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Strongly direction‑dependent 
magnetoplasmons in mixed 
Faraday–Voigt configurations
Afshin Moradi1* & Martijn Wubs2,3,4*

The electrostatic theory of surface magnetoplasmons on a semi-infinite magnetized electron gas 
is generalized to mixed Faraday–Voigt configurations. We analyze a mixed Faraday–Voigt type of 
electrostatic surface waves that is strongly direction-dependent, and may be realized on narrow-
gap semiconductors in the THz regime. A general expression for the dispersion relation is presented, 
with its dependence on the magnitude and orientation of the applied magnetic field. Remarkably, 
the group velocity is always perpendicular to the phase velocity. Both velocity and energy relations 
of the found magnetoplasmons are discussed in detail. In the appropriate limits the known surface 
magnetoplasmons in the higher-symmetry Faraday and Voigt configurations are recovered.

It is well-known that a static magnetic field causes various important changes in the electromagnetic behavior 
of different media1–3. Also, since the early works by Chiu and Quinn4,5, it is known that on the surface of a semi-
infinite magnetized cold electron gas, a surface magnetoplasmon (SMP) can oscillate at constant frequencies 
only. This infinite flat-band dispersion relation holds in the electrostatic approximation6, and as long as spatial 
dispersion (a.k.a. “ nonlocal response”) can be neglected7,8.

In particular, there are two configurations for which this constant SMP frequency is given by 
ω =

√

ω2
p + ω2

c/
√
29, where ωp =

√

e2n0/ε0me  (e and me are the elementary charge and the electron mass, 
respectively, ε0 is the electric permittivity of free space and n0 is the density profile of free electrons) is the electron 
plasma frequency and ωc = eB0/me is the electron cyclotron frequency. The first of these configurations is the 
Faraday configuration, when the applied magnetic field is parallel both to the surface and to the direction of 
propagation of the wave (see sketch in Fig. 1). The other is the so-called perpendicular configuration, when the 
applied out-of-plane magnetic field points perpendicularly both to the surface and to the propagation direction 
of the wave (not shown in Fig. 1). Interestingly, when the SMP in the Faraday configuration has strong surface-
wave characteristics, then the SMP in the perpendicular configuration acts like a bulk wave, and vice versa10. In 
this sense, these Faraday and perpendicular configurations are complementary.

The Voigt configuration is yet another high-symmetry configuration for which the SMP frequency depends 
on the magnetic field but again does not depend on the wavevector. In the Voigt configuration, the surface wave 
propagates perpendicularly to the (in-plane) external magnetic field that is parallel to the interface. Then the 
frequency is given by ωV± =

(√

ω2
c + 2ω2

p ± ωc

)

/2. Here the ± solutions correspond to the Cartesian coordinate 
system shown in Fig. 1: for a static magnetic field B0 fixed along the −ex (blue vectors), we have the + solution 
and the SMP frequency is blueshifted, while for a static magnetic field B0 fixed along the +ex (red vectors) the 
frequency of SMP is redshifted. Clearly, in the limit of vanishing magnetic fields, the SMP frequencies reduce to 
ωp/

√
2 in both configurations, as expected. Note that surface waves with this property, i.e., ω(+B0) �= ω(−B0) , 

are said to be nonreciprocal10,11.
Recently, Silveirinha et al.12 and Gangaraj et al.13 studied the propagation of SMPs on a semi-infinite magnet-

ized electron gas when the direction of propagation is oblique to the static magnetic field. In the electrostatic 
approximation they found that the frequency of the SMPs does not depend on the magnitude of the wavevector, 
as for the Voigt and Faraday configurations. But now in the oblique configuration the SMP frequency does depend 
on the angle of the wavevector with respect to the magnetic field direction12. Also, more recently, in the presence 
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of a weakly static magnetic field gradient, one of us found dispersive backward and forward electrostatic waves 
on a cold magnetized electron gas half-space in the Faraday configuration14.

