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Abstract: There have been many studies on the development biodegradable films using starch
isolated from various food sources as a substitute for synthetic plastic packaging films. In this study,
starch was extracted from ginkgo (Ginkgo biloba) nuts, which were mainly discarded and considered
an environment hazard. The prepared starch (GBS) was then used for the preparation of antioxidant
films by incorporating various amounts of cinnamon (Cinnamomum zeylanicum) essential oil (CZEO),
which provides antioxidant activity. The prepared GBS films with CZEO were characterized by
measuring physical, optical, and thermal properties, along with antioxidant activity (ABTS, DPPH,
and FRAP) measurements. With the increasing amount of CZEO, the flexibility and antioxidant
activities of the GBS films increased proportionally, whereas the tensile strength of the films decreased.
The added CZEO also increased the water vapor permeability of the GBS films, and the microstructure
of the GBS films was homogeneous overall. Therefore, the obtained results indicate that the developed
GBS films containing CZEO are applicable as antioxidant food packaging.

Keywords: antioxidant activity; biodegradable film; gingko nut starch

1. Introduction

The use of synthetic plastic packaging materials, which are not easily decomposed and
have serious impact on environmental pollution, is expected to reach about 1 billion tons
by 2021 [1]. As an alternative, biodegradable packaging materials have been developed
to reduce environmental problems after the use of synthetic plastic packaging materials.
Biodegradable packaging materials are mainly prepared from natural biopolymers, such
as starch, gelatin, pectin, and cellulose [2]. Among them, starch is abundant in natural
polymers, and many studies on starch films for food packaging have been conducted [3–5].
Moreover, there have been several studies on starch films developed from many different
sources, including unconventional starch sources [6–8].

Ginkgo (Ginkgo biloba) is grown as a street tree due to its strong adaptability to urban
conditions and high tolerance to stress in many countries, such as Korea, Poland, Japan,
China, and Europe [9]. Male ginkgo trees are recommended as a street tree, but female
ginkgo trees can also grow due to difficulty in sex determination and the production of a
large amount of ginkgo nuts every year [10].

Ginkgo nuts are collected and used for food in Southeast Asia, including in Korea
and China, but they have ginkgotoxin (4’-O-methylpyridoxine), which leads to abdominal
pain and clonic convulsions [11]. Thus, despite the health-improving effects of ginkgo nuts,
their intake is limited in some countries [12]. In addition, ginkgo nuts are easily crushed
and produce a disgusting smell that is generated by butanoic and nucleic acids from the
outer seed coat [13]. However, ginkgo nuts are a potential resource for starch owing to
their high starch content. Ginkgo nuts consist of 35% carbohydrate, 6% protein, and 2%
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fat, and the starch content accounts for up to 70% of dry weight [14,15]. Although many
studies have been conducted on starch films for food packaging, there has been no study
on ginkgo nut starch (GBS) films. Therefore, ginkgo nuts, which are considered waste and
an environmental hazard, were chosen as a novel starch film source in this study.

Cinnamon (Cinnamomum zeylanicum) essential oil (CZEO) has exhibited antioxidant
and antifungal properties [16]. A biodegradable film with antibacterial and antioxidant
capabilities was produced by using pectin and cinnamon leaf essential oil [17]. Antioxidant
ability was also shown in biodegradable films with chitosan and cinnamon leaf essential
oil [18]. The main components of CZEO are eugenol and trans-cinnamaldehyde, which
have antioxidant activity [19]. In this study, we prepared GBS films containing CZEO to
develop a novel starch film with antioxidant activity, and their physicochemical properties
were investigated. Overall, the developed GBS films were found to be applicable as an
antioxidant packaging film.

