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Abstract: The spermatozoon is a highly specialized cell, whose main function is the transport of
the intact male genetic material into the oocyte. During its formation and transit throughout male
and female reproductive tracts, sperm cells are internally and externally surrounded by reactive
oxygen species (ROS), which are produced from both endogenous and exogenous sources. While
low amounts of ROS are known to be necessary for crucial physiological sperm processes, such as
acrosome reaction and sperm–oocyte interaction, high levels of those species underlie misbalanced
antioxidant-oxidant molecules, generating oxidative stress (OS), which is one of the most damaging
factors that affect sperm function and lower male fertility potential. The present work starts by
reviewing the different sources of oxidative stress that affect sperm cells, continues by summarizing
the detrimental effects of OS on the male germline, and discusses previous studies addressing the
consequences of these detrimental effects on natural pregnancy and assisted reproductive techniques
effectiveness. The last section is focused on how antioxidants can counteract the effects of ROS and
how sperm fertilizing ability may benefit from these agents.

Keywords: sperm; oxidative stress; male infertility; reactive oxygen species; antioxidants; assisted
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1. Introduction

Human infertility is recognized as a disease by the World Health Organization (WHO) and
has nowadays an estimated prevalence of 7–15%, with 50–80 million people being affected around
the world [1,2]. These high ranks of incidence exemplify the differences between developed and
developing countries, the latter being the ones with higher rates, a fact that has been associated to lower
familiar income and less health-care accessibility [3,4]. Despite these worrying numbers, mounting
evidence from surveys and comparative studies suggest that infertility grows year over year [4,5].
In this scenario, and despite the high relevance given to the female factor in the nineties, it is now
well accepted that dysfunctions can also affect spermatozoa, so that a male factor is thought to be
present in half of the infertile couples, being the only or main cause of infertility in about 20–30%
of cases [6–8]. For this reason, research focused on the male factor has been increasing over the last
decades, revealing new knowledge about causes and treatments of infertility. Although significant
advances on understanding the etiology of male infertility have been made, little is still known about
the underlying physiopathology in a high number of particular cases. In most couples, attributing
a single cause to infertility is difficult since there is usually a multifactorial, sometimes unknown,
pathology. Recent research has come up with different indicators and biomarkers that are able to
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explain male infertility, such as some specific related genes, concrete epigenetic profiles, and several
mRNAs that are responsible for poor sperm quality and/or embryo development [9–11]. On the other
hand, anatomical affectations such as vas deferens agenesia, hormonal issues causing azoospermia,
or varicocele are also factors that help diagnose infertility in the male [12,13]. Moreover, increasing
male age, environmental pollution, diet, heat stress, and obesity are also known to be causes for
a reduction of sperm quality. In these latter ones, however, it is difficult to establish their precise
incidence in the physiopathology of a single male, despite the efforts in defining ranks or risk areas for
each parameter. In a scenario where a human male is exposed to some of these exogenous affectations,
an increase in oxidative stress is usually observed [14]. An excess of reactive oxygen species (ROS) can
cause unbalance with the antioxidant capacity, reaching pathological levels and originating fertility
issues. Infertility caused by oxidative stress has been widely studied for years, and multiple studies
analyzing its clinical effect have been performed, in relation to both natural fertility and assisted
reproductive techniques. Therefore, the aims of the present review are (a) to summarize the causes and
consequences of oxidative stress in male fertility; (b) to provide an update about the clinical association
between oxidative stress and fertility rates; and (c) to discuss the role of antioxidants in ameliorating
fertility outcomes.

2. Sources of Oxidative Stress with Potential Effects to the Male Germline

Oxidative stress is related to the disbalance of oxidant molecules in cells. Reactive oxygen species
refer to oxygen-derivate molecules that are highly reactive due to their free electrons or radicals.
These group of molecules, which have a half-life of nanoseconds, include superoxide (·O2

−), hydrogen
peroxide (H2O2), proxyl radical (·R OO), or hydroxyl (·OH−). Less common but also present in sperm
cells are the reactive nitrogen species (RNS), which include nitric oxide (·NO), dinitrogen trioxide
(N2O3), and peroxinitrite (ONOO-). The presence of oxidative stress affecting sperm function has
been consistently reported since the late forties and early fifties, when different authors pointed out
that hydrogen peroxide exerted a detrimental impact on sperm [15]. Nowadays, this damage is
irrefutable and, over the last decades, multiple investigations have been oriented towards identifying
the possible sources of ROS in order to understand their action mechanism and their consequences.
This knowledge has allowed the discovery of new treatment options for human patients, thus improving
their reproductive chances. Regarding the male germline, reactive oxygen species can be produced
either endogenous or exogenous. From here on, we review these two ways of producing ROS that,
despite being necessary at low levels, contribute to a pathological state at high levels.