Here we study the SMPs on a semi-infinite magnetized electron gas and in this oblique configuration (i.e., a 
mixed Faraday–Voigt configuration) in more detail. As an interesting result, we show that hybrid electrostatic 
waves exist in such a structure due to differences between the symmetry of the media in contact, just like the 
Dyakonov surface waves15–17. Note that these hybrid surface waves do not exist in a semi-infinite gas plasma or a 
semi-infinite electron plasma in a metal without a magnetic field, and may have application in signal processing 
with electrostatic or slow electric waves that depend strongly on the direction of the bias magnetic field.

Basic equations for the surface magnetoplasmons
Here we derive conditions that SMPs in the magnetized electron gas-air interface should satisfy, while in the 
next section we study the properties of these SMPs. Consider a semi-infinite magnetized electron gas occupying 
the half-space z < 0 in Cartesian coordinates, as shown in Fig. 1. The plane z = 0 is the electron gas-insulator 
interface. Without loss of generality, we assume that the external magnetic-field vector B0 = ±B0ex points paral-
lel to the x-axis (plus and minus signs refer to B0 in the positive- and negative-x directions). We will investigate 
the propagation of a slow electric surface wave ( E ≈ −∇� ) whose wavevector k points along the interface at an 
angle θ = arctan(ky/kx) (or 180◦ − θ ) with the magnetic field B0 = ±B0ex.

The electric potential may be represented in the form

where ω is the  frequency of the wave and kx and ky are wavenumbers in the x- and y-directions, respectively. For 
the present geometry and the magnetic field B0 = +B0ex , the relative dielectric tensor of the system has the form

with tensor elements given by

(1)�(x, y, z, t) = �̃(z) exp
[

i
(

kxx + kyy − ωt
)]

,

(2)ε(ω) =
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Figure 1.   Sketch of a semi-infinite magnetized electron gas with static magnetic field B0 parallel to the surface. 
Here we choose the direction of B0 fixed along the +ex (red vectors) or −ex (blue vectors). Note that ex is the 
unit vector along the x-axis. Also, k is the wavevector of the propagating surface wave, and θ (or 180◦ − θ ) is 
the angle between k and B0 . The special cases θ = 0 (or 180◦ ) and θ = 90◦ are called the Faraday and Voigt 
configurations, respectively. Here we study magnetoplasmons for the general case of arbitrary θ , which we call a 
mixed Faraday–Voigt configuration. Note that in the Voigt configuration the magnetoplasmons travel in the +ey 
direction. The electron gas is bounded from above by a semi-infinite insulator at z = 0.
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where γ  is the damping constant. As mentioned in12,13, narrow-gap semiconductors such as InSb (with 
ωp/2π ≈ 4.9 THz, γ /2π ≈ 0.5 THz and 0.25ωp ≤ ωc ≤ ωp for a bias magnetic field in the range of 1 to 4 Tesla 
have an optical response analogous to Eq. (2), where for simplicity the contribution of bound electrons to the 
permittivity response of InSb is disregarded, and its static (high-frequency) permittivity is taken identical to 
unity. Also, for our purposes, the limit of zero damping, i.e., γ → 0 is sufficient. Small-size limits where non-
local response (neglected here) would start to play a role in semiconductor plasmonics including in InSb are 
discussed in Refs.18,19.

Assuming that the electron gas is fully described by its dielectric tensor Eq. (2), it follows from Max-
well’s equations that the displacement field is divergence-free ( ∇ ·D = 0 ), and by substitution of Eq. (1) that 
∇ · (ε · ∇�) = 0 , from which we find

where

The analogous equation for the wave in the insulator is

with k =
√

k2x + k2y  . Therefore, the combined solution of Eqs. (3) and (5) has the familiar form for a surface wave

where �0 is the wave amplitude. For the present system, the appropriate boundary condition at the separation 
surface z = 0 is

where subscripts 1 and 2 refer to outside and inside the electron gas, respectively, ε1 is the relative dielectric 
constant of the insulator medium, and plus and minus signs refer to B0 in the positive- and negative-x direc-
tions, respectively.

