pivotal role in tumor progression and resistance to clinical treatment. 
Single-cell RNA sequencing (scRNA-seq) enables us to explore heterogeneity within a cell population and 
identify rare cell types, thereby improving our design of targeted therapeutic strategies. Here, we use a 
pan-cancer and pan-tissue single-cell transcriptional landscape to reveal heterogeneous expression patterns 
within malignant cells, precancerous cells, as well as cancer-associated stromal and endothelial cells. We 
introduce a deep learning framework named Shennong for in silico screening of anticancer drugs for 
targeting each of the landscape cell clusters. Utilizing Shennong, we could predict individual cell responses 
to pharmacologic compounds, evaluate drug candidates’ tissue damaging effects, and investigate their 
corresponding action mechanisms. Prioritized compounds in Shennong’s prediction results include 
FDA-approved drugs currently undergoing clinical trials for new indications, as well as drug candidates 
reporting anti-tumor activity. Furthermore, the tissue damaging effect prediction aligns with documented 
injuries and terminated discovery events. This robust and explainable framework has the potential to 
accelerate the drug discovery process and enhance the accuracy and efficiency of drug screening. 
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High-throughput single-cell RNA-sequencing 
(scRNA-seq) enables the capture of unbiased in- 
dividual cell transcriptomes [6 ,7 ]. It allows us to 
identify intra-tumor heterogeneity and characterize 
rare cancer cells hidden in traditional bulk analyses 
[4 ]. scRNA-seq reveals the multifaceted interactions 
between cancer cells and their microenvironment, 
including the roles of non-malignant and immune 
cells, as well as the extracellular matrix, which signif- 
icantly influences tumor initiation and progression. 
These insights can uncover mechanisms of resis- 
tance and lead to the discovery of novel diagnostic 
and prognostic markers. Tracking development and 
responses of individual cancer cells over time could 
enhance our understanding of tumor dynamics and 
inform therapeutic strategies, ultimately improving 
cancer treatment precision and efficacy [2 ]. 

©The Author(s) 2024. Published
Commons Attribution License (h
work is properly cited. 
NTRODUCTION 

he extensive heterogeneity of tumors plays a piv-
tal role in cancer progression and resistance to clin-
cal treatment [1 ]. The dynamic interplay between
ancer cells and their microenvironment forms an
ntricate ecosystem [2 ]. Unraveling the mechanisms
nderpinning tumor progression is crucial for pre-
ise diagnosis, prognosis, and therapy. Pan-cancer
nalyses, utilizing data across various cancer types,
ould reveal common underlying drivers of onco-
enesis and progression. This i l luminates common
enomic alterations, signaling pathways, and cel-
ular processes across diverse cancer types [3 ,4 ].
 comprehensive understanding of the pan-cancer
andscape assists in guiding therapeutic strategies,
iscovering novel targeted treatment cancer types,

nd advancing personalized medicine [4 ,5 ]. 
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Recent pan-cancer studies based on scRNA-seq
ave focused primarily on tumor microenviron-
ents (TMEs), especially immune cel ls, whi le often
eglecting intra-tumor heterogeneity and complex
nter-component interactions. 
Artificial intelligence, specifically machine learn-

ng, has been playing important roles in cancer
esearch and pharmaceutical innovation [8 –10 ].
t can integrate extensive cancer datasets, decode
he complex biological systems, and identify com-
on and unique tumor patterns. In drug discovery,
achine learning enhances our understanding of
rug–target interactions, improves therapeutic
trategies, enriches assessments of drug effective-
ess and potential side effects, and accelerates the
dentification of new drug candidates [8 ,10 ]. Large
erturbation datasets are beneficial tools to explore
ow human diseases and their gene expression
rofiles are affected by different kinds of chemical
ompounds, including potential drugs [11 ]. 
Several computational tools have emerged in

rug response predictions. For example, scRANK
anks cell types based on their gene network activ-
ty in response to drugs, but its reliance on prior
nowledge limits its use for compounds with un-
lear targets [12 ]. BeyondCell identifies cellular
ontexts that influence drug sensitivity but lacks in-
erpretability and specific drug targets, complicating
linical application. scDEAL employs a deep trans-
er learning to model drug responses by integrating
ul k and single-cel l RNA-seq data, though harmo-
izing these data types can be challenging and may
ntroduce biases. These advancements underscore
he potential of machine learning to enhance drug
iscovery and personalize cancer treatment. 
In this study, we profiled the pan-cancer single-

ell transcriptional landscape using Microwell-seq,
ith 303 351 cells across 7 common solid cancer
ypes (Fig. 1 a). Integrating public scRNA-seq data of
orresponding normal tissues, we characterized the
eterogeneous expression patterns within malignant
nd precancerous cells, as well as cancer-associated
tromal and endothelial cells. We found that precan-
erous cells not only originate from adjacent tissue
ut undergo molecular alterations associated with
earby tumor tissue, reflecting an intermediate state
rom normal to tumor. 
The pan-cancer single-cell landscape offers valu-

ble resources for anticancer drug development.
y utilizing this detailed cellular atlas, we aim to
nhance the design of targeted therapeutic strategies
hat aligns drug responses with specific cellular
ontexts. We introduced Shennong, a deep learning
ramework that allows large-scale screening of anti-
ancer drugs for targeting each of the landscape cell
lusters. By leveraging pan-cancer data to predict
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single cells’ responses to pharmacological pertur- 
bations, we further screened both broad-spectrum 

and cancer-specific drug candidates, identified new 

indications for marketed drugs, evaluated drug 
candidates’ tissue damaging effects, and explored 
their corresponding action mechanisms. 

Prioritized compounds in Shennong’s prediction 
results include FDA-approved drugs undergoing 
clinical trials for new indications, such as azacitidine 
and irinotecan, along with drug candidates like 
parbendazole. Tissue damaging effect predictions 
were consistent with reported injuries or termi- 
nated discovery events, like vemurafenib, lopinavir, 
and GSK-6 906 93. Our framework was robust and 
highly interpretable, revealing hidden mechanisms 
of action and efficiently predicting pharmaceutical 
effects on specific cell types. 

Overall, we profiled the pan-cancer landscape, 
explored its heterogeneous expression patterns, and 
proposed the Shennong framework, a single-cell 
level drug screening framework to enhance the ac- 
curacy and efficiency of drug screening, expediting 
drug repurposing and discovery. The pan-cancer 
landscape and training and prediction results of the 
Shennong framework are available on our website 
( http://bis.zju.edu.cn/shennong/index.html). 

RESULTS 

Construction of the pan-cancer 
single-cell landscape using 

Microwell-seq 

To investigate cell type diversity across different 
cancer types, we compiled a pan-cancer single-cell 
landscape using Microwell-seq. Tumor (CA) and 
adjacent (ADJ) tissues were dissociated to single- 
cell suspension for scRNA-seq profiles without 
initial sorting. After quality control and filtering, 
our landscape consisted of 303 351 cells from 15 
patients spanning 7 tumor types, with 51.7% of 
cells originating from tumor tissues (Fig. 1 b and 
Tables S1–S5). Our tumor collection included 
lung adenocarcinoma (LUAD), colorectal cancer 
(CRC), hepatocellular carcinoma (HCC), intra- 
hepatic cholangiocarcinoma (ICC), bladder cancer 
(BC), pancreatic ductal adenocarcinoma (PDAC), 
and gallbladder cancer (GBC), containing the high- 
est morbidity and mortalit y tumor t ypes in China. 

