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Abstract: Essential oils (EOs) are known for their use in cosmetics, food industries, and traditional
medicine. This study presents the chemical composition and therapeutic properties against
kinetoplastid and eukaryotic cells of the EO from Melaleuca leucadendra (L.) L. (Myrtaceae). Forty-five
compounds were identified in the oil by GC-MS, containing a major component the 1,8-cineole (61%).
The EO inhibits the growth of Leishmania amazonensis and Trypanosoma brucei at IC50 values <10 µg/mL.
However, 1,8 cineole was not the main compound responsible for the activity. Against malignant
(22Rv1, MCF-7, EFO-21, including resistant sublines MCF-7/Rap and MCF-7/4OHTAMO) and
non-malignant (MCF-10A, J774A.1 and peritoneal macrophage) cells, IC50 values from 55 to 98 µg/mL
and from 94 to 144 µg/mL were obtained, respectively. However, no activity was observed on
Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Aspergillus niger,
Candida parapsilosis, Microsporum canis, or Trypanosoma cruzi. The EO was able to control the lesion size
and parasite burden in the model of cutaneous leishmaniasis in BALB/c mice caused by L. amazonensis
compared to untreated animals (p < 0.05) and similar with those treated with Glucantime® (p > 0.05).
This work constitutes the first evidence of antiproliferative potentialities of EO from M. leucadendra
growing in Cuba and could promote further preclinical investigations to confirm the medical value of
this plant, in particular for leishmaniasis treatment.
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1. Introduction

Plant-derived compounds as an alternative therapy for microbial infections have been established
to be one of the most auspicious sources to develop new therapeutic alternatives. During the last
decades, an accumulating interest in the screening of plant-derived products has been appreciated
considering their availability and safety when compared with synthetic compounds [1]. Among these,
essential oils (EOs) constitute an important source of biologically active compounds, which are
complex mixtures mostly constituted of secondary metabolites. More than 3000 EOs have been
identified or commercialized, due to their frequent use in cosmetics and flavors, as well as in the
food industries, like spices, or to prepare beverages. They are also widely known for their use in
traditional medicine as antibacterial, insecticidal, fungicidal, nematicidal, herbicidal, antioxidant,
and anti-inflammatory agents [2,3].

In particular, antiproliferative potentialities of EOs have been demonstrated, including actions
against parasitic protozoans [4] and malignant cell lines [5,6]. To continue our search for new
bioactive natural products from Cuban plants, in this study, we have focused on the EO from
Melaleuca leucadendra (L.) L. (EO-ML) of the Myrtaceae.

Melaleuca species are tall shrubs and small trees having a height of up to 7 m with a bushy crown and
papery bark. Leaves are usually hairless, 10–35 mm long and about 1 mm wide, while the phyllotaxis
of leaves is scattered to whorled. The leaves have prominent glands enriched with aromatic oil [7].
In general, a long history of the medicinal use of this genus is known, mainly because of their
broad-spectrum antimicrobial activity [8]. In particular, M. leucadendra (Figure 1) has been widely grown
in various parts of the world and shows different biological properties. For example, the bark and leaves
are used in folk medicine as tranquilizing, sedating, evil-dispelling, and pain-relieving agents [9,10].
Other pharmacological effects have been reported, including antioxidant, anti-inflammatory [11],
and antimicrobial [12,13] activities. In addition, in vitro antimicrobial profiling of an ethanol extract from
M. leucadendra grown in Cuba was performed, exhibiting inhibitory activity against Microsporum canis,
Staphylococcus aureus, Plasmodium falciparum, Trypanosoma cruzi, T. brucei, Leishmania infantum [14],
and L. amazonensis [15].
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Based on previous information, this work presents the studies of EO-ML growing in Cuba:
(i) analysis of the chemical composition by gas-chromatography coupled with a mass spectrometric
detector (GC-MS); (ii) a general antiproliferative in vitro assessment against kinetoplastid parasites
(L. amazonensis, T. cruzi, and T. brucei), malignant cell lines: Human prostate carcinoma cell line (22Rv1)
and human breast cancer (MCF-7), and non-malignant murine macrophages: Continuous culture
using the cell line J774A.1 and primary non-growing macrophage from the peritoneum of BALB/c
mice (PMM); (iii) in vitro evaluation of the main compound of EO-ML on more susceptible cultures;
and (iv) effects of EO-ML on experimental cutaneous leishmaniasis (CL) in BALB/c mice caused by
L. amazonensis.