Dispersion relation and group velocities
On applying the mentioned boundary condition (7) at z = 0 , we find

which leads to a relation between the wavevector components kx and ky and the frequency ω,

with the frequency-dependent function εFV±(ω) to be specified shortly. The dispersion relation Eq. (9) is remark-
able in that it does not depend on the magnitude k of the wavevector, but only on the fraction ky/kx of the 
wavevector components kx,y . In other words, the problem has a cylindrical symmetry and in agreement with 
Ref.12 we will find that the SMP energies will only depend on the angle θ . Yet we are interested in propagation 
along and perpendicular to the magnetic field and therefore will stick to Cartesian coordinates in most of what 
follows.

The frequency-dependent function εFV±(ω) of Eq. (9) has the form

εxx =1−
ω2
p

ω(ω + iγ )
,

εyy = εzz =1−
ω2
p(ω + iγ )

ω
[

(ω + iγ )2 − ω2
c

] ,

εyz = −εzy =
iωcω

2
p

ω
[

(ω + iγ )2 − ω2
c

] ,

(3)
(

d2

dz2
− κ2

)

�̃(z) = 0 , for z ≤ 0,

(4)κ =

√

εxxk
2
x + εyyk

2
y

εzz
.

(5)
(

d2

dz2
− k2

)

�̃(z) = 0 , for z ≥ 0,

(6)�̃(z) = �0

{

exp (−kz) , z ≥ 0 ,
exp (+κz) , z ≤ 0 ,

(7)ε1
∂�1

∂z

∣

∣

∣

∣

z=0

= ±εzy
∂�2

∂y

∣

∣

∣

∣
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∣

∣

∣
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,

(8)ε1k + εzzκ ± iεzyky = 0 ,

(9)
k2y

k2x
= εFV±(ω) ,
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It is clear that the frequency dependence of εFV±(ω) originates fully from the assumed frequency dispersion of 
the dielectric functions.

We will now look for propagating-wave solutions in the x- and y-directions, so that the right-hand side of 
Eq. (9) must be positive-valued. Working with the reduced variables ω/ωp and ωc/ωp , we depict in Fig. 2 the 
variation of (a) εFV− , (b) εFV+ , (c) εzz , and (d) εxx , with respect to the dimensionless frequency ω/ωp , when 
ε1 = 1 and ωc = 0.5ωp . From Fig. 2a,b it then follows that only the lower-branch solution εFV−(ω) can lead to 
propagating-wave solutions in Eq. (9), and only in a finite range of frequencies. Furthermore, for having a surface 
wave, εzz in panel (c) must be negative. There is indeed a region below and above the SMP frequencies in the Voigt 
configuration, i.e., ωV− = 0.5ωp and ωV+ = ωp , where εFV− is positive and εzz is negative, and it is there that the 
conditions for propagating SMPs are satisfied. In this region, εxx is also negative, as shown in panel (d). Note that 
the existence of these SMPs is due to differences between the anisotropy of the two media, similar to Dyakonov 
surface waves15–17. However, Dyakonov surface waves are a type of electromagnetic waves localized at an interface 
between two transparent media: an isotropic medium and a uniaxial crystal. In contrast to the Dyakonov surface 
waves, here SMPs are a type of electrostatic (or, more accurately, quasi-electrostatic or slow electric) waves local-
ized at an interface between an isotropic medium and an electric-gyrotropic electron plasma20.

In Fig. 3a we show the variation of ω/ωp with respect to kx/ky , for a positive constant value of ky , while in 
panel (b) we show the same as a function of ky/kx , for a positive constant value of kx . Two curves appear in each 
panel in agreement with B0 = ±B0ex . Note that for general dispersion relations it would be important to state 
the value of the wavevector k = (k2x + k2y)

1/2 that is kept constant, but not so for our dispersion relation where 
the dependence is only on the fraction ky/kx (or kx/ky ). The panels in Fig. 3 give complementary information. 
Alternatively, one could plot the frequencies as a function of the angle θ (not shown).

