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Summary

Lymph nodes (LN) are secondary lymphoid organs spread throughout the

lymphatic system. They function to filter pathogenic material from the

lymphatic fluid to maintain the health of the organism. Subcapsular sinus

macrophages (SCSM) are among the first-responders within the LN due

to their strategic location within the subcapsular sinus region. These

macrophages aid the delivery of immune complexes to B cells and follicu-

lar dendritic cells (FDC) within the LN. Here we show an increase in

SCSM and other macrophage populations within aged LN. However,

immune complex uptake by macrophages within LN was not altered with

age, nor was immune complex uptake by B cells. LN stromal cell popula-

tions, important in immune responses and the localization and survival of

leucocytes, were altered in their representation and distribution in aged

LN. In particular, FDC regions were decreased in size and had decreased

chemokine CXCL13 expression. Furthermore, the retention of immune

complexes by FDC was decreased in aged LN at 24 hr post-injection. As

FDC are important in the maintenance of germinal centre responses, the

decreased retention of immune complex in aged LN may contribute to

the reduced germinal centre responses observed in aged mice.

Keywords: ageing; follicular dendritic cells; lymph node; macrophages;

stromal cells.

Introduction

Lymph nodes (LN) are distributed throughout the body,

connected by the lymphatic system. Lymphatic fluid, carry-

ing pathogens and antigens, enters the LN into a cavity

under the LN capsule. This subcapsular sinus region is

home to a specialized subset of cells termed subcapsular

sinus macrophages (SCSM). These macrophages capture

pathogens and antigens in the form of antigen-containing

immune complexes (IC) from the lymph, resulting in their

degradation or surface retention. The subsequent relay of

these antigens to B cells in the neighbouring follicles acti-

vates the B cells to produce antibodies.1,2 The activated B

cells migrate towards, and pass on these antigens to, the

follicular dendritic cells (FDC) within the B-cell follicles.3

The FDC rapidly internalize these antigenic IC, then

undergo cyclic rounds of IC expression on their surface,

encouraging the formation of germinal centres (GC) and

adaptive immune responses.3 Stromal cells play important

roles in this process by coordinating the movement of B

and T cells along FDC and fibroblastic reticular cells

(FRC), respectively, when migrating around the LN.4

In humans and mice, ageing LN have decreases in T-cell

populations, display dysregulated interactions between T

and B cells, altered lymphocyte movement, decreased num-

ber and size of GC and altered structural organization.5–12

Aged FDC have also been shown to have decreased antigen

retention in the days after the initiation of an immune

response.7,8,13 However, little is known of the effects of age-

ing on macrophage and stromal cell populations in the

aged LN.14 We therefore set out to characterize the changes

that occur in these populations in aged LN, and also to

determine whether ageing impacted on IC uptake and relay

in the LN during the first 24 hr after immunization.

Abbreviations: BEC, blood endothelial cell; DN, double-negative; FDC, follicular dendritic cell; FRC, fibroblastic reticular cell;
GC, germinal centre; IC, immune complex; IHC, immunohistochemistry; LEC, lymphatic endothelial cells; LN, lymph node;
MCM, medullary cord macrophage; MSM, medullary sinus macrophage; PE, phycoerytherin; SCSM, subcapsular sinus macro-
phage
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Material and methods

Mice

Female C57BL/6J mice were purchased from Charles

River UK and Charles River France. Mice were main-

tained in-house under specific pathogen-free conditions.

All experimental procedures were approved by The Roslin

Institute’s Ethical Review Committee. Experiments were

conducted under the authority of the UK Home Office

Animals (Scientific Procedures) Act 1986. Young mice

were used at 7–12 weeks old, whereas aged mice were

used at 18–21 months old.

Flow cytometry

For analysis of T and B cells, cervical, axillary, brachial

and inguinal LN were pooled and made into a single-cell

suspension by passing through a 0�7-lM cell strainer

(Thermo Fisher Scientific, Waltham, MA) and processed

on ice during staining. An LSR Fortessa with DIVA soft-

ware (BD Biosciences, Oxford, UK) was used for flow

cytometry. Data were analysed using FLOWJO (FlowJo,

LLC, Ashland, OR). Cells are gated on lymphocytes then

doublets before quantification.

Extraction of stromal and macrophage LN populations
for flow cytometry

Cervical, axillary, brachial and inguinal LN were removed

from euthanized mice and broken up with 25G needles.