2. Results and Discussion

The studied EO-ML presented 45 compounds (Table 1), which constituted 99.9% of the composition
and were represented by monoterpene hydrocarbons (10.5%), oxygenated monoterpenoids (79.2%),
sesquiterpene hydrocarbons (0.2%), oxygenated sesquiterpenoids (9.6%), benzenoids (0.3%) and
others (0.1%). The main components were 1,8-cineole or eucalyptol with 61%, which is a characteristic
chemotype of M. leucadendra as demonstrated Brophy et al. [16] and An et al. [17]. In addition,
other compounds at lower concentrations were identified, such asα-terpineol (15.6%), viridiflorol (7.9%),
limonene (4.8%) α- and β-pinene (2.7 and 1.2%, respectively) and terpinen-4-ol (1.2%), which have also
been previously reported for EO-ML [15,16].

Table 1. Peak assignment for gas chromatography-mass spectrometry profiles of the essential
oil extracted by hydrodistillation from Melaleuca leucadendra collected in National Botanic Garden,
Havana, Cuba.

RI Compound % RI Compound %

858 (3Z)-Hexen-1-ol 0.1 1167 Borneol 0.1
928 α-Thujene tr 1169 δ-Terpineol 0.3
934 α-Pinene 2.7 1174 Ethyl benzoate tr
947 Camphene 0.1 1179 Terpinen-4-ol 1.2
957 Benzaldehyde 0.1 1194 α-Terpineol 15.6
973 β-Pinene 1.2 1200 Methyl chavicol (=Estragole) 0.1
989 Myrcene 0.5 1230 Citronellol 0.1
1001 α-Phellandrene 0.1 1235 Ascaridole tr
1007 δ-3-Carene 0.1 1277 Safrole tr
1014 α-Terpinene tr 1280 Unidentified 0.1
1023 p-Cymene 0.7 1420 β-Caryophyllene 0.2
1027 Limonene 4.8 1451 α-Humulene tr
1031 1,8-Cineole 61.0 1458 allo-Aromadendrene tr
1049 (E)-β-Ocimene tr 1492 Viridiflorene (=Ledene) tr
1059 γ-Terpinene 0.2 1563 Palustrol 0.1
1090 Terpinolene 0.1 1589 Viridiflorol 7.9
1096 Methyl benzoate 0.1 1597 Guaiol 0.2
1103 Linalool 0.2 1600 Ledol 0.8
1114 endo-Fenchol 0.1 1606 Humulene epoxide II 0.1
1147 neo-Isopulegol 0.4 1642 τ-Cadinol 0.1
1149 Camphene hydrate tr 1650 β-Eudesmol 0.1
1158 iso-Isopulegol 0.1 1653 α-Eudesmol 0.1

RI: Retention Index (determined with respect to a homologous series of n-alkanes on a ZB-5 column). Tr: Trace
(concentration < 0.05%). Major components (>1%) are highlighted in bold.

A review of the literature revealed variation in qualitative and quantitative chemical compositions
of EO-ML from plants collected in Cuba, depending on their location. In this sense, Pino et al. reported
that the analysis of the aerial parts from M. leucadendra collected in Matanzas Province showed
also 1,8-cineole (43.0%) as the main compound [18]; while the major component was viridiflorol
(28.2%) in samples from Pinar del Rio Province [19]. In parallel, other reports showed the 1,8-cineole
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chemotype from plants growing in Brazil [20] and Egypt [13] with 48.7% and 64.3% 1,8-cineole,
respectively. Nevertheless, other chemotypes have also been documented based on phenylpropanoids
(namely eugenol methyl ether and (E)-iso-eugenol methyl ether) or nerolidol chemotypes [16,17].