Using unsupervised clustering, we identified 51 
major cell clusters (Fig. 1 c, Fig. S1a, b and Table S6). 
These clusters were classified based on cell type- 
specific markers into 5 main lineages: lymphoid 
( CD3D , CD3E , CD79A , JCHAIN ), myeloid ( CD68 ,
CD14 ), stromal ( DCN , COL1A1 , ACTA2 ), en-
dothelial ( VWF , PLVAP ), and epithelial ( EPCAM ,

http://bis.zju.edu.cn/shennong/index.html
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Figure 1. The pan-cancer cell landscape was constructed using Microwell-seq. (a) Overview of scRNA-seq experiments and bioinformatics workflow. 
Created with BioRender.com. (b) Stacked bar chart showing the number of analyzed cells from each tumor type and each patient, and pie chart showing 
the percentage of analyzed cells in tumor (CA) and adjacent (ADJ) tissues. (c) t -SNE visualization of 303 351 single cells from the pan-cancer landscape, 
colored by cluster identity ( n = 51) and tumor type ( n = 7). (d) Hierarchical clustering tree (top) showing the similarity among 51 cell clusters, and 
histogram (bottom) showing the percentage of tissue source for each cell cluster. 
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RT18 ) ( Fig. S1c–e and Table S7). The cell-type hi-
rarchy tree showed that cell clusters from the same
ell lineage tended to converge together beyond the
issue type (Fig. 1 d and Fig. S1f). 
Upon observing the composition of each cluster,

e found that nearly all epithelial cells displayed tis-
ue type-specific characteristics, with contributions
rom multiple patients, while some clusters showed
atient-specific patterns ( Fig. S1g). For example,
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C9, C21, and C43 were multi-patient contributed 
enterocytes, while C33 was primarily contributed 
by patient CRC_9015. In terms of hepatocytes, each 
cluster (C30, C35, and C39) was predominantly 
contributed by a single patient. Interestingly, C36 
was identified as ductal cells with contributions from 

multiple tumor types, consisting of cells from HCC, 
ICC, and PDAC patients. However, no significant 
differences in the TME were observed, regardless of 

https://BioRender.com
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
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alignant status and tissue type (Fig. 1 d and Fig. S1f ,
). Stromal, endothelial, and immune clusters de-
ived from different tumor types and patients were
ell integrated, respectively. Clusters C11 and C24
ere myofibroblast/fibroblast, and C15 and C42
ere endothelial cells. The lymphoid lineage mainly
ncluded T cells, B cells, and plasma cel ls, whi le the
yeloid lineage primarily included macrophages,
onocytes, and dendritic cells. Notably, C46 had
 cells derived from multiple HCC patients, while
1, C38, and C47 mainly originated from LUAD
atients, particularly C47. These results indicated
hat, although sharing many commonalities in the
an-cancer landscape, cell types exhibited distinct
eatures across tumor types and individual patients.
his underscores the significance of considering
oth tumor types and patient characteristics in
ancer research and treatment strategies. 

eterogeneous expression patterns 
ithin malignant and precancerous cells 
nderstanding intra-tumor heterogeneity is impor-
ant to decipher cancer progression and improving
reatment efficacy. By integrating scRNA-seq data
f corresponding normal tissues from our previous
ork, Human Cell Landscape (HCL) [7 ], we in-
estigated the cellular heterogeneity of tumor cells
nd their TMEs. All scRNA-seq data were generated
sing the same platform Microwell-seq, in other
ords, this excludes possible technology-induced
ias. Our merged dataset included 388 646 cells,
ith approximately one-third originating from
A, ADJ, and normal tissue samples (Fig. 2 a and
ig. S2a–c). Cells from HCL accounted for 22%
f the dataset. Cel l–cel l communication analysis
evealed that interactions significantly increased
 p < 0.05) in the order of normal, ADJ, and CA
issues (Fig. 2 b, c and Fig. S2d), suggesting that ad-
acent tissue might be in transitional states between
ormal and tumor tissues. 
Accurate definition of malignant cells is essential

or characterizing tumor heterogeneity patterns.
iven that simply classifying cells as epithelial is
nadequate for identifying malignant cells in tumor
issues [13 ], we simultaneously employed three ap-
roaches to accurately identify malignant cells and
nnotate other cells (Fig. 2 d, e and Figs S3, S4; see
aterials and Methods). Using patient ICC_1012
s an example, we first assigned cells to distinct cell
ypes and identified significantly highly expression
enes in different epithelial clusters (Fig. 2 d). Then,
e inferred copy number variation (CNV) scores in
hese epithelial clusters using normal colon epithe-
ial cells from HCL as references (Fig. 2 e). Third,
otential malignant cells forming separate clusters
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in dimensionality reduction. Compared to non- 
malignant epithelial cells, malignant cells exhibited 
higher CNV scores and formed separate clusters 
in ICC_1012, despite both EPCAM and CD151 
[14 ] being overexpressed in these epithelial cells 
(Fig. 2 d, e). 

Interestingly, almost all non-malignant epithelial 
cells showed high expressed of cancer-related genes 
and exhibited borderline CNV scores. For example, 
clusters C18 in BC_1790, C6 and C15 in ICC_1012, 
and C4, C11, and C20 in PDAC_5108 (Fig. 2 d, e and
Figs S3, S4). Analyses of cell—cell communication 
and metabolic activity indicated that these cells 
resembled malignant cel ls (Fig. 2 f , g, Fig. S5a–c, a nd
Tables S8–S10), showing close interactions with 
TMEs and a downregulation of oxidative phospho- 
rylation, alongside an upregulation of glycolysis and 
gluconeogenesis. The majority of these cells origi- 
nated from adjacent tissues and did not cluster with 
malignant cells. Notably, non-malignant epithelial 
cells originating from tumor tissues displayed in- 
termediate CNV scores, such as C15 in ICC_1012, 
C13 and C22 in LUAD_1610, C16 and C20 in 
LUAD_5777, and C20 in PDAC_5108 (Fig. 2 d, e 
and Figs S3, S4). The C20 cluster in PDAC_5108 
might be undergoing epithelial-to-mesenchymal 
transition (EMT), as indicated by the highest EMT 

scores ( Fig. S5d). These observations were also 
supported by published scRNA-seq tumor datasets 
[15 ,16 ] from the 10x Chromium platform ( Fig. S5e–
j), using corresponding tissues from Tabula Sapiens 
as healthy normal tissues. 

Therefore, our CNV analyses, combined with 
tumor marker gene expression, cell–cell communi- 
cation, and metabolic activity assessments, indicate 
that non-malignant epithelial cells resembling 
malignant cells might signify an early stage of can- 
cerization [17 ], representing a transitional state from 

normal to tumor tissue. We termed these cells ‘pre- 
cancerous cells’ in our study, distinguishing them 

from both normal epithelial and malignant cells. 
Overall, we identified 34 926 high-confidence malig- 
nant cells and 23 034 non-malignant (precancerous) 
cells across the pan-cancer landscape (Fig. 2 h). 

Next, we re-clustered all malignant, precancer- 
ous, and normal epithelial cells from each patient in 
our pan-cancer landscape and HCL. Malignant, pre- 
cancerous, and normal epithelial cells accounted for 
38.9%, 25.6%, and 35.5%, respectively. We identified 
23 clusters (C0–C22) through unsupervised cluster- 
ing, annotating them according to cell type-specific 
markers (Fig. 3 a, b, Fig. S6a–c, and Table S11). 
Clusters dominated by normal cells (C3, C5, C20, 
C21, C16) contained cells from multiple donors and 
tissues (Fig. 3 b and Fig. S6a, b), indicating mini- 
mal batch effects. However, clusters dominated by 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
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https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
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https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
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Figure 2. Identification of malignant and precancerous cells via single-sample analyses. (a) Stacked bar chart showing the number of samples from 
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m  

