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Abstract: In recent years, there have been major advances and increasing amounts of research on
the utilization of natural polymeric materials as drug delivery vehicles due to their biocompatibility
and biodegradability. Seaweed polysaccharides are abundant resources and have been extensively
studied for several biological, biomedical, and functional food applications. The exploration of
seaweed polysaccharides for drug delivery applications is still in its infancy. Alginate, carrageenan,
fucoidan, ulvan, and laminarin are polysaccharides commonly isolated from seaweed. These natural
polymers can be converted into nanoparticles (NPs) by different types of methods, such as ionic
gelation, emulsion, and polyelectrolyte complexing. Ionic gelation and polyelectrolyte complexing
are commonly employed by adding cationic molecules to these anionic polymers to produce NPs of
a desired shape, size, and charge. In the present review, we have discussed the preparation of seaweed
polysaccharide-based NPs using different types of methods as well as their usage as carriers for the
delivery of various therapeutic molecules (e.g., proteins, peptides, anti-cancer drugs, and antibiotics).
Seaweed polysaccharide-based NPs exhibit suitable particle size, high drug encapsulation, and
sustained drug release with high biocompatibility, thereby demonstrating their high potential for
safe and efficient drug delivery.

Keywords: alginate; carrageenan; fucoidan; drug delivery

1. Introduction

Seaweed is an important marine resource for human kind, and in particular, for the
multi-billion dollar companies that have been operating based on seaweed-derived polysaccharides
for approximately the last six decades [1–4]. The cell walls of seaweed are mainly composed of
polysaccharides. These polysaccharides are generally small sugar units linked with glycosidic bonds.
In recent years, significant research has been conducted on seaweed for the production of bioenergy
and the development of food applications due to the abundance of this resource [5–13]. Applications
of diverse seaweed polysaccharides (e.g., alginate, carrageenan, ulvan, and laminarin) in drug delivery,
tissue engineering, and biosensor areas have been reported [14]. Recently, particular attention has
been directed toward developing drug delivery systems using seaweed polysaccharides, which is
an important field of biomedical research. Among the various synthetic and natural polymers that have
been extensively studied for biomedical applications, particularly for drug delivery [15–20], natural
seaweed polysaccharides that have been formulated into nanoparticles (NPs) for drug delivery systems
(DDS) will be discussed in this review. Natural polysaccharides for DDS have main advantages in
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their biocompatibility and charge properties [21]. They are also inexpensive materials due to their
abundance [22–24].

2. Polysaccharide-Based Nanoparticles for Drug Delivery

(C6H5O10)n is the general formula for typical polysaccharides. The number of units (n) can vary
from 40 to 3000 [25]. Natural polysaccharides are commonly obtained from several resources, including
algae, animals, plants, and microbes. Cellulose, chitin, chitosan, alginate, heparin, hyaluronic acid,
chondroitin sulfate, pectin, pullulan, amylose, dextran, ulvan, carrageenan, and their derivatives
have been widely studied for several biological and biomedical applications, including those in the
fields of tissue engineering, wound management, drug delivery, and biosensors [26–28]. Furthermore,
polysaccharides can be divided into two groups according to their charge. For example, chitosan
is a positively charged (cationic) polysaccharide, whereas alginate, carrageenan, and fucoidan are
negatively charged (anionic) polysaccharides [21]. Generally, polysaccharides are considered safe,
biocompatible, stable, hydrophilic, and biodegradable, and they can be modified into different forms,
such as chemically modified polysaccharides, hydrogels, scaffolds, fibers, and NPs. NPs have many
advantages for drug delivery purposes compared with larger (micro-sized) particles because they
easily penetrate into targeted areas [29–39].

Polysaccharide-based NPs can be obtained using different types of methods. In particular,
the most widely studied methods are ionic linking, covalent cross-linking, self-assembly, and
polyelectrolyte systems. Research on polysaccharide-based NPs (e.g., alginate, carrageenan, and
fucoidan) for DDS has been increasing dramatically over the last decade (Figure 1) [21,40].
Polysaccharide-based NPs have advantages due to abundant availability and biocompatible properties,
which make them important candidates for drug delivery system [41–44]. Posocco et al. (2015) [45]
suggested that polysaccharide-based materials exhibit the following advantages:

‚ Their sources are abundant and they can be available in a well-characterized state.
‚ They can be modified to form different materials using chemical and enzymatic methods.
‚ They are biodegradable and biocompatible and exhibit low immunogenicity.
‚ They can be useful in stimuli-responsive DDS.
‚ They can be produced complexed and conjugated with proteins and bioactives.
‚ They can be modified as gels.
‚ They can give rise to interpenetrated polymeric networks.
‚ Ionic polysaccharides are mucoadhesive.

Based on these properties, polysaccharides can be useful as drug delivery carriers.
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3. Seaweed Polysaccharide-Based Nanoparticles for Drug Delivery

Seaweed can be classified as red, green, or blue. The cell walls of seaweed are often composed
of polysaccharides. For approximately four decades, research has been conducted on the structures
and applications of seaweed polysaccharides, especially on their functional food applications [46].
Polysaccharides including agar, alginate, fucoidan, carrageenan, and laminarin have been isolated
from seaweed [6,25,47].

Seaweed polysaccharides have hydrophilic surface groups, such as hydroxyl, carboxyl, and
sulfate groups, which interact with biological tissues easily [48]. Owing to these properties of seaweed
polysaccharides, the usage of seaweed polysaccharides in DDS is increasing.