Although the promising biological activities of EO-ML have been known for decades, herein we
compared for the first time the activity of the same EO obtained from plants cultivated in Cuba against
different prokaryotic (Gram-positive bacteria: Staphylococcus aureus, Enterococcus faecalis, Gram-negative
bacteria: Escherichia coli, Pseudomonas aeruginosa, and fungi: Aspergillus niger, Candida parapsilosis,
Microsporum canis) and eukaryotic (kinetoplastid parasites: Trypanosoma and Leishmania, malignant:
EFO-21, MCF-7, and 22Rv1, resistant malignant sublines: MCF-7/Rap and MCF-7/4OHTAMO, as well
as non-malignant continuous cultures: MCF-10A and J774.A1, and primary macrophages from the
peritoneum of BALB/c mice (PMM)). Then, antimicrobial screening of EO-ML shown that this product
did not affect bacterial or fungal growth at the maximal tested concentration (500 µg/mL); except against
dermatophyte M. canis with a bordered activity (MIC 125 µg/mL). However, regarding the parasitic
protozoa, EO-ML demonstrated activity against L. amazonensis and T. brucei with IC50 values <10 µg/mL
(Figure 2); although no effect was observed against T. cruzi. In addition, the antiproliferative effect on
malignant cells was also appreciated, which were statistically smaller (p < 0.05) than antiprotozoal
activities. Nevertheless, similar IC50 values (p > 0.05) against malignant cells and resistant lines were
obtained. Finally, the cytotoxicity assay against non-malignant cells revealed IC50 values >94 µg/mL,
which generated selectivity indices >11-fold compared with protozoal parasites (L. amazonensis and
T. brucei) and approximately 1 or 2-fold with respect to malignant cell lines.
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Figure 2. In vitro antitrypanosomatidae, antiproliferative activity, and cytotoxic effects of essential
oil extracted by hydrodistillation from Melaleuca leucadendra collected in National Botanic Garden,
Havana, Cuba. Statistical differences with p < 0.05 (*) and p < 0.01 (**) compared to control cells.

Although no activity on T. cruzi was observed, a general biological activity against eukaryotic
cells was appreciated for EO-ML. In particular, a higher sensitivity of kinetoplastid parasites than
mammalian cells was found. Recently, Luna et al. [4] demonstrated that in the absence of new effective
drugs against Trypanosoma and Leishmania, many studies demanded the use of EOs. In particular,
da Silva et al. [21] reviewed the potential activity of EOs from 35 plant species against L. amazonensis,
of which 45.7% had an IC50 < 10 µg/mL. Our results, together with reports in the literature, corroborate
the antikinetoplastid potential of EOs and could stimulate the development of these natural products
as a source of new phytotherapeutics for leishmaniasis and trypanosomiasis treatment.

In addition, the EO-ML showed inhibitory activity against tested malignant cell lines, including
resistant sublines, with IC50 values ranging from 55 to 98 µg/mL. The anticancer potential of
various EOs has attracted a great deal of interest, and extensive research has been carried out
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to characterize the anticancer activity, the molecular mechanisms, the chemopreventive potential,
and the chemotherapeutic application of these products [5]. Although the American National Cancer
Institute considers natural products, including EOs, to be active with IC50 values below 30 µg/mL [22],
the antiproliferative property of the EO-ML could be in consideration, particularly against resistant
sublines. Currently, either intrinsic or acquired resistance during the course of treatment is a limiting
factor in successful cancer chemotherapy and constitutes one of the major challenges for cancer
chemotherapy [23]. In this regard, the most interesting result of the studied EO was its capability to
limit the growth of resistant sublines, as well as other malignant susceptible cell lines, which may
lead to further studies to prevent or attack proliferation of resistant malignant cells as a needed
therapeutic strategy.