p  

d  

c  

c  

t  

r  

s  

p  

a  

p  

c  

s  

c  

M  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

alignant cells (C9, C11, C17, C12, C15, C22) were
rimarily composed of cells from single patients,
isplaying extensive inter-tumor heterogeneity. Pre-
ancerous cells clustered with normal or malignant
ells, forming independent clusters from specific
issues (C2, C6, C10, C19) or structures (C13),
eflecting diverse intermediary malignant states. Un-
urprisingly, epithelial cells were involved in distinct
athways ( Fig. S6d). Hallmark and metabolism
nalyses revealed downregulation of oxidative phos-
horylation in malignant and precancerous clusters,
ontrasted by increased glycolysis and mTORC1
ignaling (Fig. 3 c and Fig. S6d), consistent with typi-
al observations in cancer cell bioenergetics [18 ,19 ].
eanwhi le, cel l proliferation-related gene sets were
Page 5 of 19
enriched in malignant clusters, including E2F tar-
gets, G2M checkpoint, and MYC targets. Pathways
known to be involved in tumor initiation and pro-
gression [20 ], such as Wnt, Notch, and TGF- β , were
also enriched in malignant and precancerous clus-
ters. We then investigated the regulatory patterns in
tumor development, focusing on potential regulon
involvement in malignant and precancerous clusters
(Fig. 3 d). Malignant and normal clusters showed dis-
tinct regulatory patterns, while precancerous clusters
displayed shared patterns with both. Regulators as-
sociated with tumorigenesis and tumor progression,
such as EGR1, FOSL, BATF, and HOXB3, were
enriched in malignant clusters [21 ,22 ]. In contrast,
normal clusters were enriched in regulators related to

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
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Figure 3. Profiling malignant and tumor-associated stromal cells via pan-cancer analyses. (a) UMAP visualization of clusters ( n = 23) for all epithelial 
cells from the pan-cancer landscape and HCL. (b) Bar plot showing the percentage of malignant type classification (left), tissue source (middle), and 
tissue type (right) for each epithelial cluster. (c) Boxplot showing enrichment scores for the ‘oxidative phosphorylation’ and ‘glycolysis/gluconeogenesis’ 
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Figure 3. ( Continued ) metabolism pathways in all epithelial clusters. (d) Heatmap showing cell type-specific TFs detected by SCENIC analysis. Malignant 
cell types are colored orange and precancerous cell types are colored blue. (e) Gene regulatory networks showing relationships between TFs and their 
target genes for epithelial cell clusters mainly originating in the lung. (f) UMAP visualization of all stromal cells from the pan-cancer landscape and 
HCL, colored by clusters ( n = 11, top), tissue source (bottom left), and main cell type (bottom right). (g) Dot plots showing scaled average expression 
levels of cell type-specific markers in fibroblast/myofibroblast clusters. (h) Heatmap showing cell type-specific TFs detected in fibroblast/myofibroblast 
clusters by SCENIC analysis. 
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ell development and differentiation, such as TCF4.
recancerous clusters showed enrichment in tumor
rogression-related regulons, including transcrip-
ion factors (TFs) linked to tumor proliferation and
ell cycle progression (STAT1, BCL6, ETV5) and
otential tumor suppressors (ELF5, LTF, RXRG,
EBPD), as well as EMT-related regulons. In the cell
lusters collected from the lung (C2, C3, C12, C13,
nd C19), shared TFs among malignant and precan-
erous cells included LTF, IRX5, SIX1, and RUNX1,
ssociated with tumor invasion and metastasis. The
otential tumor suppressor ELF5 was found only in
recancerous clusters (Fig. 3 e). The EMT regula-
ors, SOX2 and TCF4, were shared in both normal
nd precancerous clusters (Fig. 3 e). The distinct
egulatory patterns observed in malignant, precan-
erous, and normal clusters highlight the intermedi-
te states of precancerous cells between tumor and
ealthy normal tissue, emphasizing the importance
f precise precancerous cell identification. 

haracterization of cancer-associated 

broblasts and endothelial cells through 

an-cancer analyses 
imilar to malignant cells, the heterogeneity of TME
omposites is an important part of tumors, whose in-
eraction with malignant cells significantly affects tu-
or progression and metastasis. Our analysis of cell–
ell communication revealed that crosstalk among
tromal, endothelial, and myeloid cells predomi-
ated in the TME with stromal cells interacting most
ith the other components across tumor and adja-
ent samples, regardless of tissue type (all p < 0.05)
Fig. 2 c and Fig. S2d). This indicated the important
ole of communication among TME components. 
To characterize stromal cells in the TME, we

e-clustered all stromal cells from each patient in
he pan-cancer landscape and HCL. We found a
lear separation between normal tissues and tumor-
ssociated tissues (Fig. 3 f and Fig. S7a). Different
rom epithelial cells, the CNV scores of stromal cells
n tumor and adjacent tissues were not significantly
ifferent, but were significantly higher than those
f normal stromal cells from HCL ( Fig. S7b). This
ack of significant difference indicated that stromal
ells in adjacent tissues may exhibit characteristics
imilar to those in tumors, likely due to the complex
nteractions within the TME [23 ]. 
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These 35 661 stromal cells could be divided 
into 11 distinct clusters (Fig. 3 f, g, Fig. S7c, d, and
Table S12). C1 (myofibroblast) and C0 (fibrob- 
last_MGST1 high) primarily originated from tumor 
tissues and normal tissues, respectively. Other 
fibroblasts (C3, C4, C7, C8, and C10) included 
cells from both tumor and adjacent tissues, ex- 
pressing markers associated with cancer-associated 
fibroblasts (CAFs) (Fig. 3 g). C3 was identified 
as inflammatory CAF, marked by high expression 
of cytokines and chemokines, such as CXCL14 , 
CXCL12 , PLAT , and FOXF1 . CXCL12 and CXCL14
have previously been used as CAF markers related 
to immune and inflammatory regulation [24 ,25 ]. 
C4 expressed FBLN1 , a classical CAF marker, while 
C7, a rare reticular-like CAF cluster, showed strong 
expression of CCL19 and CCL21 , markers of reticu- 
lar fibroblasts in lymphoid tissues that contribute to 
the homing of naïve T cells [26 ]. 

Gene Set Enrichment Analysis (GSEA) indi- 
cated that myofibroblasts had significantly higher 
EMT scores compared to other stromal cells, CAFs 
(C3, C4, C7, and C8), and normal fibroblasts 
( Fig. S7d), indicating that the general dedifferenti- 
ated process of myofibroblast along CAF activation 
[27 ]. This also suggested that epithelial transdif- 
ferentiation might be a possible major source of 
myofibroblast and provided new potential targets 
for therapeutic strategies. Hallmark analyses showed 
downregulation of oxidative phosphorylation and 
upregulation of glycolytic signaling in CAFs, with 
enrichment in tumorigenesis and progression- 
related pathways ( Fig. S7e), which was consistent 
with the results in malignant and precancerous cells 
(Fig. 3 b and Fig. S6d). Additionally, cell-cycle and 
cell proliferation-related gene sets were enriched in 
CAFs (C1, C3, C4, C7, and C8), as well as pericytes
(C5) and vascular smooth muscle cells (VSMC, 
C2), all of which originated from tumor and adjacent 
tissues. When focusing on regulatory patterns, we 
found that CAFs displayed distinct cell type-specific 
TFs alongside shared TFs widely involved in carcino- 
genesis (Fig. 3 h), including various tumor promoters 
or tumor suppressors, such as KLF4, NFIA, TCF21, 
NFKB1, and EGR1. These suggested that CAFs may 
have different differentiated states and effects on the 
TME, while sharing similar regulatory patterns. 