2. Results and Discussion
2.1. Mechanical Properties

The mechanical properties of films are crucial criteria for choosing food packaging
material. The optimum concentration for the preparation of GBS films was starch 2.5%
(w/v) and sorbitol (40% of GBS, w/w) as a plasticizer, based on preliminary experiments.
Table 1 shows that the thickness of GBS films had the tendency to increase slightly as
the amount of CZEO increased, suggesting that the aggregation of CZEO droplets had
little effect on the film thickness [20]. Compared with foxtail millet starch film [21], GBS-
C showed higher TS (11.91 MPa) and lower EB (56.81%). The TS and EB of the foxtail
millet starch film were 6.78 MPa and 66.26%, respectively. The TS of GBS-0.1 showed no
significant difference from that of GBS-C. On the contrary, for the GBS-0.3 and GBS-0.5, TS
decreased from 11.91 MPa to 7.38 and 4.89 MPa. This decrease is a common phenomenon
owing to the incorporation of essential oils, which causes an increase in the flexibility and
a decrease in the rigidity of films [5,20,22]. In contrast with TS, EB tended to increase as the
amount of CZEO increased. These results might infer that starch molecules interact with
essential oil molecules [5], resulting in an increase in the flexibility of GBS films. It should
also be noted that the EB value of the GBS films increased over 100% for GBS-0.3 (103.56%)
and GBS-0.5 (115.01%), resulting in EB values that are better than those of other starch
films. The EB value was 99.48% for the foxtail millet starch film with 1.0% clove oil [21] and
26.50% for the corn and wheat starch film with the same concentration of lemon essential
oil [20]. These results indicate that GBS–CZEO film can be a biodegradable film material
with good flexibility. YM refers to the modulus of elasticity, and the higher the YM value,
the higher the stiffness of films [23]. The YM of GBS films decreased with the addition of
CZEO in the films, suggesting that the addition of CZEO increased flexibility.

Table 1. Physical properties of GBS films containing CZEO.

CZEO (%) Thickness
(mm)

TS
(MPa)

EB
(%)

Young’s Modulus
(MPa)

WVP
(10−9 g /m s Pa)

0 0.056 ± 0.005 a 11.91 ± 0.94 a 56.81 ± 2.97 d 29.58 ± 5.90 a 2.18 ± 0.13 c

0.1 0.056 ± 0.005 a 10.66 ± 0.96 a 73.67 ± 2.39 c 20.21 ± 1.93 b 2.66 ± 0.05 b

0.3 0.061 ± 0.004 a 7.38 ± 0.97 b 103.56 ± 1.18 b 10.87 ± 1.97 c 2.84 ± 0.05 a

0.5 0.062 ± 0.004 a 4.89 ± 0.71 c 115.01 ± 3.95 a 6.63 ± 1.52 c 2.85 ± 0.10 a

Mean ± SD, n = 4. a–d Any means in the same column followed by different superscripts differ significantly (p < 0.05) by Duncan’s multiple
range test.

WVP is an important parameter of a film’s physical properties [19]. Measurement of
WVP can be helpful in understanding the intermolecular interactions in biodegradable
films [24]. In this study, the WVP of GBS films increased as CZEO content increased,
except for the films of GBS-0.3 and GBS-0.5, where there was no significant difference. The
obtained WVP value of GBS-0.5 was the highest (2.85 × 10−9 g/m s Pa) and that of GBS-C
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was the lowest (2.18 × 10−9 g/m s Pa). In general, WVP tends to decrease due to increased
hydrophobicity as the amount of added essential oil (EO) increases [25]. However, in the
case of GBS films, WVP tended to increase as CZEO was added to the film. It has been
known that water vapor transfer is affected by the microstructure of films as well as by
the balance of hydrophilicity and hydrophobicity [26]. The increase in WVP is probably
owing to the micropores formed during film manufacturing, especially during the drying
progress [5]. It also could be due to the loosened film matrix by the addition of CZEO,
which showed the decreased TS of the films, where water molecules were transferred
more easily.

2.2. Optical Properties and Microstructure

Optical properties of films are important characteristics that influence consumer
preference. Table 2 shows that the GBS-C was transparent and an almost colorless very
light yellow. The addition of CZEO resulted in decreasing L and a values of the films,
whereas b value increased from 1.95 ± 0.02 to 2.40 ± 0.05 for GBS-0.5, exhibiting more
yellow color. In addition, the total color difference (∆E) of the GBS films increased according
to the various amounts of CZEO. Because phenolic compounds present in CZEO have
photosorption, the color change in the films containing CZEO might occur [27]. Moreover,
the reason for the increased yellowness of the films was due to the color of eugenol, the
major component of CZEO [28]. Similarly, cassava starch films containing cinnamon
essential oil became more yellow due to incorporation of coloring components in the
essential oil [29].