Follow-up studies were carried out on kinetoplastid parasites that showed higher susceptibility
to EO-ML. In this case, the evaluation of 1,8 cineole against L. amazonensis and T. brucei parasites
was performed. It is an important strategy for its applicability and can facilitate the search for the
biological mechanism by which the oil may act [24]. In addition, although the oils are complex
mixtures, a major compound may have a greater influence on the observed biological activity [24].
In this study, however, 1,8 cineole showed IC50 values of 68.3 ± 3.4 µg/mL (0.44 ± 0.02 mM) and
30.3 ± 1.5 µg/mL (0.19 ± 0.01 mM) against L. amazonensis and T. brucei, respectively. Furthermore,
no cytotoxicity was observed against non-malignant macrophages at 200 µg/mL. Thus, 1,8 cineole is
not the main agent responsible for the antiprotozoal activity of EO-ML. Nibret and Wink reported an
IC50 of 83.1 µg/mL for this compound against T. brucei [25]. On the other hand, Machado et al. [26]
documented that this pure compound did not display an important inhibitory activity on L. infantum,
which represented 58.6% of the Thymus capitellatus Hoffmanns & Link EO; while Santana et al. [27]
and Camargos et al. [28] showed that 1,8-cineole was able to inhibit the growth of L. amazonensis with
IC50 values of 48.4 µg/mL (0.3 mM) and 724 µg/mL (4.7 mM) against amastigotes and promastigotes,
respectively. Therefore, the activity of EO-ML could result from the complex interactions between
their constituents. In some cases, these interactions may lead to antagonistic or synergistic effects that
contribute to the biological activity of EOs, and even minor components of EOs can play a critical
role in these effects. There have been a few studies concerning antikinetoplastid actions of the minor
EO-ML constituents. For example, some authors showed IC50 values of: 4.2 µg/mL for limonene,
1.0 µg/mL for α-pinene [29], 47.4 µg/mL for β-pinene [30] and 0.02 µg/mL for terpinen-4-ol [31] against
T. brucei; as well as 37.9 µg/mL for limonene [32] 105 µg/mL for α-terpineol [28] and 37 µg/mL for
α-pinene [27] against L. amazonensis. Although the concentrations of these compounds were less
than 1,8-cineole, the presence of known components with antikinetoplastid activity in the oil could,
therefore, account for the inhibitory effect found for EO-ML. Nevertheless, further studies with minor
components or compound combinations are needed to identify the compound(s) responsible for the
effects of EO-ML.

Note that the previous report of this plant against bacteria, fungi, and parasites was conducted
with an aqueous ethanolic extract [14,15]. Although the chemical composition of this extract was not
reported, the different procedures for solvent extraction and EO hydrodistillation will result in very
different chemical compositions, marked mainly in relatively polar, non-volatile in the ethanol extract,
and volatile non-polar compounds in the EO [33]. Nevertheless, antiparasitic activities were displayed
by both the ethanol extract and the EO, which strongly suggests the potentialities of M. leucadendra.

It is concluded, therefore, that the oil exhibited comparable susceptibilities against both
L. amazonensis and T. brucei, and presented higher in-vitro activity and selectivity than the pure main
component. However, Caridha et al. [34] highlighted the need for new treatments for CL, due to current
treatments showing poor justification through clinical trials and sub-optimal effectiveness [35,36].
In particular, against L. amazonensis, the EO-ML displayed an IC50 of 8µg/mL and a selectivity index = 18
(with respect to J774) and 13 (with respect to PMM), which are in concordance with international criteria
related to the development of natural products for cutaneous species, i.e., (i) classification as highly
active with IC50 < 10 µg/mL [37] and (ii) a selectivity index >5 [34]. In the Neotropics, L. amazonensis is
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considered to be one of the most important species that causes cutaneous leishmaniasis (CL). In addition,
nearly 1% of all CL cases can develop an anergic diffuse CL infection, which is characterized by
massive dermal infiltrates and presents clinical, immunological, parasitological, anatomopathological,
and therapeutic responses different from other CL forms. This clinical presentation is chronic with
frequent relapses due to non-response to conventional treatment [26,38]. Thus, the effect of EO-ML
was evaluated in the model of experimental CL caused by L. amazonensis in BALB/c mice.