We then obtained 17 564 endothelial cells from 

pan-cancer landscape and HCL ( Fig. S8a–c), which 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
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ere divided into 10 cell clusters ( Table S13).
esides endothelial tip cells ( COL4A1 ), we identi-
ed endothelial subtypes from traditional vascular
eds, including arterial ( SEMA3G ), capi l lary ( CA4 ,
RX ), venous ( ACKR1 ), and lymphatic endothelial
ells ( CCL21 , PROX1 ) [28 ] ( Fig. S8b). We dis-
inguished specialized sinusoidal endothelial cells
 FCN2 ) from normal and adjacent tissues, which
lay roles in homeostatic, filtration, endocytic, and
mmunological functions [29 ]. 
Our analysis revealed downregulation of oxida-

ive phosphorylation in cancer-associated endothe-
ial cells (C0, C1, C4, C5, and C6), primarily origi-
ated from tumor and adjacent tissues ( Fig. S8d). In
hese clusters, gene sets related to cell proliferation
nd tumor initiation were enriched, including path-
ays such as E2F targets, G2M checkpoint, MYC
argets v2, Wnt, PI3K/AKT/mTOR, Notch, TGF- β ,
nd Hedgehog signaling ( Fig. S8d). The cluster with
he highest cell composition of tumor tissue, C0 (en-
othelial tip cells), showed significant enrichment
n processes regulating angiogenesis ( Fig. S8e),
uggesting that cancer-associated endothelial cells
ight contribute to tumor remodeling and pro-
ression through angiogenesis stimulation [30 ].
dditionally, sinusoidal endothelial cells from adja-
ent tissues (C4) displayed significant enrichment
n processes related to the ERK1 and ERK2 cascade,
pithelial cell migration and proliferation, and cell-
ubstrate adhesion compared to normal sinusoidal
ndothelial cells (C3) ( Fig. S8f). 
These results once again emphasized the dif-

erent states of cells in adjacent and normal tissue.
nderstanding the differences between tumor-
djacent tissues and healthy normal tissues helps
eveal the mechanisms of tumor development and
ommunication with surrounding tissues. 

nterpretable single-cell level drug 

erturbation prediction using the deep 

earning framework 

onstruction of the pan-cancer single-cell landscape
nd characterization of heterogeneous expression
atterns in malignant cells and TME allowed us
o observe the different states of both tumor cells
nd normal cells. This helped to explore poten-
ial therapeutic pathways and potential targets for
arious cancer types. Machine learning methods
ombined with high-throughput and cost-effective
erturbation datasets allow efficient exploration of
ow different classes of compounds, especially drug
andidates, affect human diseases and their gene
xpression profiles. This integration improves the
esign of targeted therapies. Therefore, we proposed
 deep learning framework called Shennong. This
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framework could describe the individual cancer 
cells’ responses to pharmacologic perturbations, 
screen potential anticancer drug targets, and evalu- 
ate potential tissue damaging effects. Single-cell level 
prediction with machine learning methods could 
accelerate the drug discovery process and enhance 
the accuracy and efficiency of drug screening. 

The Shennong framework consists of three main 
stages (Fig. 4 a; see Materials and Methods). In brief, 
we first integrated the scRNA-seq count matrix with 
preprocessed perturbation data to obtain the pertur- 
bation changes at the cell level. We created a binary 
matrix representing genetic changes associated with 
specific gene sets (referred to as terms) linked to var- 
ious compounds. Each term captures a unique com- 
bination of perturbations relevant to experimental 
conditions. This matrix was extracted from high- 
confidence signatures of CMap (2020 version) [11 ], 
which contains ∼8 bi l lion gene expression profiles 
from over 240 human cell lines exposed to > 39 0 0 0
compounds. It retains features that were significantly 
differentially expressed within each term ( Fig. S9a). 
Next, we used scRNA-seq gene expression profiles 
and condition labels for each cell to encode a set of
terms, adopted variational autoencoder architecture 
to prune and enrich terms and decoder architecture 
to explain the genetic contributions of each term, 
with the latent space dimension equal to the number 
of terms. The model leverages a nonlinear encoder 
for flexibility and a linear decoder for interpretabil- 
ity, based on the publicly available model expiMap 
[31 ]. Considering the large scale and potential 
redundancy of perturbation data, the attention-like 
mechanism was implemented in latent space to 
focus on relevant perturbation terms for each cell 
(see Materials and Methods). Finally, based on the 
trained end-to-end model, we could predict the vari- 
ation induced by term in the query data, as well as
the measure affection of the genes in each term. The 
proposed framework takes advantage of large-scale 
perturbation datasets to explore and capture the 
gene expression variation induced by a diverse array 
of compounds at the single-cell level and quantify 
the contribution of affected genes in these variations. 

To discover candidate drugs and their potential 
targets, we applied Shennong to our pan-cancer 
landscape and explored the response of the tu- 
mor cells to pharmacologic compounds. We first 
constructed the training set by randomly selecting 
∼90% of cells (346 129 cells) in the pan-cancer 
landscape and HCL and the remaining cells (42 517 
cells) as the prediction set to evaluate whether Shen- 
nong could correctly study the effect of single-cell 
perturbations. Both the training and prediction sets 
contained cells from tumor, adjacent, and healthy 
normal tissues, covering epithelial, endothelial, 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
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Figure 4. Interpretable single-cell level drug perturbation prediction using Shennong. (a) Workflow of the Shennong framework. The framework employs 
an interpretable conditional variational autoencoder, trained on perturbation data matrix and scRNA-seq count matrix for each cell to encode a set of 
significant features representing terms. The terms are pruned and enriched by the framework using a group lasso and gene-level sparsity regularization 
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Figure 4. ( Continued ) which was then fed into a linear decoder. The framework was interpretable by calculating the influence term score matrix of 
specific terms for each cell and the contribution of individual genes in each term. (b) UMAP representation of the prediction set ( n = 42 517 cells) 
embedded in latent space extracted from the framework, colored by cell type (left) and cell lineage (right). (c) Heatmaps showing the scaled influence 
term scores of the top 10 significantly differential terms (columns) in stromal cells (left) and epithelial cells (right). (d) Dot plot showing counts of the 
top 10 significantly differential terms in each cell type in the single-lineage analyses with the compounds corresponding to the terms labeled. (e) Bar 
plot showing counts of the top 10 significantly differential terms in each cell type in stromal lineage. Terms that are further analyzed are colored blue. 
(f) UMAP representation of the influence term scores of all cells for terms LJP008_SKL_24H: G19_DOWN (top) and MOA001_U2OS_24H: P04_DOWN 

(bottom), corresponding to the FDA-approved drugs azacitidine and palbendazole, respectively. (g) Visualization of selected cell types (CAFs) in the 
context of the terms mentioned in (f). Each dot shows the influence term scores of each cell. (h) Violin plot showing the influence term scores for 
terms mentioned in (e) for all cell types in the stromal and endothelial lineages. (i) Visualization of cell lineages (top) and tumor-associated stromal or 
endothelial cell types (bottom) in the context of the terms mentioned in (e). 
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m  
ymphoid, myeloid, and stromal cell lineages. Suc-
essful learning should extract distinct and common
eatures of cells from different tissue sources and
ap those cells to various cell types while calculating
he strong effect of terms. After training and pre-
iction, we could successfully extract features from
he training set and map them to the prediction set
Fig. 4 b and Fig. S9b–d). Cells in the prediction set
ere divided into distinct clusters, and clusters from
he same lineage tended to cluster together (Fig. 4 b).
he clustering and distribution of predicted cells
ere consistent with the cell type annotations in the
ingle-lineage analyses of the pan-cancer landscape
nd HCL (Fig. 3 a, f and Fig. S8a). These clusters
riginate primarily from a single tissue source or tis-
ue type in epithelial cells, whereas clusters in other
ineages span cells from different tissue sources and
issue types ( Fig. S9b). Furthermore, we applied
he trained framework to the entire number of cells
n the pan-cancer landscape and HCL (388 646
ells) and found that predicted cells were greatly
apped onto the training cells that grouped into

ndividual clusters and were close to cells from the
ame lineage ( Fig. S9c, d). These indicated that
he framework successfully learned the features of
umor and normal cells and was easy to transfer and
ccurately predict other data. Then we performed
0-fold cross-validation analysis, and the feature
xtraction and cell clustering were highly repro-
ucible, indicating the robustness of the Shennong
ramework ( Fig. S10). 
Based on the influence term scores for each cell,