LN were resuspended in 750 ll of 1 mg/ml Collagenase IV

(Sigma-Aldrich, St Louis, MO) with 40 lg/ml DNAse I

(Roche, Basel, Switzerland) and placed into a 37° water

bath. Vigorous pipetting was used to break up nodes at

regular intervals. Once digested (approximately 30 min)

suspension was moved into PBS with 5 mM EDTA and

0�1% bovine serum albumin and kept in this solution dur-

ing FACS staining and data collection. Greater than 95%

viability, as determined by trypan blue exclusion, was

achieved using this method. For stromal cell analysis, cells

were fixed in formalin after extracellular staining then per-

meabilized overnight with PBS containing 0�2% Tween-20

and 0�02% sodium azide before intracellular staining for

propidium iodide (PI) (eBiosciences, San Diego, CA). Stro-

mal cells were identified using the gating depicted in Fig-

ure 3(a). Forward scatter and side scatter were used to

remove dead cells, doublets and debris. CD45 and TER119

were used to remove lymphocytes and red blood cells,

respectively. Propidium iodide confirmed DNA content of

the cells and exclusion of further debris.

Immunofluorescence

Inguinal LN were used for all immunofluorescent images

and are representative of six mice per group. Frozen

sections 6–8 lM thick were fixed in ice-cold acetone,

rehydrated in PBS and blocked with normal horse serum

before antibody application. Dako (Agilent, Santa Clara,

CA) fluorescent mounting medium was used to apply

coverslips before image acquisition. A Zeiss LSM5 Pascal

upright microscope or Zeiss LSM 710 inverted confocal

microscope (Carl Zeiss, Oberkochen, Germany) with ZEN

software (Rochdale, UK) was used for image collection.

Images were analysed using IMAGE J software (NIH). To

determine average FDC size and SCSM depth between 4

and 11 images were analysed per LN, depending on the

size of the LN.

Antibodies

The following antibodies were purchased from BioLegend

(San Diego, CA): anti-CD3e (145-2C11), anti-CD4

(RM4-5), anti-CD11b (M1/70), anti-CD31 (390), anti-

CD45 (30-F11), anti-CD45R/B220 (RA3-6B2), anti-

CD169 (3D6.112), anti-F4/80 (BM8), anti-MAdCAM-1

(MECA-367), anti-Syrian hamster biotin (Poly4056) and

anti-TER119 (TER119). Anti-CD35 (8C12) and anti-

CD16/32 (2.4G2) were purchased from BD Biosciences.

Streptavidin Alexa Fluor 594, Alexa Fluor 488 and Alexa

Fluor 647 were purchased from ThermoFisher Scientific.

Anti-podoplanin/GP38 (8.1.1) was purchased from the

Developmental Studies Hybridoma Bank (Iowa City, IA).

In vivo immune complex tracking

An established protocol was adopted to compare move-

ment of phycoerythrin (PE)–IC complexes within young

and aged inguinal LN.1 Briefly, mice were given 2 mg of

polyclonal rabbit IgG anti-PE (GTX27011; GeneTEX,

Irvine, CA) intraperitoneally. After 16 hr mice were

sedated with isoflurane and given 5 lg of PE (P801;

Invitrogen, Carlsbad, CA) subcutaneously into each side

of their flank. At 2, 8 and 24 hr after subcutaneous injec-

tions mice were killed and one inguinal LN was taken for

flow cytometric analysis while the other was snap frozen

in OCT (Biotek, Winooski, VT).

Imaris analysis of IC trapping

Ten-micrometre thick sections were imaged on a Zeiss

LSM710 confocal microscope. Scanning was sequential

with a 1�58-microsecond dwell time. Images were cap-

tured at a resolution of 1024 9 1024 pixels using a 639

(NA 1�4) objective, a 1 9 software zoom and a z-step size

of 0�44 lM. Images were saved in the lsm format and

image analysis was performed using IMARIS 8.2.1 software

(Bitplane, Belfast, UK) and MATLAB (Natick, MA) Image

analysis was adapted from a published protocol.15 Two

FDC networks were imaged per mouse and graphs show

individual images as points.
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Statistical analysis

GRAPHPAD PRISM (GraphPad software, La Jolla, CA) was

used for all statistical analyses. Median values are shown

on graphs as horizontal lines, and the Mann–Whitney U-

test was used to determine significance.

Results

Aged mice have a decreased representation and
altered organization of lymphocytes in LN

Alterations to T-cell and B-cell populations in LN from

ageing humans have been demonstrated,6 so it was first

pertinent to confirm whether similar changes were

observed in the LN of aged mice. Flow cytometric analy-

sis demonstrated a relative decrease in T cells and relative

increase in B-cell populations (Fig. 1a). Immunohisto-

chemical (IHC) analysis confirmed that whereas the B-cell

population was maintained in the LN of aged mice, there

was a loss of T cells (Fig. 1b). However, a disruption to

the structural localization of B cells was evident, with less

defined follicular regions in LN from aged mice com-

pared with young mice (Fig. 1b).