Table 2. Optical properties of GBS films containing CZEO.

CZEO (%) L* a* b* ∆E Opacity
(Abs/mm)

0 96.76 ± 0.02 a −0.34 ± 0.03 a 1.95 ± 0.02 c - 0.28 ± 0.01 a

0.1 96.45 ± 0.12 b −0.41 ± 0.04 b 2.25 ± 0.05 b 0.37 ± 0.11 b 0.26 ± 0.02 b

0.3 96.04 ± 0.08 c −0.43 ± 0.05 b 2.39 ± 0.06 a 0.80 ± 0.08 a 0.20 ± 0.02 c

0.5 96.00 ± 0.06 c −0.49 ± 0.03 c 2.40 ± 0.05 a 0.84 ± 0.06 a 0.15 ± 0.02 d

Mean ± SD, n = 5. a–d Any means in the same column followed by different superscripts differ significantly (p < 0.05) by Duncan’s multiple
range test.

Low opacity of films makes the appearance of food distinctly visible. When CZEO
content increased, the opacity decreased, and the GBS-0.5 (0.15 ± 0.02 Abs/mm) was the
most transparent. Similarly, it has been reported that droplets of essential oils penetrate
into starch molecules, prevent the generation of the film matrix, and form open structure,
resulting in decreased opacity [30]. Therefore, molecular interactions between essential
oil and water molecules affect the refractive index of a film, resulting in a change in its
opacity [31].

The microstructure of biodegradable films can be identified through SEM (Figure 1).
The surface image suggests that the GBS-C film exhibited smooth structure and had no
holes, compared with other starch films. On the contrary, Homayouni et al. [32] reported
that tapioca starch film had heterogeneous structure, and Go and Song [33] reported that
rye starch film showed cracks on the film surface. In addition, the overall microstructure
of GBS films containing CZEO were homogeneous and uniform, except the GBS-0.5 film
with few micropores. Although essential oil seems to be dispersed well in the process of
film preparation, some extra oil droplets could move to the surface during the drying of
films [20]. Thus, some CZEO in the film formulation could evaporate, resulting in holes
being made [34]. Similarly, Song et al. [20] reported that the control films of corn and
wheat starch showed a smooth surface, but an uneven surface appeared as the amount
of added essential oil increased. In the cross-section images, as the content of CZEO
increased, slight non-uniformity of the films was shown. Job’s tears starch films with
essential oil also showed similar results due to increasing hydrophobic droplets during
the drying of films [5]. In addition, as the amount of emulsifier increased according to the
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concentration of CZEO, Tween 80 molecules could move to the surface of films, affecting
the microstructure of the films [20].
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Figure 1. SEM images of GBS films containing CZEO. (A) GBS-C; (B) GBS-0.1; (C) GBS-0.3; (D) GBS-0.5.

2.3. FTIR of GBS Films

FTIR analysis is a technique for identifying the molecular structure and functional
groups of films using infrared light. Spectra of the GBS films showed a wide peak at
the wavenumber of 3291 cm−1 due to the hydroxyl group of ginkgo starch molecules,
regardless of the CZEO content [14] (Figure 2). The peak at 3291 cm−1 of the CZEO-
added film originates from the O-H stretching vibration of starch, plasticizer, and phenolic
compounds of essential oil [35]. With the addition of CZEO, a clear shift of peaks was not
observed, but the degree of intensity of the films increased. The increased peak amplitude
suggests strong hydrogen bonding in the network of CZEO and starch molecules [29].
Moreover, the spectra showed noticeable peaks at 2925 and 1646 cm−1. Theses peaks show
C-H stretching vibration and strongly bound water of starch molecules [36]. Additionally,
there was a band associated with CH2 deformation or C-O-H bending of the GBS films at
1337 cm−1 [37]. In particular, the higher the CZEO content, the higher the wavenumber
shifted (1337 to 1362, 1365cm−1). Furthermore, peaks at 860 and 761 cm−1 indicate several
bonds in the starch linkage, including α-1,4-glycosidic bonds [38].
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2.4. TGA of GBS Films