hich capture both the latent scores and directions,
e identified significantly differential terms in each
ell type using Bayes factors ( Table S14). Using the
op 10 significantly differential terms of each cell
ype, we could distinguish the different cell types
n the single-lineage analyses (Fig. 4 c and Fig. S11a,
). The term was a collection of significant features
xtracted from perturbation data that reflect the ef-
ects of the compound treatment on cells. Counting
hese top 10 terms, we found that some terms were
bserved multiple times (Fig. 4 d, the compounds
orresponding to the terms labeled), and small
olecules corresponding to these terms have been
Page 10 of 19
subjected to extensive laboratory experiments or 
clinical trials in many cancer types. Notably, some 
of these compounds have even been approved by 
the United States Food and Drug Administration 
(FDA). For example, azacitidine, an inhibitor of 
DNA methylation, is approved for the treatment 
of myelodysplastic syndromes and acute myeloid 
leukemia, and has been in completed and ongoing 
clinical trials for glioma (NCT036 6 6559), CRC, 
small-cell lung carcinomas, ovarian cancer, breast 
cancer, and pancreatic cancer (NCT0326 440 4). 
Irinotecan is one of the most important cytotoxic 
anticancer drugs for the treatment of advanced 
cancers, in particular colon cancer and certain other 
solid tumors [32 ]. Tosedostat is an aminopepti- 
dase inhibitor that has shown efficacy in clinical 
trials for the treatment of acute myeloid leukemia 
[33 ] and solid tumors [34 ]. Interestingly, top sig- 
nificantly differential terms were more recurrent 
in stromal and endothelial cells than in epithelial 
cells (Fig. 4 e and Fig. S11c). CAFs (C1, C3, C4, 
and C7) had similar perturbation influences that 
differed from normal fibroblasts and smooth muscle 
cells (Fig. 4 c), and similar results were also ob- 
served in endothelial cells ( Fig. S11b). Through 
calculating the enrichment score of each term, 
we found that LJP008_SKL_24H: G19_DOWN 

and MOA001_U2OS_24H: P04_DOWN were 
the most recurrent significantly differential terms 
(Fig. 4 e), corresponding to the significant features 
extracted from azacitidine and palbendazole. Both 
terms were enriched in CAFs instead of other stro- 
mal cells or cells of other lineages (Fig. 4 f) and 
could separate CAFs from other cells (Fig. 4 g). It 
suggests that azacitidine and palbendazole were 
sensitive to CAFs composed of cells from multiple 
tissues and may have the potential of pan-cancer 
therapies. Besides its FDA-approved indications, 
azacitidine has been in clinical trials for various 
cancer types. Parbendazole has been reported 
to be a repurposed drug candidate for the treat- 
ment of multiple cancers, including acute myeloid 
leukemia, pancreatic cancer, and head and neck 
squamous cell carcinoma [35 ,36 ], although it’s FDA- 
approved for treating parasitic infections in animals. 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
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urthermore, we found that the significantly dif-
erential terms CPC006_HT29_6H: D19_UP
nd CPC006_PC3_24H: J14_DOWN was recur-
ent in stromal cells and endothelial cells (Fig. 4 e
nd Fig. S11c) and were particularly enriched in
ancer-associated stromal cells and endothelial cells
Fig. 4 h and Fig. S11d). Cancer-associated stromal
ells and endothelial cells could be easily separated
rom normal stromal cells and endothelial cells or
ells of other lineages by these two terms (Fig. 4 i
nd Fig. S11e). The compound corresponding to
PC006_PC3_24H: J14_DOWN, erastin, is a
erroptosis inducer with potent anticancer activ-
ty and could induce iron-dependent cell death
f cancer cells in solid cancers and blood cancers
37 ]. These results further indicated the effective-
ess of the Shennong framework in discovering
road-spectrum anticancer drugs. 

dentifying anticancer drugs and 

otential targets with Shennong 

nlike CAFs originating from different tissues,
ost malignant and precancerous cells were tissue-
pecific. The significantly differential terms were dis-
inct in each epithelial cell type, but some were recur-
ent across cell types primarily originating from the
ame tissue ( Fig. S12a). We found a series of terms
ignificantly enriched in lung malignant cells and
recancerous cells, but not in normal lung epithelial
ells (Fig. 5 a). The compounds corresponding to
hese terms include FDA-approval drugs, experi-
ental drugs, and experimental compounds, most
f which have been shown to inhibit tumor growth
nd tumor expansion, particularly in lung cancer.
or example, the terms LPROT004_YAPC_6H:
RD-A14634327:1_DOWN and PBIOA018_
549_24H: M02_DOWN were enriched in ma-
ignant and precancerous cells, including AT2 cells
C2), club cells (C13), and ciliated cells (C19),
orresponding to small molecular compounds
SK-126 and volasertib, respectively (Fig. 5 b).
sing these two terms, malignant and precan-
erous cells originating from the lung could be
asily distinguished (Fig. 5 c and Fig. S12b). In
ontrast, these terms had low influence scores
n normal lung epithelial cells and in epithe-
ial cells of other tissue, indicating the corre-
ponding compounds were not sensitive to these
ells. 
GSK-126 (GSK2816126) is a potent and highly

elective EZH2 inhibitor. Although a phase I clinical
rial (NCT02082977) with 41 patients indicated
nsufficient clinical activity due to dosing limitations
38 ], preclinical studies have shown promising
ffects in lung cancer in both cell line and mouse
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experiments [39 ,40 ], suggesting potential efficacy 
in specific contexts. Volasertib is also an exper- 
imental drug that has demonstrated safety and 
antitumor activity in clinical trials [41 ]. For exam- 
ple, in a phase I trial (NCT00969761) involving 
61 patients (14 with non-small cell lung cancer, 
NSCLC), volasertib combined with cisplatin or 
carboplatin showed an acceptable safety profile 
and resulted in stable disease in 17 patients, includ- 
ing 5 with NSCLC [42 ]. Additionally, a phase I
dose-escalation study of volasertib combined with 
nintedanib reported a partial response in 1 of 5 
patients with NSCLC [43 ]. Besides GSK-126 and 
volasertib, other drugs/compounds correspond- 
ing to the significantly differential terms include 
atorvastatin, exemestane, prednisolone, and fosta- 
matinib (Fig. 5 a). Atorvastatin is currently under 
investigation for its potential in cancer therapy 
[44 ], while exemestane has shown antiproliferative 
effects on lung cancer cells [45 ,46 ]. A phase Ib trial
(NCT01664754) reported an objective response 
rate of 62.5% and the clinical benefit rate of 87.5%
for exemestane in combination with chemotherapy 
in NSCLC patients, with the objective response rate 
significantly correlated with exemestane ( p = 0.02) 
[47 ]. Fostamatinib has not been reported to have 
antitumor activity against lung cancer. To further 
investigate, we performed preliminary cell-based 
screenings on A549 cell lines treated with these 
compounds and chemotherapy agents (gemcitabine 
and pemetrexed) at four doses over 6 to 48 hours.
Fostamatinib treatment resulted in decreased cell 
viability (Fig. 5 d), confirming its anti-lung cancer 
activity. Notably, fostamatinib stood out due to its 
highly excellent low cel l viabi lity values on cell lines,
which are under phase studies for the treatment 
of warm antibody autoimmune hemolytic anemia 
[48 ]. These results demonstrated the ability of our 
framework to screen anticancer drug candidates and 
identify new drug indications. 