If we consider ky to be fixed and positive and take the symbol “ + ” in Eq. (8) (i.e., B0 = +B0ex ), then for 
kx > 0 ( kx < 0 ) there is a SMP with vgx > 0 ( vgx < 0 ) in the region below the line ω = ωF =

√

ω2
p + ω2

c/
√
2 

and above the line ω = ωV− (see red curve in panel (a) of Fig. 3). For vgx > 0 , we note that kx and ky are both 
positive, while for vgx < 0 , we have 

(

−kx ,+ky
)

.
If we consider ky to be fixed and positive and take the symbol “ −” in Eq. (8) (i.e., B0 = −B0ex ), then for 

kx > 0 ( kx < 0 ) there is a SMP with vgx < 0 ( vgx > 0 ) in the region below the line ω = ωV+ and above the line 
ω = ωF (blue curve in panel (a) of Fig. 3). Again, for vgx < 0 one can find that kx , ky > 0 , while for vgx > 0 , we 
obtain 

(

−kx ,+ky
)

.
If we consider kx to be fixed with positive sign and take the symbol “ + ” in Eq. (8) (i.e., B0 = +B0ex ), then 

there is a SMP with vgy < 0 ( vgy > 0 ) in the region below the line ω = ωF and above the line ω = ωV− (see red 
curve in panel (b) of Fig. 3) for ky > 0 ( ky < 0 ). For vgy < 0 , we have 

(

+kx ,+ky
)

 , while 
(

+kx ,−ky
)

 yields vgy > 0.
Finally, if we consider kx to be fixed with positive sign and take the symbol “ −” in Eq. (8) (i.e., B0 = −B0ex ), 

then there is a SMP with vgy > 0 ( vgy < 0 ) in the region below the line ω = ωV+ and above the line ω = ωF (blue 
curve in panel (b) of Fig. 3). For 

(

+kx ,+ky
)

 we see vgy > 0 , while it is clear that vgy is negative for 
(

+kx ,−ky
)

 .
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Figure 2.   Variation of (a) εFV− , (b) εFV+ , (c) εzz , and (d) εxx , with respect to the dimensionless frequency 
ω/ωp , when ε1 = 1 , and ωc = 0.5ωp.
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To familiarize ourselves with these SMP branches at arbitrary in-plane propagation directions, let us first 
check that they reduce to known SMPs in the limiting cases when kx = 0 (Voigt) or ky = 0 (Faraday). In the 
general case, there are two SMP branches, as both Fig. 3a,b illustrate. For kx = 0 in Fig. 3a the points in the two 
branches indeed correspond to the two solutions of the Voigt configuration, while for ky = 0 in panel 3b the two 
branches indeed reduce to a single point that agrees with the single SMP of the Faraday configuration.

To further examine the conditions for the validity of these surface modes, we calculate the components of the 
group velocity of the hybrid waves by using Eq. (8). We differentiate the equation as it stands, first with respect to 
kx while keeping ky constant, and then with respect to ky keeping kx constant. In doing so, we have to remember 
that ω is a function of both kx and ky . We find the group-velocity components

which are both real-valued since we neglected damping in our model dielectric tensor. To better understand the 
behavior of the SMPs, we show the variation of these group-velocity components with respect to ω/ωp in Fig. 4, 
using the same parameter values as for Fig. 2 (solid lines), when kx and ky are positive. The dashed lines show the 
result for the case ωc = 0.7ωp . Panel 4a shows the behavior of the dimensionless variable vgxky/ωp and panel (b) 
the variation of vgykx/ωp . Both group-velocity components change sign at ω = ωF , but in a very different fashion: 
vgx goes through zero continuously, whereas vgy makes a discontinous jump.