In the in-vivo model, the studied oil was able to control the disease progression, which was shown
in the statistically significant smaller (p < 0.05) lesion size (Figure 3A) and parasite burden (Figure 3B)
with respect to untreated animals. Compared with Glucantime® (GTM), a similar efficacy (p > 0.05)
was found for EO-ML, as shown for lesion size (Figure 3A) and parasite burden (Figure 3B). Figure 3C
shows the differences among cutaneous lesions for each group, which was represented by one animal
selected at random.
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Figure 3. Antileishmanial effect of the essential oil from Melaleuca leucadendra collected in
National Botanic Garden, Havana, Cuba, on BALB/c mice infected with 5 × 106 promastigotes
of L. amazonensis/animal. Treatment started four weeks post-infection with essential oil from
Melaleuca leucadendra or Glucantime® with five doses by the intralesional route at 30 mg/kg every
four days. (A): Lesion size; (B): Parasite burden; (C): Pictures at 12 weeks post-infection of infected
animals in the footpad with L. amazonensis and treated. EO-ML: essential oil from M. leucadendra;
GTM: Glucantime® used as reference drug; Control: Untreated animals. *: Displays statistical
differences (p < 0.05) compared to control untreated animals.

Here, we report the in vivo efficacy of EO-ML against L. amazonensis infection by using 30 mg/kg for
15 days, with a four-day interval by the subcutaneous route, for a total of five doses. In other studies,
however, higher numbers of doses and concentrations of antileishmanial products were usually
employed in the animals, aiming to enhance their efficacy. For example, oil from the trunk of
Copaifera martii Hayne was administered at 100 mg/kg/day for 30 days [39]; while the treatment with
the EO from Carapa guianensis Aubl. Was performed for eight weeks using 100–160 mg/kg/day [40].

Our data show the efficacy of EO-ML to be comparable with animals treated with GTM,
a first-line drug, taking into account the evaluated parameters (dosing, lesion size, and parasite burden).
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The significant effect of EO-ML on the reduction of BALB/c mice infection caused by L. amazonensis is
indicative of a reduced pathology; a complete cure was not observed, however.

The positive effect observed in animals treated with EO-ML, could be explained by the direct
activity of the oil on the growth of the parasite, as shown in the in-vitro assays. Nevertheless,
the efficacy exhibited in the murine model could also be associated with the ability of oil constituents
to induce indirect effects that can contribute to controlling a Leishmania infection in the treated animals.
Recent studies have indicated that terpinen-4-ol and limonene present anti-inflammatory activity,
β-pinene has shown antioxidant effect [41], and α-pinene modulated macrophage activation by the
stimulation of NO production and increasing the phagocytic and lysosomal activities [42]. All these
pharmacological properties could contribute to controlling a leishmaniasis infection.

3. Materials and Methods

3.1. Plant and Essential Oils

Aerial parts (leaves and stems) of M. leucadendra plant were collected during early hours of the
morning in March 2015 at National Botany Garden (NBG), Havana, Cuba, and a specimen was deposited
at the Herbarium of Cuban Flora of the NBG and authenticated by M.Sc. Eldys Bécquer (voucher
number: 8501918). Leaves of M. leucadendra were manually selected, rinsed with abundant water,
and crushed into small pieces. Immediately, the fresh vegetal material was conventionally hydrodistilled
using a Clevenger-type apparatus for 5 h, and the EO-ML was obtained, yielding 0.8%. The essential
oil was stored in a sealed amber vial at 4 ◦C until analysis and screening.