To investigate mechanisms of drug action, we in- 
vestigated individual gene contributions within each 
term to elucidate potential targets of corresponding 
compounds and associated signaling pathways. 
For example, volasertib can cause downregu- 
lated BCL2L1 expression, disrupt the interaction 
between PLK1 and NEK7 , or displacement of 
HMGB2 from mitotic chromosomes, thereby af- 
fecting mitotic arrest and apoptosis in cancer cells. 
These genes were significant contributors to term 

PBIOA018_A549_24H: M02_DOWN (Fig. 5 e), 
which corresponds to the polo-like kinase 1 (PLK1) 
small molecule inhibitor drug volasertib. These in- 
dicated the efficiency and accuracy of the Shennong 
framework, as well as its ability to in silico screen
anticancer drugs and explore action mechanisms. 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
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Figure 5. Identifying anticancer drugs and potential targets using Shennong. (a) Dot plot showing the influence term scores of terms across all epithelial 
cell types that are significantly different in epithelial cell types mainly from lung. Compounds corresponding to the terms and epithelial cell types mainly 
from lung are labeled. (b) UMAP representation of the influence term scores of all cells for terms LPROT004_YAPC_6H: BRD-A14634327: 1_DOWN (left) 
and PBIOA018_A549_24H: M02_DOWN (right), corresponding to the compounds GSK-126 and volasertib, respectively. (c) Visualization of cell types 
mainly from lung (left) and corresponding malignant types (right) in the terms mentioned in (b). Each dot shows the influence terms score of each cell. 
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Figure 5. ( Continued ) (d) Bar plot showing cell viability of A549 cell lines treated with the compounds gemcitabine, pemetrexed, fostamatinib, and 
volasertib across four dose regimens (1 μm, 5 μm, 10 μm and 20 μm) over time points of 6 hours (6 h), 12 h, 24 h and 48 h. Cell viability was 
assessed using a standard assay, with control cells receiving DMSO; data were presented as mean ± SEM for each treatment group at the indicated 
doses. (e) Dot plot showing the absolute weights of genes contribution to the term PBIOA018_A549_24H: M02_DOWN. (f) Dot plot showing the 
influence term scores of terms across all epithelial cell types that are significantly different in epithelial cell types mainly from liver. Compounds 
corresponding to the terms and epithelial cell types mainly from liver are labeled. (g) UMAP representation of the influence term scores of all cells for 
terms PBIOA019_HEPG2_24H: M19_DOWN (left) and LJP005_HCC515_24H: B14_DOWN (right) corresponding to the compounds parbendazole and 
tozasertib, respectively. (h) Bar plot showing cell viability of HepG2 cell lines treated with the compounds sorafenib, regorafenib, parbendazole and 
tozasertib across four dose regimens (1 μm, 5 μm, 10 μm and 20 μm) over time points of 6 h, 12 h, 24 h and 48 h. Cell viability was assessed using 
a standard assay, with control cells receiving DMSO; data were presented as mean ± SEM for each treatment group at the indicated doses. (i) UMAP 
visualization of cells from the LUAD dataset (112 176 cells), colored by cell clusters. (j) UMAP representation of cells in the LUAD dataset embedded 
in latent space extracted from the framework, colored by cell lineage (top) and tissue source (bottom). (k) Overlap of significantly different terms in 
lung malignant cells between pan-cancer landscape (C12) and the third-party LUAD dataset (clusters 15, 26, 29, and 35; only terms observed in at least 
two clusters were counted). (l) UMAP representation of influence term scores of all cells for terms CPC004_HCC515_24H: BRD-A27887842-001-03–2: 
10_UP (left) and PBIOA018_A549_24H: M02_DOWN (right), corresponding to the compounds prednisolone and volasertib, respectively. 
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hese results support future clinical trials to confirm
ntitumor efficacy with this combination therapy. 
Next, we focused on terms that had great ef-

ects on malignant cells in liver and collected the
op 10 significantly differential terms in malig-
ant hepatocytes (Fig. 5 f). The majority of the
erms were significantly enriched in malignant
epatocytes but not in normal hepatocytes, such
s PBIOA019_HEPG2_24H: M19_DOWN,
PC002_HCC515_24H: BRD-K77987382-
01-08–2:10_DOWN, LJP005_HCC515_24H:
14_DOWN, and CPC017_HEPG2_6H: BRD-
91509126-001-04–6:10_DOWN (Fig. 5 g and
ig. S12c). Compounds corresponding to these
erms were parbendazole, mebendazole, tozasertib,
nd piceatannol. Malignant hepatocytes could be
eparated from other cells using these four terms
 Fig. S12d, e), implicating the anticancer activity of
hese compounds in liver tumors. 
Tozasertib (VX-680, MK-0457) is the first po-

ent Aurora kinase inhibitor to undergo clinical trials
nd preclinical studies have shown that it can inhibit
ell growth and increase apoptosis in solid tumors
nd leukemia [49 ,50 ]. And a phase I clinical trial
NCT00104351) with 21 patients indicated stable
isease in a subset of patients, supporting its poten-
ial as a therapeutic agent [51 ]. Piceatannol is a phe-
olic compound, a hydroxylated analogue of resver-
trol that has potent antioxidant activity and has
hemopreventive and anticancer properties in cell
ine experiments [52 ]. Mebendazole and parbenda-
ole are both FDA-approved drugs used to treat par-
sitic worm infections. Mebendazole has been exten-
ively studied as a repurposed anticancer drug due to
ts interference with microtubule formations, which
re essential for cell division [53 ,54 ]. Experiment
nd preclinical studies confirmed that mebendazole
as antitumor activity against a variety of cancers
nd has entered the clinical stage. Like mebenda-
ole, parbendazole is an oral anthelmintic that has
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shown preclinical efficacy against cancers [54 ], but 
parbendazole has not shown antitumor activity 
in liver cancer cells in previous studies. The cell- 
based screening on HepG2 cell lines confirmed the 
anti-liver cancer activity of parbendazole (Fig. 5 h), 
comparable to standard therapies for advanced 
HCC (sorafenib and regorafenib), as well as the clin- 
ical trial drug tozasertib, which has demonstrated 
clear antitumor activity in clinical studies. Although 
tozasertib treatment has clear antitumor activity in 
phase I/II clinical trials, studies were terminated due 
to toxic adverse effects [55 ]. Based on the results
of our framework, these compounds (drugs) corre- 
sponding to top significantly differential terms could 
be prioritized for repositioning as anticancer drug 
candidates, but challenges remained in large-scale 
clinical trials, such as the discovery of tozasertib. 

To enhance the robustness of our framework, we 
compared the prediction results in our pan-cancer 
landscape (i.e. significant terms of malignant cells) 
with those in third-party datasets [56 ,57 ] (Fig. 5 i–l
and Fig. S13a–d). The trained model successfully 
extracted distinct and common features of cells 
across different tissue sources in these datasets, and 
the latent space showed that clusters from the same 
lineage tended to cluster together after prediction 
by the Shennong framework (Fig. 5 j and Fig. S13b). 
Notably, 30% ∼45% of significantly differential 
terms in malignant cells from our pan-cancer land- 
scape overlapped with those in corresponding 
third-party datasets (Fig. 5 k and Fig. S13c). Only 
terms observed in at least two clusters were counted. 
These overlapping terms included the experimental 
drug volasertib and tozasertib (both in clinical tri- 
als), as well as the new candidates prednisolone and 
mebendazole (Fig. 5 k and Fig. S13c). In summary, 
comparisons of the prediction results between our 
pan-cancer landscape and third-party datasets indi- 
cated that the framework was robust and exhibited 
great generalization capabilities. 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
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Figure 6. Identifying tissue damaging effects of anticancer drugs using Shennong. (a) UMAP representation of the influence term scores of all cells for 
the term CPC006_A549_24H: BRD-K56343971-001-02–3:10_UP, corresponding to the compound vemurafenib. (b) Visualization of malignant hepato- 
cytes (left) and each epithelial cell type mainly from pancreas (right) in the context of the terms CPC006_A549_24H: BRD-K56343971-001-02–3:10_UP 
and PCL001_HEPG2_24H: BRD-K11413513:10_DOWN, corresponding to the compounds vemurafenib and BRD-K11413513. Each dot shows the influ- 
ence terms score of each cell. (c) UMAP representation of the influence term scores of all cells for terms LJP005_SKBR3_24H: F19_DOWN (top) and 
ASG003_MCF7_48H: E07_UP (bottom), corresponding to compounds GSK-690693 and lopinavir, respectively. (d) Box plot showing influence score of 
the top 16 cell types in the term ASG003_MCF7_48H: E07_UP corresponding to the compound lopinavir. Epithelial cell types originating from HCL are 
colored green. (e) Visualization of tumor-associated fibroblasts or malignant hepatocytes (top) and each epithelial cell type mainly from liver (bottom) in 
the context of the terms LJP005_SKBR3_24H: F19_DOWN and ASG003_MCF7_48H: E07_UP. Each dot shows the influence terms score of each cell. 
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nticancer drugs using Shennong 