In an anisotropic medium the direction of group (signal) propagation differs in general from the direction of 
phase propagation. Indeed, the phase velocity points along the wavevector k = kxex + kyey , whereas the energy 
propagates in the direction of the Poynting vector and the signal velocity. The magnitude of the phase velocity is 
given by vph = ω/k , and the phase-velocity vector makes an angle θph = θ = arctan

(

ky/kx
)

 with B0 = +B0ex (or 
the x-axis). But what is the direction of the group velocity vector ∇kω? If we define θg to be the angle between the 
group-velocity and the magnetic-field directions, then we can obtain tan(θg) as vgy/vgx , i.e. by dividing Eq. (11) 
by Eq. (10). After using Eqs. (4) and (8), we find that

The phase and group velocities of the quasi-electrostatic SMPs therefore have the remarkable property that 
they are perpendicular to each other: energy flows in the direction perpendicular to the phase propagation. This 
property is shown in Fig. 5 and reflects the dispersion relation (8) for which ω(k, θ) = ω(θ) : the group veloc-
ity in the k-direction vanishes identically irrespective of the angle between k and the magnetic field, while the 
group velocity perpendicular to k is finite. In optics the situation of group velocities being exactly opposite to 
their phase velocities is well-known to occur for negative-index materials21–23. Perpendicular group and phase 
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Figure 3.   Dispersion curves of SMPs at a flat magnetized electron gas-vacuum interface, as obtained from 
Eq. (9) for ωc = 0.5ωp . (a): ky is constant (positive). (b): kx is constant (positive). In both panels, we map out the 
two-dimensional band structure of the magnetoplasmons, making use of the fact that by Eq. (9) the frequency 
only depends on the fraction kx/ky rather than on both wavevectors separately. This special property makes the 
band structure effectively one-dimensional.
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velocities on the other hand for all wavevectors as found here are less well-known in optics. However, in fluid 
dynamics there is an interesting analogy with so-called “ internal waves” (or “(internal) gravity waves”). These 
are well-known to have perpendicular group and phase velocities whatever their angle with the water surface, 
see for example Ref.24.

We now turn to the effect of the magnetic-field strength through the cyclotron frequency ωc . Again, Fig. 6 
is a plot of ω/ωp versus (a) kx/ky and (b) ky/kx . Here the different curves refer to ωc = 0.2ωp (solid lines), 
ωc = 0.4ωp (dashed lines), and ωc = 0.6ωp (dotted lines). One can see that changing the parameter ωc has a 
strong effect on the dispersion curve of the SMPs. For weaker magnetic fields, the dispersion curves are flatter 
and group velocities smaller. Thus group velocities of the SMPs can be controlled with the static magnetic field 
as the control parameter, see Fig. 4. For vanishing magnetic fields, the group velocities will then also vanish. This 
limit will be less relevant in practice, because neglecting damping will then no longer be a good approximation. 
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Figure 4.   Group (energy) velocity curves of SMPs at a flat magnetized electron gas-vacuum interface, as 
obtained from Eqs. (10) and (11), when kx and ky are positive. (a) Variation of vx (i.e., vgx or vex ), when ky is 
constant. (b) Variation of vy (i.e., vgy or vey ), when kx is constant. Here the different curves refer to ωc = 0.5ωp 
(solid lines), and ωc = 0.7ωp (dashed lines).
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But the tunability (via the magnetic field) between different finite group velocities is interesting, as this controls 
the speed of pulses of SMPs.

Let us now analyze the effect of the magnetic-feld strength in more detail. From panel 6a, it is clear that for the 
x-forward mode (when kx , ky > 0 ), increasing ωc redshifts the frequency of the mode for low values of kx/ky and 
blueshifts the mode frequency for high values of kx/ky . From the same panel (a), it follows that for the x-backward 
mode and kx , ky > 0 , increasing ωc blueshifts the SMP frequency. Finally, as mentioned before, one constant-
frequency solution ωF exists in the Faraday geometry, while two solutions ωV± exist in the Voigt geometry. As 
can be seen in panel 6a, in the limit kx/ky → 0 , we indeed obtain the two frequencies of the Voigt geometry, 
i.e., ω = ωV− , when we take +B0ex ; and ω = ωV+ , when we consider the −B0ex solution. As mentioned in 
“Introduction” section, surface waves with this property, i.e., ω(+B0) �= ω(−B0) , are said to be nonreciprocal. 
It is easy to find the origin of nonreciprocal behavior of the present surface waves. If +B0 is changed to −B0 , then 
the boundary condition is changed since εzx(+B0) = −εzx(−B0) . We note that if the applied magnetic field B0 
is unchanged but the wavenumber ky is reversed in direction, this causes an equivalent change in the boundary 
condition since the ∂/∂y term will also change sign and the boundary condition is changed14. Also, from the 
limit ky/kx → 0 in Fig. 6b, we indeed find back the result for the Faraday geometry, i.e., ω = ωF . Waves with 
this property, i.e., ω(+B0) = ω(−B0) , are said to be reciprocal.