Mass loss on thermal decomposition of GBS films was shown in two stages (Figure 3).
The first mass loss occurred around 100 ◦C. This was due to vaporization of water and
volatile compounds [35,39]. The second mass loss was the largest and most rapid mass
reduction at around the 320 ◦C region. This was due to the breakdown of the film com-
ponents, such as starch and plasticizer, and the destruction of hydrogen bonds and starch
carbon skeletons [33]. Similarly, two stage weight loss related to the breakdown of starch
film was reported in the corn starch-based polymer with added additive [40]. In this study,
pyrolysis temperature of GBS-0.1 (319.55 ◦C), GBS-0.3 (318.58 ◦C), and GBS-0.5 (318.81 ◦C)
was lower than that of GBS-C (320.57 ◦C), suggesting that the addition of CZEO decreased
the thermal stability of GBS films. In general, all organic compounds were pyrolyzed,
and eventually ash only remained. As the concentration of EO increased, the amount of
residue of GBS-0.5 increased from 15.05% to 17.80%, compared with GBS-C. An increasing
tendency of the residual content of the films seemed to be due to the increase in the amount
of aromatic rings, mainly from essential oils [41].

Molecules 2021, 26, x FOR PEER REVIEW 5 of 10 
 

 

 

Figure 2. FT-IR spectra of GBS films containing CZEO. (a) GBS-C, (b) GBS-0.1, (c) GBS-0.3, (d) GBS-0.5. 

2.4. TGA of GBS Films 

Mass loss on thermal decomposition of GBS films was shown in two stages (Figure 

3). The first mass loss occurred around 100 °C. This was due to vaporization of water 

and volatile compounds [35,39]. The second mass loss was the largest and most rapid 

mass reduction at around the 320 °C region. This was due to the breakdown of the film 

components, such as starch and plasticizer, and the destruction of hydrogen bonds and 

starch carbon skeletons [33]. Similarly, two stage weight loss related to the breakdown of 

starch film was reported in the corn starch-based polymer with added additive [40]. In 

this study, pyrolysis temperature of GBS-0.1 (319.55 °C), GBS-0.3 (318.58 °C), and 

GBS-0.5 (318.81 °C) was lower than that of GBS-C (320.57 °C), suggesting that the addi-

tion of CZEO decreased the thermal stability of GBS films. In general, all organic com-

pounds were pyrolyzed, and eventually ash only remained. As the concentration of EO 

increased, the amount of residue of GBS-0.5 increased from 15.05% to 17.80%, compared 

with GBS-C. An increasing tendency of the residual content of the films seemed to be 

due to the increase in the amount of aromatic rings, mainly from essential oils [41]. 

 

Figure 3. Thermal stability of GBS films containing CZEO. (a) TGA, (b) DTGA. 

2.5. Antioxidant Activities 

The antioxidant ability of packaging materials protects foods from reduced shelf life 

by preventing lipid oxidation, a major reason for deterioration of foods. In this study, 

Figure 3. Thermal stability of GBS films containing CZEO. (a) TGA, (b) DTGA.

2.5. Antioxidant Activities

The antioxidant ability of packaging materials protects foods from reduced shelf life
by preventing lipid oxidation, a major reason for deterioration of foods. In this study,
several experiments were conducted to examine the antioxidant capacity of the GBS films.
Table 3 shows that the antioxidant activity of GBS films increased with CZEO content
for three analyses (ABTS radical, DPPH radical, and FRAP). In particular, the GBS-0.5
showed the highest activity, 98.46 ± 0.57%, 58.90 ± 0.74%, and 12.89 ± 0.20 mM FeSO4/g
film, respectively, whereas the GBS-C showed the lowest. The control film without CZEO
had little antioxidant activity, due to polyphenolic compounds in GBS, which were not
eliminated from ginkgo nuts [42,43]. In addition, as the content of CZEO increased from
0.1% to 0.3%, the antioxidant activity increased rapidly by more than 5 times. This increase
could be attributed to the structure of the phenolic compounds present in CZEO. The
content of eugenol present in CZEO was confirmed to be 87.3% using GC-MS [28]. Eugenol,
a major compound in CZEO is a powerful phenolic antioxidant [44]. The hydroxyl groups
of eugenol react with free radicals and form resonance-stabilized phenolic radicals [45].
Similarly, an effect of phenolic compounds in oregano essential oil on the antioxidant
activity of cassava starch film was reported [46].
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Table 3. Antioxidant activity of GBS films containing CZEO.