redicting potential side effects of anticancer drugs
ould improve the accuracy and efficiency of drug
creening. When focusing on terms enriched in
ancer-associated stromal cells and endothelial
ells, we observed that CPC006_PC3_24H:
14_DOWN was also enriched in normal endothe-
ial cells (C2 and C7) (Fig. 4 h). This suggested
he potential tissue damaging effects of the small
olecular compound corresponding to the term.
rastin, corresponding to CPC006_PC3_24H:
14_DOWN, has demonstrated toxicity to healthy
issue in preclinical studies, particularly regarding
erroptosis induction [58 ]. This finding aligns
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with our model’s predictions and raises potential 
concerns about its clinical application. 

Additionally, we discovered that some terms 
were enriched not only in malignant hepatocytes 
but also in cell types mainly originating from HCL. 
These suggested that the small molecular com- 
pounds corresponding to those terms might also 
be sensitive to normal cells. For example, term 

CPC006_A54 9_24H: BRD -K56343971-001-02–
3:10_UP had significantly high influence term scores 
in hepatocytes, acinar cells (C4), and exocrine cells 
(C8) (Fig. 6 a, b). Unlike malignant hepatocytes, 
the acinar cells and exocrine cells originated from 

the normal pancreas tissues, suggesting that the 
related compound could have tissue damaging 
effects on normal pancreatic epithelial cells. The 
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erm corresponding compound vemurafenib is
 BRAF inhibitor used as a targeted therapy for
rdheim-Chester disease and melanoma. There
ave been a few reported cases of pancreatitis asso-
iated with the use of vemurafenib (Zelboraf) [59 ].
 safety review initiated after identifying 18 cases of
emurafenib-associated pancreatitis during clinical
rials underscores the importance of monitoring
rug safety in patients. Consequently, the labeling
or vemurafenib was updated in Europe and Canada
o reflect these clinical implications. 
In stromal and endothelial cells,

JP005_SKBR3_24H: F19_DOWN and
SG003_MCF7_48H: E07_UP were recur-
ent significantly differential terms (Fig. 4 e and
ig. S11c). In addition to tumor-associated stromal
ells and endothelial cells, these two terms had sig-
ificantly highly influence term scores in malignant
nd precancerous epithelial cells, as well as normal
broblasts and normal epithelial cells, such as fi-
roblast_MGST1 high (stromal, C0), hepatocytes
epithelial, C21), and ductal cells (epithelial, C18
nd epithelial, C20) (Fig. 6 c–e and Fig. S14a, b).
his suggested that the compounds corresponding
o these two terms had significant effects on normal
iver epithelial and stromal cells. 
Lopinavir corresponding to ASG003_
CF7_48H: E07_UP, is an antiretroviral drug
f the protease inhibitor class that may cause
iver injury. LJP005_SKBR3_24H: F19_DOWN
as corresponding to GSK-6 906 93, an ATP-
ompetitive pan-Akt inhibitor. In preclinical studies,
SK-6 906 93 was shown to inhibit the proliferation
f multiple cancers, including various hemato-
ogic neoplasia [60 ], but clinical trials have been
ithdrawn or terminated (NCT006 6 6081 and
CT00493818), most likely due to modest antitu-
or activity [61 ] and side-effects associated with
ransient hyperglycemia [62 ]. There is no doubt that
he term corresponding compound was sensitive to
ormal hepatocytes, acinar cells, and exocrine cells,
hich play important roles in the insulin signaling
athway. These findings underscore the effective-
ess of the Shennong framework in the prediction
f tissue damaging effects. 

ISCUSSION 

an-cancer landscape is an essential resource for
dvancing our understanding of cancer biology and
mproving diagnosis and treatment. In this study,
e used Microwell-seq to profile the pan-cancer
ingle-cell landscape covering 303 351 cells, which
ontained the highest morbidity and mortality
umor types in China. This extensive dataset, com-
ined with normal healthy tissue data from our
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previous work [7 ], allowed for a robust identifica- 
tion of malignant and precancerous cells, enhancing 
our confidence in the defined cellular states. 

Our findings indicated that precancerous cells, 
originating not only from ADJ tissues but also 
from CA tissues, reflect intermediate states from 

normal to tumor. These precancerous cells ex- 
hibit molecular alterations associated with nearby 
tumors, suggesting they play a significant role in 
tumorigenesis. The shared pathways and metabolic 
patterns between precancerous and malignant cells 
underscore the necessity of differentiating these cell 
types, as they possess unique characteristics distinct 
from normal epithelial cells, which were hidden in 
bulk RNA sequencing. 

Additionally, we comprehensively character- 
ized cancer-associated fibroblasts and endothelial 
cells through pan-cancer analyses. The expres- 
sion analyses and regulatory patterns revealed 
similarities between stromal or endothelial cells 
from CA and ADJ tissues, confirming the distinct 
functionalities of cells from adjacent and normal 
tissues. 

To enhance accessibility and usability, we devel- 
oped an interactive portal ( http://bis.zju.edu.cn/
shennong/landscape.html) for visualization and 
querying of our integrative dataset. 

Traditional methods for drug screening or drug 
discovery are time-consuming and costly. Artifi- 
cial intelligence and machine learning methods 
accelerate the process of drug discovery and devel- 
opment. The Shennong framework, designed for 
in silico screening of anticancer drugs at the single- 
cell level, exemplifies this approach. This robust 
and explainable framework enables us to predict 
cellular responses to pharmacologic compounds, 
screen drug candidates, evaluate drug candidates’ 
tissue damaging effects, and explore their action 
mechanisms. 

Through our analysis, we identified FDA- 
approved drugs with novel indications for cancer 
treatment, such as azacitidine and irinotecan, show- 
ing the framework’s potential for drug repurposing. 
Moreover, our predictions of tissue damaging ef- 
fects, which were consistent with reported clinical 
injuries, demonstrated the framework’s capacity 
for fine-grained analysis of drug effects, particu- 
larly in healthy tissues. For example, our results 
indicated that vemurafenib may adversely affect 
normal pancreatic epithelial cells, highlighting the 
importance of considering tissue damaging effects 
in drug development. 