Aged mice have increased LN macrophage
populations

Next macrophage populations in young and aged mice

were analysed by flow cytometry and IHC. Flow cytomet-

ric analysis demonstrated an increase in the representa-

tion and number of SCSM, medullary sinus macrophages

and medullary cord macrophages in LN from aged mice

(Fig. 2a,b). These results were confirmed by IHC. Aged

mice displayed an increased depth of SCSM from the

capsule (Fig. 2c), accompanied by an increase in macro-

phages in the medullary sinus and cord regions (Fig. 2c).

Although blebbing of CD169 should be taken into

account when considering the increase of SCSM16 both

flow cytometry and IHC suggested a significant increase

in the presence of these cells. These data show that the

abundance of SCSM, medullary sinus macrophages and

medullary cord macrophages is increased in aged LN.

Aged LN have decreased numbers of stromal cells and
decreased FDC networks

Stromal cells are important for structural organization

and immune responses in LN.17 Flow cytometry and IHC

were used to characterize the effects of ageing on LN

stromal cell populations. Stromal cells were isolated from

pooled LN of young and aged mice through digestion of

the LN with collagenase and analysed through flow

cytometry. Stromal cells were identified by gating as

detailed in Fig. 3(a). Forward and side scatter were used

to remove detritus and doublets, a particular problem in

the analysis of aged organs. CD45 and TER119 were then

used to remove lymphocytes and red blood cells, respec-

tively. Intracellular staining with PI was used to confirm

that the populations analysed were true cells and not deb-

ris. Finally, the markers CD31 and podoplanin were used

to identify four stromal cell populations as shown in the

lower panels of Fig. 3(a). This analysis revealed a decrease

in double-negative (podoplanin-CD31–) stromal cells in

aged LN (Fig. 3a–c). IHC analysis of LN from young and

aged mice also demonstrated altered localization of blood

endothelial cells (BEC, CD31+) and FRC (podoplanin+)

in aged LN (Fig. 3d). In aged mice the BEC and FRC

were more widely distributed throughout the LN, con-

trary to their centralization around the efferent lymph

draining side of the LN normally seen in young mice.

Overall, BEC were abundant throughout the LN of aged

mice and FRC localized around these. A decrease in the

MAdCAM-1+ marginal reticular cells was observed in

approximately 50% of the aged mice analysed (Fig. 3d).

Consistent with previous reports the FDC network size in

aged mice was reduced (Fig. 4a)8,18 but this did not affect

the B-cell follicle size (Fig. 4a). There was also less
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Figure 1. Aged mice have a decreased T-cell population in their lymph nodes (LN). T and B lymphocyte populations were analysed by flow

cytometry and immunostaining in young and aged mice. (a) Flow cytometric analysis of T-cell (CD3e+) and B-cell (B220+) populations from

young and aged LN, pooled from two experiments with three mice per group in each experiment. (b) Histological staining of T-cell (CD4, green)

and B-cell (B220, red) populations in the inguinal LN of young and aged mice, representative of six mice per group. **P < 0�01. Scale bars rep-

resent 500 lM.
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expression of the chemokine CXCL13 localized to the fol-

licular region of the aged LN (Fig. 4b), in contrast to pre-

viously published data showing an increase in the LN

with age.10 The loss of CXCL13+ marginal reticular cells

correlated with their loss of MAdCAM-1 and was also

observed in approximately 50% of the aged LN.

Aged SCSM and B cells display normal uptake and
trafficking of antigen

We next determined whether the delivery of IC to FDC

was adversely affected in the LN of aged mice. To do so,

we adapted a previously characterized method,1 which

enables the tracking of IC around the LN, from their arri-

val in the subcapsular sinus to their uptake by FDC. With

this method, PE-labelled immune complexes (PE-IC) are

initially acquired by SCSM, passed onto follicular B cells

and subsequently deposited onto FDC. This technique

therefore provides the opportunity to readily test the

functioning of several LN populations in their ability to

acquire and transport IC.

No impairment in the uptake of PE-IC in aged mice

compared with young mice was observed at 2 hr post-injec-

tion (Fig. 5a,b). In mice from each age group, PE-IC co-

localized with the SCSM around the edge of the LN, in the

process of being transported to the FDC. However, the aged

LN had larger deposition of PE-IC within the inter-follicu-

lar regions due to the previously detailed accumulation of

macrophages (Fig. 2). Hence, aged mice displayed no initial

impairment in the ability of SCSM to take up PE-IC.
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Figure 2. Aged lymph nodes (LN) have an

increased representation of macrophages.