Power flow of a surface magnetoplasmon
In this section, we calculate the x- and y-components of the power flow of the SMPs, i.e. along and perpendicular 
to the magnetic field, respectively. Under the electrostatic approximation6,20,25, the power flow associated with 
the SMPs of a semi-infinite magnetized electron gas is given by

where these vectors in the two media have components in the x-, y- and z-directions. The cycle-averaged x- and 
y-components are

in the complex-number representation, where ∗ denotes complex conjugation, and Re denotes taking the real 
part. Note that εxx and εyy are real since we neglected damping in our model. After substitution of Eq. (6) into 
Eqs. (14) and (15) and using Eq. (1), we obtain
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Figure 6.   Dispersion curve of SMPs at a flat magnetized electron gas-vacuum interface, as obtained from 
Eq. (9), when (a) ky is positive constant and (b) kx is positive constant. Here the different curves correspond to 
ωc = 0.2ωp (solid lines), ωc = 0.4ωp (dashed lines), and ωc = 0.6ωp (dotted lines).
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We note that the distributions in Eqs. (16) and (17) are discontinuous at the interface z = 0 . The total power 
flow densities (per unit width), associated with the SMPs can be determined by an integration over z = 0 . We find

where �· · · � ≡
∫ +∞
−∞ · · · dz . Again, we remind the reader that Both Sy in Eq. (17) and 〈Sy〉 in Eq. (19) are 

real-valued.
In Fig. 7, we calculate the normalized profiles of Sx(z) of SMP modes of a flat magnetized electron gas-vacuum 

interface, when kx/ky = 2 , kx > 0 , and ky is positive constant, corresponding to the labeled points in Fig. 3a. It 
can be seen that power flow densities are largest at the boundary, and their amplitudes decay exponentially with 
increasing distance into each medium from the interface. Comparing the curve of case B0 = −B0ex in Fig. 3a 
by the result in Fig. 7a, we conclude that the x-backward SMP mode in the region below the line ω = ωV+ and 
above the line ω = ωF in panel (a) of Fig. 3 (blue curve) is an acceptable mode with electric potential shown by 
Eq. (1). For the case B0 = +B0ex in the region below the line ω = ωF and above the line ω = ωV− of panel (a) 
of Fig. 3 (red curve), the power flow in the EG region occurs in the +x-direction, while in the vacuum region, 
the power flow occurs in the −x-direction, i.e., opposite to the direction of phase propagation. Also, the total 
power flow density (per unit width) is positive for the x-forward SMP mode. This result is in agreement with the 
behavior of dispersion curve of the x-forward SMP, shown in Fig. 3a and thus we have again an acceptable mode.

In Fig. 8, by using Eq. (17), we calculate the normalized profiles of Sy(z) of SMP modes of a flat magnetized 
electron gas-vacuum interface, when ky/kx = 0.5 , ky > 0 , and kx is positive constant, corresponding to the 
labeled points in Fig. 3b. Here, one can see that for the y-forward SMP mode (panel (a) of Fig. 8), the power 
flow in the EG region occurs in the +y-direction, while in the vacuum region, the power flow occurs in the −y
-direction. Also, we find that the total power flow density (per unit width) is positive for the y-forward mode. 
This result is in agreement with the behavior of dispersion curve of y-forward SMP modes in Fig. 3b for the case 
B0 = −B0ex . Furthermore, comparing the lower curve in Fig. 3b for the case B0 = +B0ex by the result in Fig. 8b, 
we conclude that the y-backward SMP mode in the region below the line ω = ωF and above the line ω = ωV− 
in panel (b) of Fig. 3 (red curve) is also an acceptable mode with electric potential shown by Eq. (1). Finally, it is 
clear from Figs. 7 and 8 that the power in the upper and lower half spaces flows in different directions, but not 
for Sy in the case B0 = +B0ex . Actually, for the y-backward SMP mode the power flow in both media occurs in 
the −x-direction.