The main difference between the sulfated polysaccharides and other polysaccharides is surface
charge. Most of the algae-derived polysaccharides are anionic in nature. Some seaweed-derived
polysaccharides have anionic sulfate groups, which are not present in polysaccharides of terrestrial
and animal origin [49]. These seaweed polysaccharide-based NPs avoid aggregation during blood
circulation by reduced interaction with serum proteins.

4. Alginate

Alginate is a water soluble, anionic polymer, commonly produced from marine brown algae.
It is mainly composed of α-L-guluronic acid (G) and β-D-mannuronic acid (M) residues linked by
1,4-glycosidic linkages (Figure 2A). It is nontoxic, biocompatible, biodegradable, and inexpensive, and
thus it is extensively used for several biological, biomedical, and functional food applications [8,50,51].
Alginate NPs can be prepared by different types of methods, including ionic cross-linking, covalent
cross-linking, self-assembly, complexation methods, and emulsion methods [39,52–59].
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Figure 2. (A) The structure of alginate; (B) The formulation of egg box-shaped NPs by an ionic gelation
method. The figures were adopted with permission from [60].

4.1. Production of Alginate NPs

Considerable attention has been directed toward preparative methods to produce the desired
properties of alginate NPs for effective drug delivery systems [61–63]. Different types of methods are
explained here.

4.1.1. Ionic Cross-Linked Alginate NPs (Ionotropic Gelation)

The preparation of alginate NPs by ionic gelation is generally simple and mild. They can be
produced by cross-linking alginate with various ions, such as Ca2+, Ba2+, and Al3+ [64]. Alginate NPs
are commonly formed by the addition of calcium ions at a particular concentration; this is one of
the highly explored methods [65]. Ionic cross-linked alginate NPs usually form egg box shapes, as
illustrated in Figure 2B. However, sometimes this method tends to produce micro-sized particles rather
than NPs. Therefore, process optimization is important to produce alginate NPs of a desired shape.
The optimization can be performed by tailoring calcium ion concentration, alginate concentration,
addition speed, pH, temperature, and stirring speed.
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4.1.2. Preparation of Alginate NPs Using Emulsions

The size of alginate NPs prepared by emulsions is usually below 250 nm. This size is highly
desirable for drug delivery applications due to enhanced cellular uptake. Machado et al. [66] developed
calcium alginate NPs by a water-in-oil (W/O) emulsion. Tetraethylene glycol monododecyl ether,
as a nonionic surfactant in decane, was mixed with alginate solution at different concentrations to form
emulsions. Then, CaCl2 was added into the W/O nanoemulsions to form alginate NPs. Finally, alginate
NPs were separated from the aqueous phase. The diameter of the developed NPs was approximately
200 nm [53,56,66–68].

4.1.3. Polyelectrolyte Complexation of Alginate NPs

The production of NPs with polyelectrolyte complex (PEC) systems has gained much attention
due to its simple procedure for drug delivery applications. Generally, PECs can be formed by mixing
oppositely charged polyelectrolytes and allowing them to interact electrostatically [69]. Aqueous
polycationic solutions (chitosan or poly-L-lysine) were mixed with polyanionic alginate solutions at
room temperature to immediately produce alginate-cationic polymeric NPs [70,71]. pH, temperature,
and stirring speed may play major roles in controlling the size of these alginate NPs [72].

4.2. Alginate NPs in Drug Delivery Systems

Alginate NPs have been extensively studied for DDS due to their high encapsulation efficiency of
highly effective drugs, proteins, and peptides. Alginate NPs usually do not agglomerate in organs
while they deliver drugs or proteins [73]. Alginate NPs chemically modified with encapsulation
materials may exhibit prolonged periods of material delivery. NP stability is an important parameter
in DDS. Azevedo et al. [74] developed alginate-chitosan NPs with high stability. They were stored
at 4 ˝C in solution for a period of five months. Their particle size and zeta potential were measured
during that period of time. Particle size may change, and they may aggregate over time; this may
due to the weak electrostatic interactions between alginate and chitosan. However, the addition of
a stabilizer can overcome this type of issue. For example, the addition of vitamin B2 maintained the
stability of alginate–chitosan NPs over a five-month period of time [74].

4.2.1. Alginate NPs in Protein and Peptide Delivery

Quality of life can be reduced significantly by health problems and common diseases. It was
estimated that 9% of adults aged 18+ years and approximately 1.5 million deaths were directly caused
by diabetes. The World Health Organization (WHO) predicts that by 2030, diabetes will be the 7th
leading cause of death [75,76]. Insulin is one of the main treatments for diabetes, and the bioavailability
of oral insulin is limited by the gastrointestinal tract. As a result, the targeted delivery of insulin is
a main objective of NP-based insulin delivery. Polymers play an important role in insulin delivery [77].
Table 1 shows the usage of various alginate NPs for protein delivery, such as insulin delivery.

Table 1. Alginate NPs for protein drug delivery.