Macrophage populations were analysed via

flow cytometry and immunostaining in young

and aged LN. Flow cytometric analysis of sub-

capsular sinus macrophages (SCSM; CD45+,

CD11b+, CD169+, F4/80�), medullary sinus

macrophages (MSM; CD45+, CD11b+,

CD169+, F4/80+) and medullary cord macro-

phages (MCM; CD45+, CD11b+, CD169�,F4/
80+) was performed. The percentage represen-

tation (a) and total cell count (b) of the popu-

lations are shown and are representative of

three experiments with three to four mice per

group in each repeat. (c) Histological analysis

of macrophage populations in the inguinal LN

from young and aged mice, representative of

six mice per group. SCSM are CD169+, F4/80�

(blue), MSM are CD169+, F4/80+ (cyan) and

MCM are CD169�,F4/80+ (green). Measure-

ment of the depth of SCS macrophages from

the capsule demonstrates an increased depth in

aged LN. **P < 0�01; *P < 0�05. Scale bars

represent 500 lM.
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At 8 hr post-injection no significant differences were

observed in the localization of the PE-IC between young

and aged mice (Fig. 5a,b). Both age groups displayed

deposition of PE-IC on the edges of the FDC region.

However, at 24 hr post-injection, the young LN had a

large accumulation of PE-IC in the FDC region, whereas

there were very few PE-IC within the FDC region in any

of the aged LN (Fig. 5a,b). Flow cytometric analysis of B-

cell populations demonstrated no significant difference at

all three time-points in the ability of young or aged B

cells to acquire the PE-IC (Fig. 5c), suggesting no

alteration in the ability of aged B cells to acquire IC in

aged LN.

Decreased FDC size impairs IC uptake in aged LN

IMARIS software was next used to compare the relative

abundance of PE-IC inside the FDC, on the surface of

the FDC and > 1 lM from the FDC surface (i.e. ‘outside’

the FDC; Fig. 5d) as adapted from a published proto-

col.15 Representative images of the z-stacks obtained post-

analysis are provided in the Supplementary material
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Figure 3. Aged lymph nodes (LN) have altered stromal cell representation and localization. Stromal cell representation and localization in the

spleens of young and aged mice were analysed via flow cytometry and immunostaining. (a) Flow cytometry analysis of stromal cell populations

in young and aged mice. Stromal cells were gated on forward and side scatter, intracellular propidium iodide staining and were CD45�,
TER119�. The markers CD31 and podoplanin were used to identify fibroblastic reticular cells (FRC, podoplanin+,CD31�), lymphatic endothelial

cells (LEC, podoplanin+, CD31+), blood endothelial cells (BEC, Podoplanin–, CD31+) and double negative (DN; Podoplanin–, CD31�). Results
are indicative of three experimental repeats with three or four mice per group in each repeat. (b) Percentage of FRC, BEC, LEC and DN in young

and aged LN. (c) Total cell counts of FRC, BEC, LEC and DN in young and aged LN. (d) Representative immunostaining of inguinal LN for

MAdCAM-1 (green), Podoplanin (red) and CD31 (blue). *P < 0�05. Scale bars represent 500 lM.

ª 2017 The Authors. Immunology Published by John Wiley & Sons Ltd., Immunology, 151, 239–247 243

Ageing lymph nodes



(Fig. S1a). Although no significant changes were observed

at 2 hr post-injection in the abundance and distribution

of the PE-IC between age groups (Fig. 5d), at 8 hr post-

injection significantly more PE-IC were present outside

the aged FDC than those from young mice. Furthermore,

by 24 hr post-injection, aged FDC displayed significantly

fewer PE-IC inside, outside or on their surfaces (Fig. 5d).

These data correlated with the IHC analysis, which

showed limited retention of PE-IC in the aged LN at

24 hr post-injection (Fig. 5a,b). Analysis of FDC volume

using IMARIS at each time-point suggested the total vol-

ume of the aged FDC was reduced when compared with

young FDC (see Supplementary material, Fig. S1b). Fur-

ther analysis suggested that the ratio of the internalized

PE-IC to FDC volume was similar in each age group. (see

Supplementary material, Fig. S1c). These data suggest that

the impaired PE-IC uptake in the LN of aged mice is a

consequence of the decreased size of their FDC. Together

these data demonstrate that aged LN have no deficiency

in the initial uptake and transport of IC by SCSM and B

cells, but the retention of IC is impaired due to the

decreased size of their FDC.

