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Abstract: High-throughput metabolomics can be used to optimize cell growth for enhanced pro-
duction or for monitoring cell health in bioreactors. It has applications in cell and gene therapies,
vaccines, biologics, and bioprocessing. NMR metabolomics is a method that allows for fast and
reliable experimentation, requires only minimal sample preparation, and can be set up to take online
measurements of cell media for bioreactor monitoring. This type of application requires a fully
automated metabolite quantification method that can be linked with high-throughput measurements.
In this review, we discuss the quantifier requirements in this type of application, the existing methods
for NMR metabolomics quantification, and the performance of three existing quantifiers in the context
of NMR metabolomics for bioreactor monitoring.

Keywords: NMR; metabolomics; bioreactors; metabolite quantification; quantitative NMR; biomanu-
facturing; bioprocessing

1. Introduction

Metabolites are both downstream products and regulators of the majority of biological
processes. The ability to quantify them in a nondestructive manner from a test sample offers
us an opportunity to use them as a proxy to study or monitor these processes in a variety
of biological systems, including live cell cultures. If automated, this would enable in vivo
repeated inference of cell phenotype and its gene or protein interactions at regular time
intervals, possibly in a high-throughput setup. Some high-throughput metabolomics appli-
cations include drug discovery [1–3], toxicology [4], biomass processing [5], and vaccine
production in bioreactors [6,7].

Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) are
presently the most popular methods to analyze metabolites. Although MS is more sensitive
and can, with application of different MS approaches, detect more metabolites than NMR,
NMR is attractive for quantitative metabolomics because NMR experiments can be per-
formed easily and quickly without complicated sample preparation procedures. Following
investment in an NMR instrument, experiments are inexpensive, and highly reproducible.
MS experiments require more involved preparations, extensive quality control, and are
destructive to the test sample. The nondestructive aspect of NMR makes it interesting as a
first step in further, perhaps more time-consuming or expensive analysis as well as possible
analysis of live cells. In bioreactor applications, NMR metabolomics is uniquely attractive
for continual media monitoring, which can provide extensive data for condition optimiza-
tion. Flow NMR probes allow continual sample measurement with no need for NMR
sample tubes, or extensive sample preparation such as spectrometer shimming as only the
sample solution itself is exchanged. Quantitative NMR metabolomics can be envisioned as
an additional sensor for monitoring the molecules involved in the reactor process.
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The most popular approach in NMR metabolomics, including quantitative NMR
metabolomics, is the 1D 1H NMR. Other nuclei, such as 13C, 15N, or 31P can also be used in
natural abundance or in isotopically labeled samples. The physics behind the 1D 1H NMR
relate the concentration of the metabolites’ signals in a straightforward manner [8], and an
experiment can be performed in a matter of minutes. We refer the reader to the review by
Emwas et al. [9] for more information on the different NMR methods and its comparison
to MS for metabolomics.

The 1D NMR has a relatively narrow spectral range, and multidimensional NMR can
better identify a large number of metabolites in a test sample. However, multidimensional
NMR experiments generally take significantly longer to perform, and the concentration
of each metabolite in the test sample could have different proportionality constants to
the signal volume [8–10]. Recent literature, such as [10], provide strategies and proto-
cols to mitigate the different proportionality constants and slow acquisition time issues,
and quantification from 2D NMR seems attainable under certain conditions. Still, 1D NMR
experiments remain a preferred method for most metabolomics applications due to its fast
measurement time, which is a desirable characteristic in a monitoring application. There
are also more 1D 1H NMR metabolite standards in public databases than any other types
of NMR, which is useful for the metabolite assignment and quantification task.

Presently, most metabolomic studies rely on manual or semimanual NMR spectra
profiling, identification, or quantification by trained experts. This is because profiling
many different metabolites from standard libraries remains an open pattern recognition
problem. Although there are guides on this manual task (e.g., [11]) and several automated
and semiautomated methods have been published [12–15], a fully automated solution
remains elusive. It would also be beneficial if such an algorithm could provide some form
of uncertainty quantification to better inform downstream analysis algorithms. In addition,
existing literature requires specific experimental conditions or experimental designs for
accurate profiling or quantification of 1D 1H NMR spectra; for example, a set of protocols
were identified for plant metabolomics in [16], blood profiles in [17], celebrospinal fluid
in [18], urine in [19], and experiment design methods were proposed for the bioreactor
setting in [20].

Most existing quantitative NMR literature focus on biofluids that are relevant for
clinical applications of NMR metabolomics. Many such applications have test samples
that arise from controlled environments, which are similar to the standards from public
libraries [9,21,22]. Conversely, bioreactors, generally defined as vessels where biological
reaction or change is taking place, can involve enzymes (e.g., for cell-free bioprocess-
ing), microorganisms (e.g., for environmental remediation or fermentation), animal cells
(e.g., for production of biologics or vaccines), plant cells (e.g., for production of bioactive
compounds), and tissues (e.g., for cell therapies). To provide a reliable yield in these types
of bioreactor applications, it is crucial to maintain a suitable environment for the desired
biological reaction to take place. This is only possible with sufficient information about the
cellular environment at different time stamps of the reactor process.