Despite the promising results, we acknowledge 
certain limitations inherent in our study. A critical 
concern is the reliance on perturbation data. While 
CMap provides valuable information, it primarily 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
http://bis.zju.edu.cn/shennong/landscape.html
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ontains molecules with experimentally assessed
ranscriptional profiles. The differences in data col-
ection platforms may introduce batch effects, and
he perturbation data, derived from bulk RNA-seq,
o not capture the influence on specific cell types,
hich could affect the generalizability of our find-
ngs. Our framework focuses on significant features
hat change with perturbations, which may limit
ts applicability if the perturbation datasets are not
ufficiently comprehensive. Future enhancements to
he framework could benefit from larger and more
iverse perturbation datasets, including ligands
nd siRNAs, to refine predictions and deepen our
nderstanding of cellular responses at the single-
ell level. Additionally, drug treatment data from
ouse models and patients could provide valuable
erturbations for future studies. Moreover, many
ommon side effects manifest as systemic reac-
ions throughout the body, including fatigue, hair
oss, allergic reactions, nausea, and anemia. In our
nalysis, the tissue damaging effects predominantly
ocus on the potential cytotoxic effects on specific
ell types. This framework might only be partially
dequate for predicting side effects, as it does not
ully guarantee or anticipate all potential adverse
eactions. 
In this context, we note that although cellular

xperiments, comparisons with third-party datasets,
nd linked recent clinical data support the robust-
ess of our predictions, experimental validation is
ti l l needed. Follow-up studies, including in vitro or
nimal model experiments, are essential to confirm
he biological effects, safety, and efficacy of these
redicted components. 
In conclusion, our study made some substantial

rogress in cancer research and drug development
hrough the Shennong framework, which provides
ingle-cell predictions to identify specific target cells
nd genes, as well as novel indications, potential
rug resistance mechanisms, and tissue damaging
ffects. This framework is particularly beneficial
or personalized treatment, especially for patients
ith rare cancer subtypes, as it enhances efficiency
nd cost-effectiveness in drug discovery by saving
ime and resources. The use of perturbation data
llows the framework to have high accuracy in drug
epurposing. Although some predicted compounds
ere discontinued in clinical trials due to antitu-
or activity, highlighting the gap between clinical
ractice and laboratory research, we successfully
redicted several FDA-approved drugs currently
n trials for other cancer types. This demonstrates
trong application potential and predictive accuracy,
hich can be accessed on our website, offering new
nsights and directions for targeted therapies and

ersonalized medicine. 

Page 16 of 19
MATERIALS AND METHODS 

Patients and sample collection 

All patients gave their written informed consent for 
scientific evaluations. The study was approved by 
the Ethics Committee of the First Affiliated Hospital 
and the Second Affiliated Hospital, Zhejiang Uni- 
versity School of Medicine (IIT20210078B). The 
cancer and adjacent paracancerous tissue samples 
required for the experiment were obtained from the 
patients after surgery, and stored in DMEM (Dul- 
becco’s modified eagle’s medium, ThermoFisher) 
at 4°C, and the scRNA-seq was performed within 
2 hours. Detailed clinical information for these 
patients is provided in Table S1. 

scRNA sequencing and data processing 

We used the Microwell-seq process to obtain single- 
cell RNA data for each sample. The Microwell-seq 
process included cell collection and lysis, reverse 
transcription, exonuclease I treatment, second- 
strand synthesis, cDNA amplification and trans- 
posase fragmentation, and selective PCR to generate 
barcoded single-cell libraries. The samples were 
subjected to sequencing on the MGI DNBSEQ-T7. 
We also replaced the official R1 sequencing primers 
with our customized R1 sequencing primers A and B 

(listed in Table S4) to ensure the completion of the 
sequencing. Raw Microwell-seq data were processed 
following the protocols in our previously published 
work [7 ,63 ]. Reads were aligned to the Homo sapiens 
GRCh38 genome. After filtering, dimension reduc- 
tion, clustering, and differential gene expression 
analysis was performed on the processed DGE 

data using Seurat and Scanpy. Detailed methods are 
described in Supplementary Materials and Methods. 

Malignant cell identification 

Malignant cells were identified simultaneously 
using three methods. First, the DGE data of each 
patient were merged and clustered using the Seurat 
pipeline, cell types were classified into five lin- 
eages, including epithelial, endothelial, stromal, 
lymphoid, and myeloid. For epithelial cell types, the 
expression patterns of each cluster were examined 
to distinguish potential malignancy. Genes that 
were overexpressed in malignant relative to normal 
tissue for each cancer type were examined. Second, 
RNA-based copy-number variation inference was 
performed on all epithelial cells for each patient 
in the inferCNV package, using epithelial cells of 
corresponding normal tissues of the cancer type 
in HCL as a reference. Third, dimensionality re- 
duction was performed on the potential malignant 
cells from different cancer types, which should form 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae451#supplementary-data
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eparate clusters. Detailed methods are described in
upplementary Materials and Methods. 

hennong analytical workflow 

he Shennong framework consists of three main
tages (Fig. 4 a). In the first stage, the merged
cRNA-seq count matrix was integrated with the
reprocessed perturbation data to obtain pertur-
ation change features. The perturbation data was
aved in gmt file, each line in this file corresponds
o a term, which represents a unique and specific
ene set associated with particular compounds and
xperimental conditions in our study. 
In the second stage, Shennong established a

ellular perturbation predictive model to capture
ellular responses to pharmacological perturbations
t the single-cell level. The variational autoencoder
rchitecture was adopted to incorporate individual
ells from different conditions and ensure full cap-
ure of term variability, based on publicly available
odel expiMap [31 ]. The model contained 4 hid-
en layers for the encoder network and the same
ayers in reversed order for the decoder network,
ith non-linear encoder for flexibility and masked
inear decoder for interoperability. In the bottleneck
etwork, the latent space dimension was equal to
erm numbers. The model was trained on reference
cRNA-seq data and perturbation data. 
In the third stage, the influence induced by each

erm on each cell was measured based on the trained
nd-to-end model. The absolute values of decoder
eights for genes in each term were extracted and
anked to measure the genetic contributions of each
erm. 
Detailed methods are described in Supplemen-

ary Materials and Methods. 

pplication of Shennong to the 

an-cancer landscape 

 total of 86 cell clusters from 388 646 cells across
 tissues were collected. A total of 346 129 cells
ere selected for the training set and the rest for
he prediction set. The training set was integrated
ith preprocessed perturbation data to generate
 perturbation binary matrix, which was then fed
nto deep learning. A series of pre-training to op-
imize the hyperparameters of the model on the
raining set, alpha_kl = 0.005, alpha = 0.95, and
idden_layer_sizes = 512 were used. 
In prediction, features from the prediction set

ere extracted and mapped well to the training set
Fig. 4 b and Fig. S9b). Then entire amount cells
f pan-cancer landscape and HCL were fed into
he prediction model, and the latent space visual-
Page 17 of 19
ization showed great integration ( Fig. S9c, d). The 
enrichment test was performed using Bayes Factors 
to identify significantly differential terms across. 
A term was considered significantly different if its 
absolute log-Bayes factor was > 2.3, which is referred 
to as the enrichment score. The latent scores of a
term in all cells were visualized in UMAP, as well
as the latent variables of two terms in all cells. The
gene contributions of each term were extracted from 

the decoder and sorted by their absolute weight, 
visualized in the dot plot. 

Detailed methods are described in Supple- 
mentary Materials and Methods. The training and 
prediction results can be obtained and queried 
on our website ( http://bis.zju.edu.cn/shennong/
index.html). 
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The raw sequence data reported in this paper have been de-
posited in the Genome Sequence Archive in National Genomics 
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Beijing Institute of Genomics, Chinese Academy of Sciences 
(GSA-Human: HRA006591) that are publicly accessible 
at https://ngdc.cncb.ac.cn/gsa-human. The data deposited 
and made public are compliant with the regulations of the
Ministry of Science and Technology of China. Processed 
count matrices and cell annotations are available at figshare:
https://figshare.com/s/ac34f719115943d1d46c. 

Single patient scRNA-seq data for LUAD and PDAC were ob-
tained from the Gene Expression Omnibus (GEO) database, with
accession numbers GSE131907 and GSE155698, respectively. 
All cell type labels and metadata were obtained from original
publications. For the third-party comparison scRNA-seq data, 
LUAD data was obtained from the ArrayExpress database (ac- 
cession number E -MTAB-6149) w hile HCC data was obtained
from GEO (accession number GSE1496140). The metadata was 
obtained from original publications, and the cell type labels were
reclustered and annotated according to those publications. 

CODE AVAILABILITY 

The source code for reproducing our analysis and training 
the Shennong framework is available at figshare ( https://
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github.com/PeijingZhang/Shennong). 
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