Serial number Materials Method Particle size Drug References

1 Alginate–chitosan Ionotropic and polyelectrolyte complex 800 nm Insulin [69]

2 Alginate–chitosan Ionotropic pre-gelation 100–200 nm Insulin [77]

3 Alginate W/O emulsion 2604 nm Insulin [78]

4 Alginate–chitosan Polyelectrolyte complex 700 nm Insulin [79]

5 Alginate–chitosan Gelification 750 nm Insulin [80]

6 Alginate–chitosan–TPP Ionic gelation 260 to 525 nm Insulin [81]

7 Alginate–oligochitosan W/O in microemulsion 136 nm BSA [82]

8 Alginate NPs Microemulsion 350 nm BSA [83]

9 Alginate–chitosan Gelification 200 nm BSA [84]
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Reis et al. [78] developed alginate NPs using a W/O emulsion method and physical cross-linking
with calcium ions; it was demonstrated that calcium ions play an important role in controlling particle
size. The mass ratio of calcium ions to alginate was 7% (w/w). The encapsulation efficiency of insulin
in the alginate NPs was more than 71%. The smaller particle size was achieved by adjusting the
calcium and alginate solution concentrations; higher encapsulation efficiency and lower insulin release
at pH 1.2 were also attained in this way [78]. At higher calcium ion concentrations, there are more
calcium ions free to react with the M and G alginate monomers, forming more rigid alginate polymer
chains and ultimately allowing sustainable insulin release from the alginate.

Sarmento et al. [69] prepared alginate NPs by ionotropic pre-gelation with CaCl2 followed by
a PEC process with chitosan polysaccharides. The pH and mass ratio of the polymers and calcium ions
play crucial roles influencing the NP formation. Approximately 800-nm particle sizes were produced
by this method at pH 4.7 with a 6:1 mass ratio of alginate to chitosan. Fourier transform infrared
spectroscopy results revealed the efficient encapsulation of insulin in the NPs [69]. In work by the same
group, alginate NPs were formed by ionic gelation and used for insulin delivery [79]. In vivo results of
alginate–chitosan NPs loaded with insulin were obtained from diabetic rats. Orally administered NPs
lowered glucose levels by more than 40% at dosages of 50 and 100 IU/kg [80].

The size of the alginate–chitosan NPs was further decreased to less than 250 nm using the same
ionotropic pre-gelation method by controlling the polymer mass ratio (Figure 3). The average size of
the NPs obtained by this method was approximately 100–200 nm. The encapsulation efficiency of the
insulin in the alginate-chitosan NPs was approximately 85%, and sustained release and nontoxicity
were observed when the NPs were used as a peroral treatment [77] (Figure 3).
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Figure 3. A schematic showing the preparation of chitosan-alginate NPs incorporating insulin.
This figure was adopted and redrawn from [77]. Copyright 2015, Elsevier.

Goycoolea et al. [81] developed chitosan–alginate NPs with pentasodium tripolyphosphate (TPP)
using ionic gelation and PEC. The particle size was dependent on the molecular weight of alginate.
The particle size increased from 260 to 525 nm with increased alginate molecular weight. Insulin
was used as a model drug, and the encapsulation efficiency was found range from 41% to 52%.
Insulin-loaded chitosan–alginate–TPP NPs showed efficient systemic absorption in rabbits [81].

Alginate-chitosan NPs have been used for the effective delivery of bovine serum albumin (BSA).
Wang et al. [82] developed NPs based on low molecular weight alginate and chito–oligosaccharides
using a microemulsion method. The size of the NPs was approximately 136 nm. The encapsulation
efficiency reached approximately 88.4%. The developed NPs were nontoxic, biocompatible, and
uniform in size, which suggested that they could be used as vehicles for other drugs [82]. Using the
same microemulsion method, alginate NPs were developed using aqueous CaCl2, dioctyl sodium
sulfosuccinate, and isopropyl myristate. The particle size of the alginate NPs was approximately
350 nm, as measured by DLS. The sustained release of BSA from the alginate NPs was observed.
The loading efficiency of BSA was approximately 40% [83]. Li et al. [84] developed chitosan–alginate
NPs for BSA delivery. The particle size of the NPs was approximately 200 nm. The release of BSA from
the NPs was pH dependent [84].
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4.2.2. Alginate NPs for Cancer Drug Delivery

Cancer has a major impact on society across the world. The number of new cancer cases will
rise to 22 million within the next two decades [85]. Currently, surgery, chemotherapy, and radiation
are the main therapies for cancer; however, it has been several years since chemotherapy has been
used as the primary treatment for cancer because of the extent to which it can kill normal healthy cells.
To overcome this issue, DDS with NPs have become alternative methods of targeting only cancer cell,
increasing the availability of drugs to cancer cells and leaving normal cells unaffected [86]. Different
types of NPs have been extensively studied for cancer drug delivery. Over the last five decades,
liposome-, polymer-, dendrimer-, and protein-based NPs and inorganic NPs have been utilized as drug
carriers to treat cancer [87]. NPs based on both synthetic polymers (e.g., poly(lactic-co-glycolic acid),
polylactic acid, and polycaprolactone) and natural polymers (e.g., alginate, chitosan, carrageenan, and
fucoidan) have been used as drug carriers to deliver several cancer drugs, such as doxorubicin and
5-fluorouracil (5-Fu) (Table 2).

Table 2. Alginate NPs for cancer drug delivery.

Serial number Materials Method Particle size Drug References

1 Alginate Gelification with CaCl2
and poly-L-lysine 250–850 nm Doxorubicin [88]

2 Alginate CaCl2 cross-linking 214 ˘ 11 nm Doxorubicin [89]

3 Glycyrrhetinic
acid–Alginate NPs Chemical modification 80 and 100 nm Doxorubicin [90]

4 Alginate NPs Chemical modification 241 nm Doxorubicin [91]

5 Aerosol OT-alginate NPs Emulsification
cross-linking method 39 ˘ 7 nm Doxorubicin and

methylene blue [92]