A sample of 100 µL was used to carry out the chemical characterization by GC-MS using a
Shimadzu GCMS-QP2010 Ultra (Shimadzu Scientific Instruments, Columbia, MD, USA). A 5% w/v
solution of the sample in CH2Cl2 was prepared and 0.1 µL was injected with a splitting mode (30:1).
In this case, a ZB-5 fused silica capillary column with (5% phenyl)-polymethylsiloxane as stationary
phase (film thickness of 0.25 µm, a length of 30 m, and an internal diameter of 0.25 mm (Phenomenex,
Torrance, CA, USA) and the carrier gas was helium (column head pressure of 552 kPa, flow rate of
1.37 mL/min, injector temperature of 250 ◦C and an ion source temperature of 200 ◦C) were used.
Equipment operated in the electron impact (EI) mode (electron energy = 70 eV), scan range = 40–400
atomic mass units, scan rate = 3.0 scans/s and GC-MS solution software. The GC oven temperature
program was set to 50 ◦C as the initial temperature, which increased at 2 ◦C/min until 260 ◦C.
Finally, identification of the oil components was based on their retention indices (RI) determined by
reference to a homologous series of n-alkanes, and by comparison of their mass spectral fragmentation
patterns with those reported in the literature [43], and stored in our in-house Sat-Set library [44].

Another aliquot of EO-ML and 1,8-cineole (purity 99%; Sigma-Aldrich, St. Louis, MO, USA) were
used to carry out the biological assays. The EO-MS and 1,8-cineole were dissolved in dimethylsulfoxide
(DMSO; BDH, Poole, England) at 20 mg/mL and 40 mM, respectively.

3.2. Antimicrobial Assays

The screening of antimicrobial activity of EO was performed on a panel of reference strains and
clinical isolates (obtained from the Collections of State Scientific Center of Antibiotics for antimicrobial
activity): S. aureus ATCC 29213, E. faecalis ATCC 29212, E. coli ATCC 25922, P. aeruginosa ATCC 27853,
C. parapsilosis ATCC, A. niger 37a and M. canis B-200. The MIC values were determined by the broth
micro-dilution method using Mueller Hinton broth and National Committee for Clinical Laboratory
Standards procedures.

3.3. Antikinetoplastid Assays

For antitrypanosomal activity, two species were included: T. brucei (Squib-427) and T. cruzi
(Tulahuen CL2). For T. brucei, 1.5 × 104 trypomastigotes cultured in Hirumi-9 medium supplemented
with 10% inactivated fetal calf serum (FCSi; Invitrogen, Belgium) and tested products were added in a
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96-well plate and incubated at 37 ◦C and 5% CO2 for 72 h [45]. Then, parasite growth was assessed
fluorimetrically using 20 µL of resazurin (Sigma-Aldrich, St. Louis, MO, USA) at 50 µg/mL. The plate
was incubated for an additional 24 h under the same conditions and read at 530 nm excitation and
590 nm emission in a Tecan GENios Multifunction Fluorimeter (Tecan Group, Maennedorf, Switzerland).
On the other hand, EO at different concentrations was added to 4 × 104 amastigotes in 4 × 103 MRC-5
cells using minimal essential medium (MEM; Life Technologies, Carlsbad, CA, USA) supplemented
with 20 mM l-glutamine, 16.5 mM sodium bicarbonate, and 5% of FCSi in a plate of 96-wells and
incubated for seven days at 37 ◦C and 5% CO2. In this case, parasite viability was determined
colorimetrically by adding the β-galactosidase substrate chlorophenol red β-d-galactopyranoside
(Sigma Aldrich, St. Louis, MO, USA). Finally, the absorbance was read at 540 nm after 4 h of incubation
at 37 ◦C [46].

For antileishmanial activity, the intracellular amastigote model of L. amazonensis (MHOM/77BR/

LTB0016) was used. PMM were obtained by peritoneal washing with RPMI medium (Sigma, St. Louis,
MO, USA) supplemented with antibiotics from healthy BALB/c mice and plated at 106/mL in a
24-well plate. After incubation at 37 ◦C and 5% CO2 for 2 h, non-adherent cells were removed,
and stationary-phase promastigotes were added at a 4:1 parasite/macrophage ratio in the medium
supplemented with heat-inactivated fetal bovine serum (HFBS; Sigma-Aldrich, St. Louis, MO, USA).
The plate was incubated at the same condition for 4 h, and free parasites were also removed.
Subsequently, products were added, and four serial dilutions were carried out. The plate was incubated
at the same conditions for 48 h as described above [47]. After that, the supernatant was discarded,
cells were fixed with methanol, stained with 10% Giemsa and microscopically examined (Motic, Japan)
under immersion oil at 1000×. The total parasite burden was determined according to the number
of infected macrophages and the number of amastigotes inside the macrophages after counting of
100 macrophages.