CZEO (%) ABTS Radical Scavenging
(%)

DPPH Radical Scavenging
(%)

FRAP
(mM FeSO4/g Film)

0 3.95 ± 0.20 d 1.98 ± 0.20 d 0.04 ± 0.01 d

0.1 16.39 ± 0.57 c 5.22 ± 0.92 c 0.45 ± 0.06 c

0.3 76.16 ± 0.44 b 20.58 ± 0.67 b 4.37 ± 0.07 b

0.5 98.46 ± 0.57 a 58.90 ± 0.74 a 12.89 ± 0.20 a

Mean ± SD, n = 5. a–d Any means in the same column followed by different superscripts differ significantly (p < 0.05) by Duncan’s multiple
range test.

3. Materials and Methods
3.1. Materials

Ginkgo nuts were purchased at a local market in Daejeon, Korea. Cinnamon (Cinnamo-
mum zeylanicum) leaf essential oil was obtained from Gooworl Co. (Daegu, Korea). Sorbitol
and Tween 80 were purchased from Sigma-Aldrich (St. Louis, MO, USA).

3.2. Isolation of GBS

GBS was extracted according to the method of Miao et al. [14] and Zheng et al. [47],
with minor modifications. After peeling and cleaning ginkgo nuts, the ginkgo nuts were
ground with 0.3% NaOH (1:5, w/v) in a blender and stirred at 4 ◦C for 24 h. The slurry
was strained using a 200 mesh sieve and centrifuged at 3000× g to separate starch. A green
layer, which remained in the starch, was carefully removed using a spatula. Using distilled
water, the starch was dispersed several times and washed to increase the purity of the GBS.
The starch solution was then neutralized to pH 7 using 1 N HCI. The solution was then
centrifuged at 3000× g, washed with distilled water, dried, and shifted into a 200 mesh
strainer. The obtained powder was kept at 4 ◦C. The content of amylose in the obtained
GBS was determined to be approximately 22.02 ± 1.95% by the method of Lu et al. [48].

3.3. Manufacturing GBS Films

Based on preliminary experiments, the concentrations of GBS, sorbitol, and CZEO
were determined. The film-forming solution was formed by stirring GBS (1.25 g), sorbitol
(0.5 g), and distilled water (50 mL) at 90 ◦C for 20 min. The solution was then cooled down
with cold water until 70 ◦C. In contrast with the control film (no CZEO), CZEO (0.05, 0.15,
and 0.25 g) and Tween 80 (0.0125, 0.0375, and 0.0625 g) were added to the film-forming
solution for the preparation of GBS film with CZEO. After homogenization of the solution
at 8000 rpm for 3 min, sonication was performed twice for 5 min each, with a break of
1 min. After filtration with three layers of gauze, 30 mL of the film-forming solution was
poured onto a glass plate (10 cm × 13 cm) and dried at constant environment at 25 ◦C for
15 h. In this study, GBS-C, GBS-0.1, GBS-0.3, and GBS-0.5 indicate the films with 0, 0.1, 0.3,
and 0.5% of CZEO, respectively. The prepared films were kept under constant condition
(25 ◦C, RH 50%) for 24 h prior to the experiment.

3.4. Characterizations of GBS Films
3.4.1. Mechanical Properties

The GBS films were cut into 2.54 cm × 10 cm. The thickness of the films was gauged
at different locations five times with a Mitutoyo 2046-08 micrometer (Tokyo, Japan). Tensile
strength (TS), elongation at break (EB), and Young’s modulus (YM) were investigated using
an Instron universal M250-2.5 CT testing machine (Testometric Co., Lancashire, UK).

3.4.2. Water Vapor Properties

The films were prepared by cutting them into 2 cm × 2 cm. Water vapor permeability
was estimated using a modified cup method [49]. The GBS films were sealed across the
top of a polymethylacrylate cup filled with 15 mL of distilled water, stored in a steady
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environment room (25 ◦C, 50% RH), and the WVP was calculated by measuring the weight
of distilled water permeating through the films every hour.