6 Alginate–CaCO3 NPs Coprecipitation method 100–400 nm Doxorubicin and p53 [93,94]

7 Chitosan–alginate NPs Emulsion method 200 nm 5-Fluorouracil [95]

8 Alginate–chitosan Ionic gelation 329–505 nm 5-Fluorouracil [96]

9 Alginate-chitosan-Pluronic
F127 Ionotropic pre gelation 100 ˘ 20 nm Curcumin [97]

10 Alginate NPs Oligonucleotide/Poly
lysine NA Antisense

oligonucleotide [98]

11 Alginate–chitosan Ionotropic gelation
method 230 to 627 nm Gemcitabine [99]

12 Bovine serum albumin
and thiolated alginate Coacervation 350 to 500 nm Tamoxifen [100]

Rajaonarivony et al. [88] developed alginate NPs with calcium ions and poly-L-lysine by
a gelification method. The particle size of the alginate NPs was approximately 250–850 nm, and they
were used for doxorubicin delivery. From this study, significant research has been performed to develop
alginate NPs for various drug delivery purposes using a similar type of method [88]. Zhang et al. [89]
developed alginate NPs with a CaCl2 cross-linking method. Alginate was modified with a liver
targeting molecule (i.e., glycyrrhetinic acid) and chemically characterized. The doxorubicin-loaded
glycyrrhetinic acid-alginate NPs exhibited a size of approximately 214 ˘ 11 nm. The drug could
be released from the NPs for 20 days, and the treatment had the capacity to kill hepatocellular
carcinoma cells effectively [89]. The same group examined the in vivo therapeutic efficacy of the
developed NPs using a mouse liver tumor model. The chemical modification of the alginate NPs with
glycyrrhetinic acid increased the biodistribution of doxorubicin. Doxorubicin reached 67.8 ˘ 4.9 µg/g
in the liver after intravenous administration, which was significantly higher compared with the results
of both non-glycyrrhetinic acid-modified NPs and the drug only [90]. By the continuous research
on complexing NPs, glycyrrhetinic acid-modified alginate (GA–ALG) and doxorubicin-modified
alginate (DOX–ALG) were prepared by self-assembly [91] (Figure 4). pH-Sensitive glycyrrhetinic
acid–alginate/doxorubicin–alginate NPs (GA-ALG/DOX-ALG NPs) demonstrated efficient treatment



Polymers 2016, 8, 30 7 of 25

of liver cancer. As shown in Figure 5A, DOX concentration in the liver of the GA-ALG/DOX-ALG
NPs group reached 27.6 µg/g, which was higher than that of the DOX¨ HCl (8.1 µg/g). Further, DOX
release from GA-ALG/DOX-ALG NPs showed pH-sensitivity; less than 10% of the drugs was released
at pH 7.4 within 9 days while 58.7% of drug was released at pH 4.0 (Figure 5B). Confocal laser scanning
microscopy images of HepG2 cells incubated with GA-ALG/DOX-ALG NPs and DOX-ALG NPs at
the same DOX concentration (10 µg DOX/mL) showed that GA-ALG/DOX-ALG NPs were efficienty
taken up by the cells (Figure 5C). H22 tumor tissue treated with GA-ALG/DOX-ALG NPs showed
more effective inhibition of tumor growth compared with bare DOX and DOX-ALG NPs (Figure 5D).
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Surfactant-polymer hybrid NPs using alginate and an anionic surfactant, aerosol-OT (AOT), were
prepared for combined chemotherapy and photodynamic therapy. The NPs were able to deliver both
doxorubicin and methylene blue. Increased nuclear and cellular accumulation of doxorubicin and
methylene blue enhanced the production of reactive oxygen species that contributed to the superior
toxicity [92].

Alginate–calcium carbonate–doxorubicin-p53 NPs were prepared by a co-precipitation technique.
p53 is a tumor suppressor gene that plays a pivotal role in DNA repair, apoptosis, and cell cycle
regulation. Zhao et al. [93,94] stated that, “inhibiting p53 mutations, the reintroduction of wild type
(wt) p53 into tumor cells harboring p53 mutations, may also enhance the sensitivity of tumor cells
to chemotherapeutic agents through the inhibition of the P-gp expression related to drug resistance.
On the other hand, wt p53 protein is positive in response to a variety of stress signals including DNA
damage caused by antitumor drugs”. Thus, the combination of p53 and doxorubicin may increase the
efficacy of the cancer treatment. The developed particle size, approximately 100 to 400 nm, depended
on the polymer content. The NPs showed a high drug encapsulation efficiency and completely inhibited
the growth of the HeLa cells. These NPs were used for both gene and drug delivery purposes [93,94].
Xing et al. developed chitosan–alginate NPs by an emulsion method to incorporate 5-Fu. 5-Fu is
a pyrimidine analog drug that has been used to treat cancer for several decades. The resulting particle
size was found to be approximately 200 nm. A drug release of 50% was observed at 12 h in vitro [95].
Using the same 5-Fu drug, sodium alginate-chitosan NPs were prepared by an ionic gelation technique.
The developed NPs showed a size ranging from approximately 329–505 nm. The encapsulation
efficiency of 5-Fu mainly depended on the molar ratios of sodium alginate and chitosan (6%–26%) [96].

Recent studies have reported that curcumin has several biological activities, such as
anti-inflammatory, antioxidant, and antimicrobial activity and the inhibition of different types of
tumor cells. Das et al. [97] developed alginate–chitosan–pluronic F127 NPs for curcumin drug delivery.
The encapsulation efficiency of the NPs was improved by the addition of pluronic F127. The size of the
NPs was found to be approximately 100 nm [97]. Other studies using alginate NPs for cancer drug
delivery have also been reported elsewhere [98–100].