2.1. Endogenous Sources of ROS

One should note that the spermatozoon itself is a source of ROS due to its metabolic activity, and
that other immature sperm cells present in the semen are also important sources of free radicals. While
disbalances of ROS have disruptive effects that will be described below in other sections, low levels of
ROS are known to be necessary for the sperm cell to perform natural functions. For instance, nitric
oxide and hydrogen peroxide are necessary compounds to achieve capacitation, enabling acrosome
reaction, which is controlled by reactive oxygen species [16,17]. Moreover, sperm hyperactivation
or its interaction with the oocyte is mediated by ROS, thereby being also essential for achieving
their fertilizing ability [18,19] (Figure 1). For these reasons, after spermatogenesis and epididymal
maturation sperm cells have low levels of oxidative radicals.

Endogenous free radicals can be generated as a by-product of cell metabolism, or by enzymatic
activity. Sperm metabolism is a major source of ROS (Figure 1). The activity of mitochondria, which
are located in the mid-piece, is, together with glycolysis, essential for sperm motility and capacitation.
These mitochondria generate ATP through respiratory electron chain and oxidative phosphorylation,
which are based on transferring electrons from inner mitochondrial membrane complexes to oxygen
and on pumping of protons to the intermembrane space. These protons are ultimately used to
synthesize ATP via complex V (ATP synthase). In this scenario, ROS are by-products of the electron
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chain activity and are especially generated at complexes I and III, which mainly release superoxide
and hydroxyl radicals into the matrix and the intermembrane space [20]. These free radicals are then
converted into hydrogen peroxide by superoxide dismutase.
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Figure 1. Reactive oxygen species (ROS) are by-products that are necessary for essential sperm functions.
On the left, a redox balance is achieved when physiological oxidation is compensated by antioxidants,
so that physiological oxidation allows sperm to perform their normal functions. However, when
pathological conditions lead to an increase in intracellular ROS levels (right), oxidative stress affects
sperm cells causing a reduction in sperm quality that leads to a reduction in pregnancy achievement.

During spermatogenesis, release of sperm with retained cytoplasm usually occurs. Retention
of cytoplasm leads to non-functional and immature sperm which retain glucose-6-phosphate
dehydrogenase (G6PDH) that enables the production of intracellular β-nicotinamide adenine
dinucleotide phosphate (NADPH). This intracellular NADPH is processed via NADPH oxidase
which regenerates NADPH to NADP converting O2 to superoxide, which is converted to hydrogen
peroxide at the intermembrane space by the superoxide dismutase [21,22].

The hydrogen peroxide generated through these two different ways is scavenged by glutatione
peroxidase or glutathione-s-reductase, which use reduced glutathione (GSH) as an electrone donor.
Reduced glutathione is maintained by an ATP-consuming process, through glutathione synthetase
(GSS) or glutathione reductase (GSR), which transforms oxidized glutathione (GSSG) into reduced
glutathione in a NADPH dependent way [23,24].
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2.2. Exogenous Sources of ROS

2.2.1. Varicocele

Varicocele is a dilatation of the pampiniform plexus of the spermatic cord that is considered the
most common correctable cause of male infertility. The incidence of varicocele in the general population
is about 15%, and different studies have determined that its incidence among infertile men is about
35–44%, these figures increasing up to 45–81% in the case of secondary infertility [12]. The dilatation of
varicose veins coupled to insufficient venous valves cause a blood reflux and an increase in the blood
pressure to the vein wall; this increases testis temperature, which usually has to be 2 ◦C lower than
that of the body. These two varicocele consequences lead to an increase of reactive oxygen species
and a reduction of antioxidant capacity [25] (Figure 1). Varicoceles are divided into different grades
(subclinical and clinical, with grades 1, 2, or 3) according to their clinical features. It is known that their
effect is higher as grade increases, and several studies have pointed out that varicocelectomy, the most
common procedure for varicocele correction, is an effective method to reduce sperm OS and sperm
DNA damage in clinical varicoceles [26,27].