3.4.3. Optical Properties

Optical properties of the GBS films were measured as described by Kang and Song [5].
L*, a*, and b* are numerical parameters of brightness, redness, and yellowness, respectively.
∆E value represents the difference in the color. Measurements were made on a standard
plate (L* = 97.19, a* = −0.34, and b* = 2.35). Color values were obtained using a CR-400
colorimeter (Minolta, Tokyo, Japan). Opacity (Abs/nm) was obtained by dividing the
optical density recorded with a Shimadzu spectrophotometer (Kyoto, Japan) at 600 nm by
the thickness of the films.

3.5. SEM

A field mission scanning electronic microscope (SU8230, Hitachi Co., Tokyo, Japan)
was used to evaluate the microstructure of the films. GBS films were stuck onto carbon
tape, and platinum coating was performed for 1 min as a pretreatment process. For a
cross-sectional image, GBS films were cryo-fractured with liquid nitrogen and mounted
perpendicular to the bar. Scanned images of the GBS films were measured at accelerated
voltages of 5.0 kV with 3000 magnifications for both surface and cross-section.

3.6. Fourier Transform Infrared Spectroscopy (FTIR)

FTIR spectra were obtained using an infrared spectrometer (Vertex 80v, Bruker Op-
tics, Billerica, MA, USA). They were the average of 16 scans in the wavenumber of
4000– 400 cm−1.

3.7. Thermogravimetric Analysis (TGA)

TGA (TGA/DSC1, Mettler-Toledo, Columbus, OH, USA), which demonstrates the
thermal stability of films, was carried out. GBS films (3 mg) with different concentrations
of CZEO (0, 0.1, 0.3, and 0.5%) were taken and heated by increasing 10 ◦C per min from
25 ◦C to 800 ◦C.

3.8. Antioxidant Activities

Prior to examining the antioxidant activity of GBS films, the following method was
carried out for the preparation of film samples: GBS film (0.1 g) was dissolved in 10 mL of
water and was shaken at 37 ◦C for 1 h.

3.8.1. ABTS Radical Scavenging

The sample solution was made up of 2.94 mL of ABTS radical solution and 60 µL of
dissolved film sample, as described by Guo et al. [50]. It was voltexed and left in the dark
for 10 min. A spectrophotometer was used to obtain the absorbance at 734 nm.

3.8.2. DPPH Radical Scavenging

This analysis was conducted with reference to Lee et al. [49]. Dissolved film sample
(0.1 mL) and 3.9 mL of 0.1 mM DPPH radical solution were mixed. The solution was
reacted in the dark for 1 h, and the absorbance was measured at 517 nm.

3.8.3. Ferric Reducing Antioxidant Power (FRAP)

This assay was performed with a slight modification of the previously reported
method [51]. The FRAP solution was made up of 300 mM acetate buffer (pH 3.6), 20 mM
FeCl3, and 10 mM TPTZ solution. Dissolved film sample (0.15 mL) and 2.85 mL of FRAP
solution were mixed. Then, it was left in the dark for 30 min. The absorbance at 593 nm
was measured. Standard curve of ferrous sulfate was used to analyze the ferric reducing
ability of the films. The FRAP value is expressed in mM FeSO4/g film.
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3.9. Statistical Analysis

All experimental data were evaluated with Duncan’s multiple range test (P < 0.05)
to assess significant differences using the SAS program (SAS Institute Inc., Cary, NC,
USA). The results were recorded as mean ± standard deviation (SD). All experiments were
repeated at least 4 times.

4. Conclusions

Through this study, we developed an alternative food packaging material by using
starch extracted from ginkgo nuts. Antioxidative GBS films containing various amounts of
CZEO were prepared, and their physicochemical properties were evaluated. As the amount
of CZEO increased, the GBS films showed higher EB and WVP, but lower TS compared
with the control film. In particular, the GBS film containing 0.5% CZEO had the highest
EB (115%). The addition of CZEO also improved the antioxidative activity of GBS films.
Therefore, these results clearly indicate that the GBS–CZEO films might be utilized as an
active packaging material that maintains food quality during storage.
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