4.2.3. Alginate NPs for Antibiotic and Antimicrobial Drug Delivery

Several antimicrobial drugs are available on the market to kill bacteria, viruses, and fungi [101].
Zahoor et al. [102] developed alginate NPs as antitubercular drug carriers. Isoniazid, rifampicin,
and pyrazinamide were encapsulated by the alginate NPs. The encapsulation efficiency of these
drugs was approximately 70%–90%. The size of the alginate NPs was approximately 235.5 nm with
a polydispersity index of 0.439 [71,102,103] (Table 3).

Choonara et al. (2011) developed alginate NPs with an ionic cross-linking and reverse emulsion
method [104]. Ghaffari et al. [105] developed alginate–chitosan NPs encapsulating ciprofloxacin
with a particle size of approximately 520 ˘ 16 nm. The loading efficiency of ciprofloxacin was 88%.
A sustained release of ciprofloxacin was observed over 45 h [105]. Bi-specific and biodegradable
chitosan-alginate polyelectrolyte NPs were developed by Arora et al. [72] for amoxicillin delivery.
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The particle size of the developed NPs was 264 nm. By increasing the chitosan concentration
in the polyelectrolyte system, the particle size was increased [72]. Chopra et al. [106] developed
chitosan–alginate NPs for streptomycin delivery. The size of the developed NPs was 328 nm, and the
encapsulation efficiency of the drug was 93.32% [106]. Other alginate-chitosan NPs encapsulating
antimicrobial drugs have also been developed [107,108].

Table 3. Alginate NPs for antibiotic drug delivery.

Serial number Materials Method Particle Size Drug References

1 Alginate NPs Cation-induced
gelification NA

Rifampicin, isoniazid,
pyrazinamide and

ethambutol
[71]

2 Alginate–chitosan Polyelectrolyte
complex 264–638 nm Amoxicillin [72]

3 Alginate NPs Cation-induced
gelification 235.5 ˘ 0 nm Rifampicin [102]

4 Alginate NPs Cation-induced
gelification 235.5 ˘ 0 nm

Isoniazid, rifampicin,
pyrazinamide, and

ethambutol
[103]

5 Alginate Reverse emulsion 240 ˘ 8.7 nm Rifampicin and
isoniazid [104]

6 Calcium alginate Polyelectrolyte
complex 520 nm Ciprofloxacin [105]

7 Alginate–chitosan Ionotropic
pre-gelation 328 nm Streptomycin [106]

8 Alginate–chitosan–silica Polyelectrolyte
complex NA

Piperacillin-tazobactam,
cefepime, piperacillin,
imipenem, gentamicin,

ceftazidime

[107]

9 Alginate–chitosan Gelification 50–250 nm Nisin [108]

4.2.4. Alginate NPs for Other Drug Delivery

Alginate NPs are excellent for encapsulating various drugs. Methylene blue, fluorescein sodium
salt, nifedipine, gatifloxacin, rhodamine 6G, EGFR phosphorothioated 21-mer antisense 50, turmeric
oil, epidermal growth factor, Bupivacaine, vitamin D3, 5-aminolevulinic acid, tuftsin, candida rugosa
lipase, ibuprofen, ivermectin, enoxaparin, nitric oxide, benzoyl peroxide, and quinapyramine have all
been encapsulated in alginate NPs for drug delivery [109–131] (Table 4).

Table 4. Alginate NPs for other drug delivery.

Serial number Materials Method Particle size Drug References

1 Sodium alginate–chitosan Ionic gelation,
polyelectrolyte 205 to 572 nm Gatifloxacin [70]

2
Sodium alginate:

CaCl2-(poly-L-lysine or
chitosan)

Ionic gelation 544 ˘ 53 nm Methylene blue [109]

3 Silica/alginate NA 50–200 nm [110]

4 Alginate–chitosan Ionotropic gelation 600 nm Fluorescein sodium salt [111]

5 Alginate–chitosan Polyelectrolyte 20–50 nm Nifedipine [112]

6 OT-alginate hydrogel loaded
with Fe3O4

emulsification-cross-
linking process 25 and 50 nm Rhodamine 6G [113]

7 Alginate–chitosan Precipitation method 194 nm
EGFR

Phosphorothioated
21-mer antisense 50

[114]

8 Alginate–chitosan Gelification 522 ˘ 15 nm Turmeric oil [115]

9 Alginate–chitosan NA NA Epidermal growth factor
receptor [116]
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Table 4. Cont.

Serial number Materials Method Particle size Drug References

10 Alginate–chitosan Polyelectrolyte NA Bupivacaine [117]

11 Alginate–chitosan NA 600–650 nm pAcGFP1-C1 plasmid [118]

12 Hydrophobic alginate
derivative Chemical modification 200–400 nm, Vitamin D3 [119]

13 Alginate folic acid chitosan Ionic gelation 115 nm 5-aminolevulinic acid [120]

14 Alginate NPs Gelation method 200 nm Tuftsin [121]

15 Superparamagnetic sodium
alginate NPs W/O emulsion method 25–30 nm Candida rugosa lipase [122]

16 superparamagnetic alginate
NPs Coprecipitation 200 nm Ibuprofen [123]

17 Thiolated chitosan alginate NA 265.7 ˘ 7.4 to
471.0 ˘ 6.4 nm Ocular drug [124]

18 Chitosan–alginate NPs Coacervation 155 nm Ivermectin [125]

19 Chitosan–alginate NPs Ionic gelation 213 nm Enoxaparin [126]

20 Chitosan–alginate NPs NA NA Nitric oxide [127]

21 Chitosan–alginate NPs Polyelectrolyte complex 50 nm Benzoyl peroxide [128]

22 Alginate beads W/O emulsion 200 to 1000 nm NA [129]

23 Alginate NA NA Pesticide [130]

24 Sodium alginate NPs Emulsion-cross-linking
technology 60 nm Quinapyramine [131]

4.3. Alginate NP Patents

There are several patents regarding alginate-based NPs with different types of preparative
methods. The methods of W/O emulsion and ionic cross-linking with calcium ions are patented [132].
Aerosol alginate NPs with doxorubicin, verapamil, and clonidine are also patented [133].