2.2.2. Infections and Leucocytospermia

Immune response against infections cause inflammation of tissues to promote leucocyte infiltration.
Leukocytes are an important source of oxidative stress, and it has been described that a single leukocyte
produces 1000 times more ROS than a single spermatozoon, via increasing NADPH production [28]
(Figure 1). Although every ejaculate contains a certain number of leukocytes, leucocytospermia consists
of an increase in that number and usually results from infections [29]. While the increase in ROS
has been reported to affect both leukospermic and non-leukospermic patients, it is apparent that
the extent at which patients with augmented leukocyte counts suffer from higher oxidative stress is
higher [30]. This increment has been demonstrated to be associated to a detrimental impact on different
conventional semen parameters, such as motility, morphology, and concentration [31–33].

2.2.3. Alcohol and Tobacco

It is well known that consumption of alcohol, tobacco, and different recreational drugs contribute
to serious, negative effects on the organism. Regarding alcohol, a study in rats concluded that continued
alcohol intake causes a decrease in testicular reduced glutathione concentration, a decrease in testicular
superoxide dismutase activity, an increase in testicular malondialdehyde concentration, and an increase
in sperm DNA damage. In addition, fertility rates of male rats ingesting alcohol were demonstrated
to be lower than those of the control group [34]. Other studies reported similar results, describing
detrimental effects on mitochondria, with a significant increase in ROS generation, and observing
epigenetic modifications in the germline [35,36]. In addition, different studies have shown that
chronic ethanol intake has been related to a decrease of cell proliferation in testes; to the induction of
testicular apoptosis, increasing the Fas ligand and upregulating p53 gene expression; and to epididymal
damage [37–39]. A deregulation of the apoptotic response at testicular level has been described as an
issue caused by oxidative stress, and named as abortive apoptosis [40,41]. Moreover, autophagy can
be also activated as a protective role to cooperate with apoptosis during spermatogenesis [42,43]

On the other hand, tobacco smokers are exposed to thousands of chemicals, which are demonstrated
to be carcinogenic and the cause of several diseases that may lead to death. Most of these chemicals are
demonstrated to increase free radicals and ROS coupled to a reduction of antioxidant activity, which
leads to a higher rate of sperm DNA fragmentation and loss of sperm motility [44,45] (Figure 1).

2.2.4. Physical Exercise and Heat Stress

Exercise is beneficial for different aspects of health. In the case of reproductive physiology,
while improved fertility potential has been identified in animals exposed to regular exercise [46] and
sedentary men have been reported to present worse sperm quality [47,48], other studies have shown
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that exercise has no improving effect on conventional spermiogram parameters [49]. In addition,
intense physical exercise or cycling is considered to be detrimental for fertility, and both an increase in
oxidative stress and a reduction in sperm motility were observed in studies focusing on these types of
exercise [50,51]. This increment in oxidative stress and the reduction in sperm quality could also be
related to an increase in testicular temperature (Figure 1). Scrotal temperature is known to be 2 ◦C
lower than that the body core temperature, and increases in this value have been shown to impair
sperm quality. In fact, it has been reported that every 1 ◦C of increase correlates to a 14% drop in sperm
production [52]. In the same way, some reports have shown that habits such as prolonged car sitting,
taking regular sauna bath, or wearing tight fitting underwear can have an impact on testis heat stress,
reducing sperm quality [53].

2.2.5. Radiations and Pollution

Radiations can be divided into ionizing and non-ionizing. Non-ionizing radiation is the most
used by human beings, and one can find in this category from cell phones, which use extremely low
frequency, to microwave ovens and radars, which are in the radio frequency range [54]. The effect of
non-ionizing radiations produced by mobile phones, microwaves or WIFI devices to sperm oxidative
stress and its fertilizing ability is a topic of increasing interest among the scientific community. Different
multiple in vitro and in vivo studies aiming at addressing this issue by testing sperm from animal
models and human beings have shown that mobile phone’s radiation causes an increase in reactive
oxygen species that induces lipid peroxidation and a decline in the antioxidant capacity, induced,
amongst others, by the decrease in reduced glutathione levels [55–58]. Moreover, other studies have
associated laptop computer WIFI to increases of DNA damage and decreases of sperm parameters,
such as motility, count, and morphology [59,60]. In summary, although non-ionizing radiations are not
able to cause DNA alterations directly, they have an indirect potential of affecting fertility through
increasing pro-oxidant molecules (Figure 1).