3.4. Antiproliferative and Cytotoxicity Screening on Malignant and Non-Malignant Cells

To determine the activity of the EO on malignant cells, the following cancer cell lines were used:
(i) 22Rv1 (human prostate carcinoma, ATCC®CRL-2505TM) cultivated in RPMI-1640 medium (Gibco-Life
Technologies, Paisley, UK) supplemented with RPMI-1640 Vitamins (PanEco, Moscow, Russia), (ii) MCF-7
(human breast cancer, ATCC®HTB-22) cells, as well (iii) MCF-7/Rap and (iv) MCF-7/4OHTAMO resistant
sublines (The rapamycin-resistant MCF-7/Rap and 4OH-tamoxifen-resistant MCF-7/4OHTAMO
sublines were established from the parent MCF-7 cells by long-term rapamycin or 4OH-tamoxifen
treatment, respectively), and (v) EFO-21 (ovary cystadenocarcinoma, DSMZ ACC 235) cultured in
standard 4.5 g/L glucose DMEM medium (Gibco-Life Technologies, Paisley, UK). In all cases, culture
was supplemented with 10% FCSi, antibiotics (50 µg of streptomycin/mL and 50 U of penicillin/mL) and
0.1 mg/mL sodium pyruvate (Santa Cruz Biotechnology, Dallas, TX, USA) and maintained in a NuAir
incubator (NuAir, Plymouth, MN, USA) at 37 ◦C, 5% CO2 and 80–85% humidity. Then, 100 × 103 22Rv1
cells/well, 40 × 103 MCF-7, MCF-7/Rap or MCF-7/4OHTAMO cells/well, and 110 × 103 EFO-21
cells/well were seeded into 24-well plates in 900 µL of the medium, and the plates were incubated
for 24 h at 37 ◦C and 5% CO2. Follow, different concentrations of EO were added and the plates were
incubated for 72 h under the same conditions, which the cellular viability was assessed using the
3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT; AppliChem GmbH, Darmstadt,
Germany) at 0.2 mg/mL per well [48,49]. After additional incubation of 2 h, the supernatant was
discarded, the MTT formazan purple crystals were dissolved in DMSO (350 µL per well), and the
absorbance was measured at 571 nm and 630 nm as a reference in a MultiScan reader (ThermoFisher,
Waltham, MA, USA) after the plates were gently shaken.

Cytotoxicity on non-malignant cells was also studied using three models: (i) MCF-10A (ATCC®

CRL-10317) normal breast cells cultured in DMEM/F12 (Gibco) supplemented with 5% donor horse
serum (BioSera), 20 ng/mL EGF (PanEco), 0.5 µg/mL hydrocortisone (ChemCruz), and 10 µg/mL insulin
(PanEco) at 37 ◦C, 5% CO2 and 80–85% humidity), (ii) J774A.1 (murine macrophage cell line, ATCC®,
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TIB-67™) cultivated in Dulbecco’s modified eagle medium (DMEM; Thermo Fisher Scientific, Waltham,
MA, USA) supplemented at 10% of HFBS, antibiotics and maintained on a roller culture apparatus at
5 rpm and (iii) PMM isolated with RPMI and antibiotics at the moment of use. Briefly, 50× 103 MCF-10A
cells were seeded into 24-well plates in 900µL of the medium, and then, the activity of EO-ML was tested
as described above for the case of MCF-7 breast cancer cells. In the case of J774A.1 cells, 200 µL with
105 cells/mL were distributed in the wells of the 96-well microplates, incubated at 37 ◦C, 5% CO2 for
24 h to allow attachment, and non-adherent cells were eliminated after washing. Then, fresh medium
and different concentrations of EO were added, and the plate was incubated for an additional 24 h at
the same condition. Finally, cellular viability was determined fluorometrically by the resazurin method,
as previously described [50]. In the case of PMM, macrophages were obtained by peritoneal washing
in RPMI medium and antibiotics as mentioned and seeded at 3 × 105 cells/mL. The plate was incubated
at 37 ◦C, and 5% CO2 for 2 h, and non-attached cells were removed. Then, fresh medium with HFBS
and EO at different concentrations were added to additional incubation for 48 h under the same
conditions. Cellular viability was then measured by the MTT method as described above.