5. Carrageenan NPs

Carrageenan is an anionic, sulfated polysaccharide and is commonly isolated from red seaweed.
It is mainly composed of D-galactose and 3,6-anhydro-D-galactose with glyosidic units. Carrageenan
has been widely used for functional food applications and cancer treatments [134–138]. Recently,
carrageenan has also been used for several biomedical applications [139–143], which were intensively
reviewed by Li et al. [144]. The extraction procedure, structure, and subsequent product applications
have also been discussed by Prajapati et al. (2014) in detail [22,145]. Three different types of
carrageenan are available, depending on the extraction procedure: kappa (κ), iota (ι), and lamda
(λ) carrageenan [146] (Figure 6).
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Polyelectrolyte 

complex 
50 nm Benzoyl peroxide [128] 

22 Alginate beads W/O emulsion 200 to 1,000 nm NA [129] 
23 Alginate NA NA Pesticide [130] 

24 Sodium alginate NPs 
Emulsion-cross-

linking technology 
60 nm Quinapyramine [131] 

4.3. Alginate NP Patents 
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5.1. Production of Carrageenan NPs

The negative surface charge of carrageenan can form a PEC with positively charged ion molecules.
NPs formed by chitosan-carrageenan complexing have been studied for drug delivery purposes.
These NPs can be prepared by the ionic gelation or polyelectrolyte complexing methods by mixing
carrageenan with cationic polymers such as chitosan [147] (Figure 7).

Long-term NP stability is a major challenge of polysaccharide-based NPs used for DDS.
Rodrigues et al. [148] reported chitosan-carrageenan NPs that were developed using a simple
polyelectrolyte complexation method. The developed NPs were stored at 4 ˝C in an aqueous solution,
and their size and zeta potential were measured. No statistically significant changes were observed in
the size and zeta potential. This indicated that the stability of the NPs was not dependent on the mass
ratio of polymers [148]. In work from the same group, the addition of TPP to the chitosan-carrageenan
mixture was observed to increase the stability of the NPs for over 250 days [149], suggesting that TPP
can act as an effective stabilizer.
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5.2. Carrageenan NPs as Drug Delivery Vehicles

The most widely used method to prepare carrageenan NPs is the polyelectrolyte method,
which is very simple and requires mild conditions. In recent years, particular attention has been
directed toward carrageenan-chitosan NPs for the delivery of drug molecules (Table 5). A very mild,
feasible, and convenient polyelectrolyte method for the production of carrageenan–chitosan NPs was
investigated [150]. Bulger et al. [151] developed chitosan-carrageenan NPs by ionotropic gelation for
the controlled release of recombinant human erythropoietin (rHu-EPO). The size of the developed
NPs ranged from 200 to 1000 nm. The encapsulation efficiency of the rHu-EPO was approximately
47.97% ˘ 4.10%. In addition, approximately 50% of the encapsulated rHu-EPO was released over two
weeks in a sustained manner [151]. It has been reported that the prepared NPs were nontoxic to L929
cells. Moreover, ovalbumin was used as a model protein, and the loading efficiency of the ovalbumin
varied from 4% to 17% [152]. Cross-linked carrageenan nanogels were prepared using a microemulsion
method. The size of the NPs was smaller than 100 nm [153]. Chitosan–carrageen–TPP NPs by ionic
gelation were developed [149,154]. The size of the NPs was approximately 150–300 nm [149,154].
Other carrageenan-based NPs for DDS have also been reported [155–157].
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Table 5. Carrageenan NP production methods and delivery systems.

Serial number Materials Method Particle size Drug References

1 Chitosan–carrageenan NPs Ionotropic gelation 200 to 1000 nm rHu-EPO [151]

2 Chitosan/carrageenan Ionic complexation 350–650 nm Ovalbumin [152]

3 Cross-linked–carrageenan NPs Reverse microemulsion 100 nm Methylene blue [153]

4 Chitosan/carrageenan/TPP Ionic gelation 150–300 nm BSA [149,154]

5 Carrageenan/protamine Self-assembled 100–150 nm NA [155]

6 Carboxymethyl chitosan and
carrageenan NA NA Riboflavin [156]

7 Carrageenan hydrogel Gelation NA Methylene blue [157]

6. Fucoidan NPs

Fucoidan is an anionic, sulfated polysaccharide found in brown seaweed (e.g., Laminaria japonica,
Macrocystis pyrifera, Fucus vesiculosus, and Ascophyllum nodosum). It is mainly composed of α-(1-3)-linked
fucose units or repeating disaccharide units of α-(1-3)- and α-(1-4)-linked fucose residues with O-2
branches (Figure 8). It has excellent bioactivity, including antivirus, antitumor, antithrombotic,
anticoagulant, anti-inflammatory, and antioxidant activity [158–161]. Research on fucoidan for biomedical
applications is still at the early stage of determining its exact function [162–165]. Some studies have been
conducted regarding fucoidan-based NPs for the delivery of curcumin, doxorubicin, and growth factors.
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6.1. Production of Fucoidan NPs