X-rays, γ-rays, and α-particles are ionizing radiations, which are rather more dangerous than
the non-ionizing ones at different health levels. Exposure of cells to ionizing radiations increase ROS
generation and induce their senescence [61]. Radiation induces direct DNA breaks and potentially
affects proteins and membranes through increased ROS levels (Figure 1). In fact, serious health
problems, such as different types of cancer, can arise from the exposure to ionizing radiation; in this
context, it is worth noting that, due to their lack of antioxidant defense, sperm cells are especially
vulnerable [62].

Environmental pollution has been found to increase ROS generation and lead to a reduction
in sperm quality. For instance, on the one hand and according to studies analyzing semen from
human males exposed to traffic pollution, car smoke pollutants potentially reduce men fertility [63]
by affecting membrane lipids, generating DNA damage, and even changing expression patterns of
proteins involved in spermatogenesis [64–66]. On the other hand, continuous exposure to phthalate
derivatives have been correlated to increases in reactive oxygen species and decreases in enzymatic
and non-enzymatic antioxidants in animal models [67], and in the seminal plasma of infertile patients
involved in assisted reproductive programs [68]. While these are only two examples of how air
pollutants may affect men fertility, strong evidence is still required to support the urgent need of
reducing environmental toxicants to improve reproductive efficiency [69].

3. Effects of Oxidative Stress to Sperm Components

All the aforementioned causes have been related to increases in intracellular ROS levels, and the
particular and specific organization of the sperm cell makes it especially vulnerable to these increments.
The sperm cell does not present a DNA repair machinery since it is transcriptionally silent and
possesses either no or poor translational activity [70]. Moreover, at the end of spermiogenesis,
testicular spermatozoa lose their cytoplasm, leaving their DNA highly vulnerable to ROS. Therefore,
neither cytosolic antioxidant enzymes, such as glutathione peroxidase (GPX), catalase (CAT) and
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superoxide dismutase (SOD), which are the most common cytosolic ROS-scavengers, nor the Base
Excision Repair pathway (BER) are present in sperm cells [70]. Regarding the BER pathway, only
an active form of 8-oxoguanine DNA glycosylase (OGG1) enzyme, which excises the oxidized base
8-hydroxy-2′-deoxyguanosine (8OHdG), is left [23]. Since downstream enzymes involved in the BER
are missing, the process is stopped after OGG1-excission. For this reason, one can usually find ejaculated
sperm with damaged DNA. However, evolution has endowed the oocyte with enzymes devoted to
paternal DNA repair after fertilization [71], which unequivocally underpins the collaboration between
male and female gametes during the first stages of embryo development.

The aforementioned exposure of sperm cells to different sources of ROS, which are free to
travel across the membrane and between mid-piece and the nucleus, and their inability to scavenge
ROS make sperm cells very susceptible to damage. This fact leads to different affectation grades,
especially targeting their membranes and nuclei, inducing lipid peroxidation, protein alterations, and
DNA damage.

3.1. Lipid Peroxidation

Sperm plasma membrane has a particular susceptibility to oxidative damage, as it contains high
amounts of polyunsaturated fatty acids, which present multiple double bonds, the decohexaenoic acid
(DHA) being the most representative one [70,72,73]. These membrane molecules are reactive to oxygen
radicals, producing highly reactive lipid aldehydes, like malondialdehyde, that have the potential of
causing DNA damage and modify proteins. It has been described that these aldehydes inhibit some
antioxidant enzymes like G6PDH which, in turn, reduce the activity of glutathione peroxidase [18,23].
Lipid peroxidation alters membrane fluidity and permeability, which results in sperm motility loss
and in a reduced sperm ability to interact with the oocyte [23].