3.5. In Vivo Evaluation on Cutaneous Leishmaniasis Caused by L. amazonensis

Female healthy BALB/c mice were infected in the right hind footpad with 5 × 106 stationary-phase
promastigotes of L. amazonensis by the subcutaneous route, which was identified as day 0.
Then, four weeks p.i., the animals were randomly distributed into three groups of eight mice each,
and two groups of mice were treated with EO-ML or GTM at 30 mg/kg. Products were applied every
four days to a total of five doses by the intralesional route. The third group of animals was considered
to be the control group that received no treatment. In parallel, from four weeks p.i. until 12 weeks p.i,
the animals were daily observed, body weight and the lesion size were weekly supervised using a
technical bascule (SCALTEC, Göttingen, Germany) and a caliper to measure footpad swelling and lesion
diameter, respectively. In these cases, a variation of body weight, as well as an average of lesion size
(mean of the differences between infected and uninfected footpads), was calculated with respect to
week 4 p.i. for each group. In addition, the parasite burden was determined on weeks 6 and 12 p.i.
through the culture microtitration method in 96-well plates [51]. Briefly, three animals selected
at random from each group were killed by cervical dislocation, a sample of subcutaneous tissues
from the infected area was excised, weighed, and homogenized in 4 mL of Schneider’s medium.
Then, a four-fold serial dilution was carried out in a 96-well plates in duplicate under sterile conditions
and incubated at 26 ◦C. After seven days of incubation, the plates were examined under an inverted
microscope (Olympus, Tokyo, Japan) at 400× to select the last dilution that contained at least one mobile
parasite, which was defined as the final titer. The parasite burden was calculated as the geometric
mean of reciprocal titers/weight of tissue sample multiplied by 400. All of the experimental procedures
involving animals were conducted in accordance with the Guide for the Care and Use of Laboratory
Animals, Eighth Edition, which was approved by the Ethics Committee (CEI-IPK 14-12), Havana, Cuba.

3.6. Statistical Analysis

For in vitro assays, the IC50 for each product on each system was obtained from dose-response
curves, results were expressed as mean ± SD of three replicates, and comparisons among values were
performed using Mann-Whitney test with Statistica for Windows Program (Version 10, StatSoft, Inc.,
Tulsa, OK, USA). For in vivo experiments, lesion evolution and parasite load were processed by the
Variance Analysis Test (ANOVA), followed by a Post Hoc Test (LDS test or planned comparison). In all
cases, statistically significant differences were identified for p < 0.05.

4. Conclusions

To the best of our knowledge, this is the first report on antiproliferative potentialities of EO-ML
growing in Cuba, confirming the medical value of the plant. However, the inability of 1,8-cineole to
demonstrate a strong antikinetoplastid activity reveals that other ingredients or a possible synergism
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are involved in the activity of the EO. In particular, the leishmanicidal effect of EO-ML was confirmed
in vivo using a murine model of CL, which the tested product was able to significantly reduce the
lesion size and parasite burden in infected tissues similar to the reference drug.

In addition, our results open new perspectives to further investigations to clarify: (i) Therapeutic
value of EO-ML for African trypanosomiasis on relevant T. brucei rhodesiense and T. brucei gambiense
infectious agents through in vitro and in vivo models, (ii) the possibility of the application of this oil as
alternative to traditional treatment in cancer-resistant cells, (iii) potentialities of a combination of oil
constituents, and (iv) mechanism of action of EO-ML, as well as the pure compounds. In conclusion,
the results reported here represent an advancement in studies on EOs as drug candidates and might
promote preclinical investigations on oil standardization.
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