Chitosan/fucoidan-based NPs were synthesized using different types of methods, such as
self-assembly, coacervation, polyelectrolyte complexing, ionic cross-linking, chemical modification,
and emulsion (Table 6). Pinheiro et al. (2014) developed chitosan-fucoidan NPs using self-assembly
for the delivery of bioactive compounds [166]. Lee and Lim et al. (2014) discussed the formation of
chitosan-fucoidan NPs in two papers in detail [167,168]. The size of the developed chitosan–fucoidan
NPs ranged from approximately 365–900 nm. A 1:1 ratio of chitosan to fucoidan was the optimum
condition to produce NPs with a small size, high yield, and good stability. They also found that pH 5 was
optimum to produce the polyelectrolyte NPs [167,168]. Kimura et al. [169] developed fucoidan-based
NPs and assessed their activity against osteosarcoma. The experimental results suggested that the
fucoidan NPs were more effective than native fucoidan [169]. Fucoidan nanogels with a particle size of
approximately 123 nm were produced and used for cancer research [170]. Stable chitosan–fucoidan NPs
encapsulating basic fibroblast growth factor (bFGF) were developed for nerve tissue engineering [171].
The particles were able to protect bFGF from degradation by enzymes. The particles were stable for
a period of eight days. O-carboxymethyl chitosan/fucoidan NPs were prepared by ionic crosslinking
and used for curcumin delivery [172] (Figure 9). The synthesized curcumin-loaded chitosan/fucoidan
NPs dramatically increased the cellular uptake of curcumin. Fucolidan NPs by coacervation process
and anionic emulsion polymerization were also developed [173,174].
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Serial number Materials Method Particle size References

1 Chitosan-fucoidan NPs Self-assembled 365–900 nm [167,168]

2 Fucoidan lipid NPs Chemical modification 100 nm [169]

3 Fucoidan nanogels Graft with hexadecylamine 123 nm [170]

4 Chitosan-fucoidan Coacervation process 154 and 453 nm [173]
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6.2. Fucoidan NPs for Growth Factor Delivery

A diverse set of fucoidan NPs for the delivery of growth factors has been reported (Table 7).
Huang et al. developed chitosan fucoidan-based NPs as vehicles for stromal cell-derived factor-1
(SDF-1) [175]. Chitosan–TPP–fucoidan NPs were developed using ionic gelation and PEC
methods. The encapsulation efficiency of the chitosan-TPP-fucoidan NPs with SDF-1 was 60%–68%.
The developed NPs showed a spherical diameter of approximately 173–403 nm. The amount of released
SDF-1 from the chitosan-TPP-fucoidan NPs ranged from 17 to 23 ng/mL [175]. In work from the same
group, chitosan-fucoidan NPs were produced by a PEC process and used for nerve tissue engineering.
The size of the NPs was approximately 200 nm. The developed chitosan-fucoidan NPs were nontoxic
to PC12 cells at a concentration of 125 ng/mL. Fucoidan-chitosan NPs were also prepared by a PEC
processs with sonication [176]. BSA-loaded fucoidan-chitosan NPs showed a sustained release of BSA.

Table 7. Fucoidan NPs for growth factor delivery.

Serial number Materials Method Size Drug References

1 Chitosan–fucoidan NPs Polyelectrolyte complexing 200 nm bFGF [171]

2 Chitosan–TPP–fucoidan Ionic gelation and
polyelectrolyte complexing 173–403 nm SDF-1 [175]

3 Fucoidan–chitosan NPs Polyelectrolyte complexing 860 nm BSA [176]

6.3. Fucoidan NPs for Cancer Drug Delivery

A number of studies have reported that fucoidan itself has the capability of eliminating cancer
cells by inducing apoptosis [177–184]. Therefore, various fucoidan-based NPs encapsulating anticancer
drugs have been intensively developed in the pursuit of efficient cancer therapies (Table 8). Huang et al.
(2011) developed chitosan-fucoidan NPs by ionic gelation for curcumin delivery [185]. Curcumin can be
used as a natural anticancer drug, but its application has been hindered due to low bioavailability[186].
To improve bioavailability, curcumin-loaded NPs have been attempted [187–189]. The encapsulation
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efficiency of curcumin in chitosan-fucoidan NPs was higher than 85%. The release of curcumin
increases with increasing pH; while the release of curcumin from the chitosan-fucoidan NPs was
inhibited at pH 1.2, its release was increased at pH 6.0 and 7.0 [185]. In work from the same
group, fucoidan NPs were developed using o-carboxymethyl chitosan for curcumin delivery. Ionic
cross-linking has been used to produce these NPs. The encapsulation efficiency increased significantly
to 92.8%. Curcumin was efficiently released from the chitosan-fucoidan NPs in a pH-dependent
manner. While the release of curcumin was effective at pH 7.4, the release of curcumin was minimal
at pH 2.5 [172,190]. Fucoidan NPs encapsulating DOX were also developed for cancer therapy [191].
The drug encapsulation efficiency was found to be 71.1% and 3.6%. The particle size was approximately
140 nm [191]. In HCT-8 cells (MDR model cells) exposed to DOX-loaded AcFu NPs, a time-dependent
cellular internalization of the drugs was observed. Over 99% of the total DOX load was internalized
by the HCT-8 cells after 2 h, whereas 1.99% and 1.79% of a fucoidan–DOX mixture and free DOX were
internalized, respectively (Figure 10A–D). Only the DOX-loaded AcFu NPs could be clearly identified
in confocal images (Figure 10E). In HCT-116 cells (non-MDR cells), the cellular uptake of free DOX was
similar to that of the AcFu nanoparticle-encapsulated DOX (Figure 10F). However, these researchers
mentioned that the mechanism behind this result was unclear mechanism (Figure 10 and Table 8).