3.2. Protein Modifications

Proteins are the target of redox reactions, which can activate or inactivate their functionality.
Depending on the type of ROS, proteins can be altered through thiol oxidation, tyrosine nitration,
sulfonation, or glutathionylation. Thiol oxidation is the most common protein modification that targets
glycolytic and Krebs cycle enzymes, which leads to a reduction in the efficiency of ATP production;
targets α-tubulin, which impairs microtubule polymerization; and targets protamines, which affect
chromatin remodeling during spermiogenesis [74].

3.3. Sperm DNA Damage

Sperm DNA fragmentation is the other major effect directly or indirectly caused by oxidative
stress. In contact to sperm DNA, ROS cause base modifications, such as 8-OH-guanine and
8-OH-2′-deoxyguanosine which, after being excised by OGG1 enzyme, generate an abasic site
that gives place to a single-strand DNA break. Since, as aforementioned, spermatozoa are devoid of
enzymes allowing the continuation of the BER pathway and the silencing of sperm chromatin, this
break site cannot be repaired by the sperm cell itself and, thus, sperm with fragmented DNA are
observed in the ejaculate [70].

Oxidative stress can also promote nuclear decondensation, increasing the DNA susceptibility to
be damaged by free radicals, which will thus have easier access to the entire sperm genome. Related
with this, incubation of spermatozoa from different animals with H2O2 indicates that DNA breaks
occur in a dose-dependent manner; at a final concentration of 10 mM, H2O2 affects around 60% of
sperm DNA [75]. In this context, however, it is worth mentioning that detecting these DNA breaks and
its type heavily relies upon the sensitivity of the technique used to evaluate sperm DNA fragmentation
(i.e., SCSA, SCDt, TUNEL, neutral Comet, alkaline Comet, etc.), which leads to different correlations to
clinical outcomes [76].
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4. Effects of Oxidative Stress on Fertility Treatments

4.1. Natural Pregnancy

A disbalance of oxidative stress is usually the cause of different alterations heading, in the end,
to DNA fragmentation, protein and lipid modifications, and affectations in sperm count, motility,
and morphology. Although it is difficult to establish which percentages of infertile patients have
an underlying mechanism of oxidative stress, it is known that it could be present as a factor
in asthenozoospermic, teratozospermic, and oligozoospermic patients who present reproductive
issues [77,78]. All these parameters have been associated in different studies with a reduction in natural
pregnancy, both in animal [79,80] and human studies [76,81,82], supporting the evidence that oxidative
stress leads to a reduction in natural fertility rates [77,83].

4.2. Assisted Reproduction Techniques

In a scenario where natural pregnancies are impaired for at least 12 months, assisted reproduction
techniques (ART) are available treatments for infertile couples, and include intrauterine insemination
(IUI), in vitro fertilization (IVF), and intracytoplasmic sperm injection (ICSI). While the contribution
of the male factor infertility to the success rates of different ART has been the source of much debate
during the last decade, the following two subsections summarize our current knowledge about the
effects of oxidative stress on the effectiveness of those treatments.

4.2.1. Intrauterine Insemination

Three systematic reviews and meta-analyses related to the topic have been identified, with the
general conclusion that oxidative stress and sperm DNA damage have negative effects on pregnancy
rates after IUI. In the first one, the authors report different studies supporting that sperm DNA damage
is related to lower pregnancy rates after IUI, since altered sperm DNA can lead to a decrease in
pregnancy rates from 24% to 3% [84]. In the second meta-analysis, similar conclusions were reached
from the selected studies included in the systematic review, emphasizing that the extent of the impact
of sperm DNA damage on pregnancy rates after IUI is higher when male age is over 30 years old [85].
Finally, a meta-analysis by Belgian researchers including 940 IUI cycles revealed that low DNA damage
increases by 3.15 the chances of achieving clinical pregnancy after IUI [86].

4.2.2. IVF and ICSI

Different meta-analyses aimed at addressing the relationship between sperm DNA damage and
IVF/ICSI success rates have been conducted. Regarding IVF, separate studies have concluded that
sperm DNA damage may have an important influence in preventing clinical pregnancy, increasing
miscarriage, or even decreasing embryo quality [84,87–89].