Discussion

In the current study we characterized the ageing-asso-

ciated changes to lymphocytes and macrophages within

murine LN. These changes were also accompanied by sig-

nificant structural reorganization of LN stromal cells,

including FDC. SCSM are strategically positioned under-

neath the LN capsule to collect pathogenic material and

antigens from the lymphatic fluid and aid its delivery to

B cells and FDC. We observed no change in the ability of

SCSM to perform this task in aged LN, nor were B cells

impaired in their uptake of IC. However, the retention of

IC by FDC was significantly decreased in aged LN 24 hr

post-injection. FDC are important in the maintenance of

immune responses and GC and their decreased ability to

retain IC may contribute to the failure of aged LN to

produce GC equivalent to the same magnitude as those

in young animals.

Stromal cells form the scaffold of the LN and are

important in the localization, survival and immune

responses of the leucocytes within.17,19 Circulating lym-

phocytes enter the LN from the blood through high

endothelial venules, composed of BEC. They can also

enter the LN from the lymph through lymphatic endothe-

lial cells (LEC). Once in the lymph node they localize to

their associated T-cell and B-cell zones through move-

ment along FRC and FDC, respectively,4 where they

reside temporarily before relocating to other immune

sites.20 Lymphocytes primarily leave the LN through the

cortical sinus to enter the lymph21–24 but can also exit

the LN through LEC to enter the lymph.25 Although the

total number of BEC, FRC and LEC in aged LN was

unchanged, a decrease in the total number of double-

negative (DN) cells was observed. However, their distri-

bution within the aged LN was grossly disorganized in

aged mice, in a similar manner to that seen in the

spleen.26 Stromal cells are important for the homeostasis

and migration of T cells.4,27 The structural disorganiza-

tion seen with age may account for the decrease in T cells

seen here, the impaired movement of naive T cells and B

cells into the LN previously published,9–11 along with the
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Figure 4. Decreased size and CXCL13 expression on aged follicular dendritic cells (FDC). (a) Histological sections of inguinal lymph nodes (LN)

with immunostaining for B cells (B220 – blue) and FDC (CD35 – red) and measurement of the area of CD35+ FDC and B220+ B-cell follicles in
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decreased recruitment of leucocytes after infection.12 Fur-

thermore, the population of DN (i.e. podoplanin–

CD31�) stromal cells was decreased in aged LN. This is

not a well-studied population and as such it is difficult to

determine what population exactly is lost with age, and

the implications this may have on host immunity. Fur-

thermore, the method of LN digestion may impact on the

representation of stromal cell populations. Different LN

digestion protocols obtain wide-ranging (10–60%) yields

in the relative representation of this DN popula-

tion.10,28,29 Regardless, independent transcriptional profil-

ing of these DN cells has indicated that they express

cytokines and chemokines that are important for survival,

migration and localization of numerous leucocyte popula-

tions.30 Hence the loss of this population may have

implications in the ability of aged LN to effectively recruit

leucocytes and respond to pathogens.

Although the loss of FDC in aged LN has been

demonstrated previously,7,8,31 the effect this has on B-cell

movement and responses appears to be minimal.12 Here

we have demonstrated that B cells in aged LN have no

deficiency in their ability to initially acquire IC and

transport them to FDC. Aged B cells also appear to have

no impairment in their ability to traffic to LN nor in

their antibody responses, despite reductions in the

expression of the B-cell chemoattractant CXCL13.12

When acquired by FDC the IC undergo a cyclic process.

The IC are first internalized and then periodically pre-

sented on the FDC surface before being re-internalized.3

This process occurs over the period of a few hours and

is considered to protect the antigens from damage while

rendering them available for presentation in their native

state to B cells. As demonstrated here, FDC within age-

ing LN are able to acquire and retain IC up to 8 hr

post-challenge to a similar extent to that observed in

young LN. However, at 24 hr post-injection very little IC

was evident in the age LN, which was compounded by

the decreased size of the FDC. Although the fate of these

IC is unknown, it is plausible that they are degraded.

What can be concluded is that without IC available for

presentation to leucocytes, the immune response in the

aged LN would be stunted. FDC are important in the

retention of cells within GC.32 In vitro experiments have

demonstrated that aged FDC had reduced trapping and

presentation of antigen to B cells, which could be

restored with the administration of complement.13 The

lack of IC retention by aged FDC, due to their decreased

size, may help to explain why GC responses are impaired

in aged mice7,8,33 and provide a target for future thera-

peutic intervention to improve immunity in the elderly.

Hence, our data provide an important advance in our

understanding of why immune responses fail in aged LN

and why the elderly have decreased responses to vaccina-

tion and increased susceptibility to viral and bacterial

infections.
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