Table 8. Fucoidan NPs for cancer drug delivery.

Serial number Materials Method Particle size Drug References

1 Chitosan–fucoidan NPs Self-assembled Approximately 100 nm PLL [166]

2 O-carboxymethyl
chitosan/fucoidan

Ionic
cross-linking 270 nm Curcumin [172]

3 Chitosan–fucoidan Ionic gelation 173 nm Curcumin [185]

4 Fucoidan NPs Self-assembly 140 nm Doxorubicin [191]
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Figure 10. The time-dependent cellular uptake efficiency of doxorubicin was estimated by FACS 
analysis. Flow cytometry analysis of cells treated with (A) doxorubicin-loaded acetylated fucoidan 
NPs (AcFu NP); (B) natural fucoidan–doxorubicin mixtures; and (C) free doxorubicin. The colors in 
these graphs indicate the time after sample treatment: red—control; blue—30 min; pink—1 h; green—
2 h; and sky blue—4 h. The uptake efficiencies at each time point are indicated by the bar graph in 
(D); (Black: doxorubicin-loaded AcFu NPs; gray: natural fucoidan–doxorubicin mixture; dark gray: 

Figure 10. The time-dependent cellular uptake efficiency of doxorubicin was estimated by FACS
analysis. Flow cytometry analysis of cells treated with (A) doxorubicin-loaded acetylated fucoidan NPs
(AcFu NP); (B) natural fucoidan–doxorubicin mixtures; and (C) free doxorubicin. The colors in these
graphs indicate the time after sample treatment: red—control; blue—30 min; pink—1 h; green—2 h;
and sky blue—4 h. The uptake efficiencies at each time point are indicated by the bar graph in (D);
(Black: doxorubicin-loaded AcFu NPs; gray: natural fucoidan–doxorubicin mixture; dark gray: free
doxorubicin.); (E) Confocal images of doxorubicin uptake 4 h after treatment; (F) Confocal images
of doxorubicin uptake in HCT-116 cells 4 h after sample treatment. The figures were adopted with
permission from [191]. Copyright 2013, Elsevier.
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7. Future Research in Seaweed Polysaccharide NPs

Ionic gelation and PEC methods provide excellent opportunities to produce large amounts of
natural polymer-based NPs. However, there are several factors to be considered for developing natural
polymer-based NPs, including the molecular weight of the polymers, addition time, pH, stirring
speed, and temperature. To date, few in vitro, in vivo studies, and particle formation studies have
been performed using alginate, carrageenan, and fucoidan NPs for drug delivery. There is a need for
more in vivo research on carrageenan NPs and fucoidan NPs for further commercialization and use in
clinical settings [192].

7.1. Active Targeting Molecules

Proper NP charge, size, and shape can improve drug delivery efficacy. In addition to those factors,
engineering NPs with targeting moieties can significantly enhance drug delivery efficacy through the
high accumulation of drugs in the targeted disease areas. In recent years, various targeting moieties,
including peptides, small molecules, and polysaccharides themselves, have been incorporated into
polysaccharide-based NPs to obtain targeted delivery. Somatostatin receptors, A54 hepatocarcinoma
binding peptide, RGD peptide, and small molecules (e.g., glycyrrhetinic acid and vitamin E succinate)
have also been used as targeting moieties [40]. Polysaccharides such as chitosan have also been known
to have a capacity to promote drug absorption in the small intestine due to mucoadhesion [40,193–197].

7.2. Other Seaweed Polysaccharides

Future research can be focused on the formation of NPs from other seaweed polysaccharide-based
biomaterials, such as ulvan and laminarin. Different seaweed polysaccharides have their own merits
and applications. Ulvan is an anionic polysaccharide and thus easily forms NPs with cationic polymers
such as chitosan, which indicates its potential as a biocompatible drug delivery carrier [198–201].

The seaweed polysaccharide NP preparations in this review were mainly based on combinations
of chitosan and polyanions (e.g., alginate, carrageenan and fucoidan). The main reason to combine
the chitosan and polyanions is to produce stable polymeric NPs, which can be achieved by the
opposite charge interactions of chitosan and alginate. Developed NPs have been shown to protect
the encapsulated materials and release drugs sustainably and effectively. Further advantages of the
chitosan-polyanionic system include nontoxicity, biocompatibility and biodegradability [202].

8. Conclusions

In this review, we have discussed the production of various NPs using seaweed-based
polysaccharides and their applications in drug delivery. The formation of seaweed polysaccharide-based
NPs can easily be achieved by means of ionic gelation and PEC; these materials have the capacity
to hold drug molecules and release them in specific locations. We believe that these methods will
be increasingly utilized for the production of polysaccharide-based NPs in the future. Seaweed
polysaccharide-based NPs have shown promising results in delivering proteins, peptides, anti-cancer
drugs, and other drugs with increased bioavailability and sustained release properties. In particular,
alginate-based NPs have extensively been studied for the delivery of anti-cancer drugs. In the last
three decades, several studies have been conducted on seaweed polysaccharides both in vitro and
in vivo; these studies have demonstrated the high stability and biocompatibility as well as sustained
drug release achievable by these systems, which will support their future use in clinical settings.
The introduction of targeting moieties to polysaccharide-based NPs will improve their therapeutic
efficacy while also reducing undesired side effects.
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