As far as ICSI is concerned, data are less clear since whereas some works have reported that sperm
DNA damage influences treatment outcomes, such as pregnancy rates and embryo quality [88,89],
other meta-analyses have concluded that sperm DNA fragmentation has no influence on ICSI
performance [84,90,91].

Inconsistent results from studies analyzing combined IVF and ICSI data are found in the literature,
with some meta-analyses supporting that sperm DNA damage causes negative effects on ART [88] and
others showing that there is no enough evidence to sustain that assertion [92,93]. These contrasting
conclusions may not only be due to the inclusion of different techniques but also to the heterogeneity
of different laboratories and populations.

5. Protection against Oxidative Damage and Designed Treatments for Fertility Improvement

The principal mission of the sperm cell is to transport and deliver the intact paternal DNA into the
oocyte. For this reason, sperm DNA has evolved to be as much protected as possible from both internal
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and external sources of damage. This evolution has led to an almost inert state, where histones are
replaced in most parts of the genome by protamines, which remain organized in toroids condensing
about 50 kilobases of DNA. These toroids are linked to each other by toroid linker regions that are
condensed with histones [94]. While the role of histone-condensed regions is currently under debate,
recent studies suggest that they could include gene promoter regions, such as CpG-rich islands and
satellite repeats [95,96]. In addition, telomeres have also been described to retain a high percentage of
histones [97]. Whilst protaminated toroidal regions have been shown to be resilient against nuclease
activity and histone-condensed regions seem to be more susceptible to DNA damage, incubation of
sperm with H2O2 indicates that oxidative damage can induce DNA breaks in both regions [98].

5.1. Seminal Plasma

Due to the loss of the most part of the cytoplasm and the lack of transcription and translation
potential, the sperm cell is devoid or has very low levels of antioxidant enzymes in the cytosol. In order
to avoid the disbalance of ROS generating oxidative stress, the low antioxidant activity of mature
spermatozoa has to be compensated by the antioxidant capacity of seminal plasma [99]. As a result of
this atoning role, seminal plasma has evolved as one of the most known antioxidant fluids, estimating
that its antioxidant power is more than 10 times higher than that of the blood [100]. This includes both
antioxidant enzymes, such as CAT, SOD, glutathione-s-transferase (GST), GPX and GSR, and small
free-radical scavengers, such as vitamin C, polyphenols, carotenoids, and coenzyme Q10 [100–102].
Taking into account both pro-oxidant and antioxidant activities, it seems reasonable to suggest that
measuring redox balance may provide a broader picture on the relationship between sperm oxidative
stress and male infertility [70], this balance being altered either by the increase of ROS or by the
decrease of antioxidant activity.

5.2. Varicocelectomy

As mentioned before in Section 2, varicocele is a pathology that induces an increase of oxidative
stress in the male reproductive system. The surgical treatment of varicocele has been demonstrated
to be an effective method to remove the alterations caused by the affected veins, as blocking blood
reflux prevents temperature increases. The effects observed after the recovery from surgery include a
decrease in reactive oxygen species and an increase in total antioxidant capacity, which comes from
augmenting the levels of antioxidant enzymes and molecules [27,103,104]. As a consequence, DNA
damage is reduced after varicocelectomy [105]. In addition, a placebo-controlled, double-blind trial
showed that co-treatment with melatonin as an antioxidant may improve the results obtained following
surgery [106].

5.3. Antioxidants

Since not only does an increase in oxidative stress reduce sperm quality but also the likelihood
of achieving pregnancy (either natural or through ART), the use of exogenous antioxidants has been
proposed to balance the ROS:antioxidant ratio and increase the sperm quality. In the literature, several
non-enzymatic antioxidants, such as arginine, carnitine, carotenoids, coenzyme Q10, cysteine, reduced
glutathione, micronutrients like selenium or zinc, vitamin E, vitamin C, myo-inositol, or resveratrol,
have been reported to be utilized to treat different diseases [107]. In the case of ART, exogenous
antioxidants have been tested for decades, and several works point out to a positive contribution
of these supplements on sperm count, motility, and morphology [108–110]. Other studies have also
proved that antioxidants are useful to ameliorate lipid peroxidation, reduce DNA base modifications
(like 8-OHdG) and fragmentation, and increase total antioxidant capacity [111–114]. Finally, previous
research has also demonstrated that adding cryopreserved sperm with antioxidants increases their
quality [115–117].
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5.3.1. Use of Antioxidants for Natural Pregnancy