Energy distribution and energy velocities
Now, we consider the energy distribution in the transverse direction. For the cycle-averaged energy distribution 
associated with the SMPs of a semi-infinite electron gas, we have, in the two media

(16)Sx = −
1

2
ε0ωkx�

2
0

{

ε1e
−2kz , z > 0 ,

εxxe
+2κz , z < 0 ,

(17)Sy = −
1

2
ε0ωky�

2
0







ε1e
−2kz , z > 0 ,

�

εyy ∓ iεyz
κ

ky

�

e+2κz , z < 0 ,

(18)�Sx� = −
1

4
ε0ωkx

[ε1

k
+

εxx

κ

]

�2
0 ,

(19)
〈

Sy
〉

= −
1

4
ε0ωky

[

ε1

k
+

1

κ

(

εyy ∓ iεyz
κ

ky

)]

�2
0 ,

2 1 0 1 2
1.5

1.0

0.5

0.0

0.5

1.0

1.5

S

2 1 0 1 2
1.5

1.0

0.5

0.0

0.5

1.0

1.5

S

(a) (b)B0e B0e

Figure 7.   Normalized profile Sx(z) of SMP modes of a flat magnetized electron gas-vacuum interface, as 
obtained from Eq. (16) when kx/ky = 2 , kx > 0 , and ky is a positive constant, corresponding to the labeled 
points in Fig. 3a. (a) B0 = −B0ex . (b) B0 = +B0ex.
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where losses are neglected. After substitution Eq. (6) into (20), we obtain

in the complex-number representation, where

From Eq. (21) we find that the contributions to the energy density of the two half spaces are both positive. 
The total energy density associated with the SMPs is again determined by integration over the out-of-plane 
coordinate z, the energy per unit surface area being

In general, the energy velocity of the SMPs is given as the ratio of the total power flow density (per unit 
width) and the total energy density (per unit area). For our model of the SMPs, this leads to the energy-velocity 
components

The expression on the right-hand sides of Eqs. (23) and (24) are precisely those obtained from the usual 
definition of the group velocity of SMPs in the absence of damping, i.e., Eqs. (10) and (11), as were shown in 
Fig. 4. This means that the net power flow is in the direction of the group velocity. Let us note that, by contrast, 
in resonant multiply scattering media, the group and transport velocities in general will differ26.
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Figure 8.   Normalized profile Sy(z) of SMP modes of a flat magnetized electron gas-vacuum interface, as 
obtained from Eq. (17) when ky/kx = 0.5 , ky > 0 , and kx has a positive constant value, corresponding to the 
labeled points in Fig. 3b. (a) B0 = −B0ex . (b) B0 = +B0ex.
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Conclusions
In summary, we have studied the propagation of SMPs on a semi-infinite magnetized electron gas in the elec-
trostatic approximation by consideration of a mixed Faraday–Voigt configuration. We have shown that such a 
structure permits propagation of mixed Faraday–Voigt electrostatic SMPs that are strongly direction-dependent 
and do not exist in a semi-infinite gas plasma or a semi-infinite electron plasma in a metal without a magnetic 
field. We have studied the dispersion relation, group velocity and energy relations of the found SMPs in detail. In 
particular, we found that the group velocities of the SMPs can be controlled by the applied static magnetic field 
and that the phase and group velocities are always perpendicular for these SMPs. Furthermore, we analyzed situ-
ations in which power will flow in different directions in the upper and lower half spaces, while we also discussed 
cases where in the upper and lower half spaces the power will flow in the same directions.

Data availability
The data that supports the findings of this study are available within the article.
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