Given that sperm quality has been associated to higher success in achieving natural pregnancy,
one could suggest that improving sperm function and survival through antioxidant supplementation
should cause a positive effect on fertilization success (Figure 2). However, at present, only few studies
with randomized and placebo controls prove that association. The latest review of the Cochrane
Library including high quality studies concludes that the antioxidant intake by male patients is
associated to an increase in live birth rates from 12% to 14–26%, representing between 1.2- and 2.1-fold
increase. The same meta-analysis included eleven studies analyzing natural pregnancy and showed
that antioxidant supplementation increases pregnancy rates from 7% to 12–26%, representing between
1.7- and 3.7-fold increase [107]. While these results seem to be promising, the authors of that study
warned about the increase in miscarriage rates (from 2% to 13%) following antioxidant supplementation.
This detrimental effect, however, was concluded from few studies (only three) meeting the quality
criteria (randomized, prospective, and double-blinded) [107].
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Figure 2. Antioxidant treatments for male fertility have been used for decades. Until the present moment,
evidence supports its use to achieve better sperm quality. This, in turn, increases natural conception
success. Regarding assisted reproduction techniques (ART), more randomized and controlled trials are
necessary to confirm the benefit of oral antioxidant intake.

5.3.2. Use of Antioxidants for Intrauterine Insemination

The use of antioxidants with patients undergoing ART is usual. Nevertheless, the potential
benefits have been the subject of controversy in the field. Although it seems a common finding that
antioxidants have a positive effect on sperm quality parameters, the very low amount of high quality
studies foster the controversy on whether or not their use increases male fertility in the case of IUI
(Figure 2). For instance, a randomized controlled trial using N–acelylcysteine and a randomized
double-blind trial using astaxanthin as antioxidants in couples performing IUI observed an increase in
pregnancy rates compared to controls [118,119]. In contrast, a multicenter, double-blind, randomized,
placebo-controlled trial published in 2020, and conducted in the United States between 2015 and 2018
concluded that an antioxidant formulation containing vitamins C, E, selenium, L-Carnitine, zinc, folic
acid, and lycopene had no effect on sperm quality parameters, pregnancy, or live birth rates [120].
The limitation of these two studies, however, was the low number of patients.

5.3.3. Use of Antioxidants for IVF/ICSI

While randomized and controlled trials are much warranted in this realm, few studies have
analyzed the effects of antioxidants on pregnancy rates after IVF or ICSI, usually with small sample sizes,
thus reinforcing the need of large studies. A prospective, randomized, double-blind placebo-controlled
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study performed in Australia between 2004 and 2006 conducted with 60 patients found that a mix of
commercial antioxidants (which included lycopene, Vitamins E and C, zinc, selenium, folate, and garlic)
taken orally during three months prior to IVF increased both pregnancy and implantation rates [121].
A non-controlled study showed that vitamin E intake during one or three months increased fertilization
rates per cycle after IVF regardless of intake time [122]. Furthermore, another non-controlled study
conducted with 38 patients presenting a previous failed ICSI cycle and high sperm DNA fragmentation
reported that administrating vitamins C and E orally for two months prior to the second ICSI attempt
improved clinical pregnancy and implantation rates compared to the first ICSI attempt [123].

6. Conclusions

Despite the vital function of ROS during fertilization, an increase in those species causes oxidative
stress and detrimentally affects sperm function. The origin of this increase arises from different
endogenous and exogenous sources, such as sperm metabolism or infections, respectively. It is well
known that ROS cause a reduction in sperm count and motility, protein alterations, lipid peroxidation,
and DNA fragmentation, amongst others. These affectations to sperm quality lead to lower natural
pregnancy rates and decline IUI and IVF success. Regarding ICSI, more studies are needed to elucidate
which the actual impact of high ROS levels in sperm is. Finally, while using exogenous antioxidants
as a method to counteract the adverse effects of oxidative stress has been proven to be effective for
natural pregnancy, randomized, double-blind, prospective, and placebo-controlled studies are still
needed to demonstrate their effectiveness in assisted reproductive techniques.
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