Most existing quantifiers also focus on applications where the metabolites have mostly
reached homeostasis, and that the metabolic profiles differ mostly in concentration but not
composition, i.e., no new metabolites are being introduced between experiments. In the
case where multiple experiments were conducted at different times during a particular run
of a bioreactor, some of the experiment samples could contain different types of byproduct
metabolites that are not present in the other samples. Therefore, methodologies for fast,
high-throughput quantitative metabolomics of bioreactors require quantifiers that are
robust to the challenges in this setting. We discuss these issues in Section 3.

There are a few recent reviews that touch on quantitative NMR (e.g., [9,21,22]). How-
ever, to the best of our knowledge, benchmark or performance analysis for existing quan-
titative NMR approaches applied to the bioreactor setting is lacking. We first review a
popular 1D 1H NMR signal model, followed by some challenges for quantifying metabolite
concentrations. We then briefly review some existing NMR quantifiers before reporting
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our benchmark results. Our motivation for the benchmark section is to provide insight
into how some existing NMR quantifiers [12,14,15] perform against our benchmark sample.
These quantifiers were chosen because they are publicly accessible and are still being main-
tained. We used Dulbecco’s modified Eagle’s medium (DMEM), a cell growth medium,
as our benchmark biological sample. The experiment associated with our benchmark data
was conducted using a 600 megahertz (MHz) spectrometer. This cell medium was chosen
because of the presence of glucose and a number of other amino acids that are commonly
found in mammalian cell bioreactor applications. We conclude with some potential av-
enues of exploration for future quantifiers. The benchmark NMR data is included in the
supplementary material.

2. Preliminaries: 1D 1H NMR

Modern NMR spectrometers operate on the principles of Fourier NMR theory [23,24].
The collected data from a 1D 1H NMR experiment can be approximated by the free-
induction decay (FID) signal model:

s(t) = ∑
l

αlei(Ωl t−βl)e−λl t, (1)

where i is the imaginary number, Ωl , αl , and λl are all positive real numbers, and βl is
an angle in radians. This is a weighted sum of complex-valued exponential components,
and we shall denote by l the resonance component index. The frequency term Ωl captures
the energy difference of the excited protons in a molecule, αl acts as a measure of component
intensity, and βl quantifies a phase offset from the other components. The decay term
λl is related to the transverse relaxation time constant T2, which is a characteristic of the
molecule. In practice, many of the components have similar frequency values, and such
components visually appear as one unified component in the observed data spectrum due
to the finite spectral resolution of the instrument. Further details on NMR theory can be
found in [8,25,26], and we focus on the implications of these effects on the observed data in
this section.

The sinusoidal components in the FID signal can have frequencies that are too high
for a human to visually appreciate, so NMR spectroscopists usually work with the Fourier
transform of the FID signal. The Fourier transform of the FID is

S(ν) = ∑
l

αleiβl Ql(ν), (2)

where the ν is the frequency variable in Hertz (Hz), and the complex Lorentzian is defined
as

Ql(ν) :=
1

λl + i(2πν−Ωl)
. (3)

The NMR literature often work with the real and imaginary parts of the complex
Lorentzian. The real part is called the absorption Lorentzian and is given by

real{Ql(ν)} :=
λl

λ2
l + (2πν−Ωl)

2 . (4)

This function is strictly positive, unimodal, and has heavier tails than a Gaussian
function. The width and tail characteristics of this function are both controlled by λl .
A heavier molecule usually has a smaller T2 relaxation term than a lighter molecule, which
corresponds to having a Lorentzian with greater widths. Take note that both the α and λ
parameters affect the visual height of the absorption Lorentzian. This can be inferred by
substituting the frequency ν by its resonance (peak) frequency Ωl

2π in Equation (4), which
gives the peak amplitude 1

λl
for the absorption Lorentzian. Figure 1 illustrates the effect of
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λ on the visual height and tail characteristics of the absoption Lorentzian. Here, the two
Lorentzians share the same the intensity α value.

Figure 1. Two absorption Lorentzians that share the same frequency parameter. Both are multiplied
by an intensity parameter α, which is set at 3.5.

The imaginary part is called the dispersion Lorentzian and is given by

imag{Ql(ν)} :=
2πν−Ωl

λ2
l + (2πν−Ωl)

2 .

From these definitions and Equation (2), it is clear the phase βl facilitates a mixing role
for how much absorption and dispersion Lorentzian is present in the real and imaginary
parts of the FID spectrum S.

2.1. Intensity

For 1D 1H NMR spectroscopy, the intensity parameter αl is directly proportional
to the number of hydrogens that is associated with the resonance component l [8,25,26].
The absorption Lorentzian in Equation (4) is often used by NMR spectroscopists because
it offers a way to estimate αl given βl , without having to fit the Ωl and λl parameters.
The definite integral of the absorption Lorentzian over the interval [c1, c2] is given by∫ c2

c1

λl

λ2
l + (2πν−Ωl)

2 dν =
1

2π

(
tan−1

(
Ωl − 2πc1

λl

)
− tan−1

(
Ωl − 2πc2

λl

))
. (5)

Consider a signal S̃ that is exactly like S, but has each of its phase parameters, βl , set
to zero for all resonance indices l. The real part of Equation (2) in this setting becomes

real
{

S̃(ν)
}

= ∑
l

αlλl

λ2
l + (2πν−Ωl)

2 .

When c1 → −∞ and c2 → ∞ in Equation (5), i.e., when integrating over the entire
domain, we have

∑
l

∫ ∞

−∞

αlλl

λ2
l + (2πν−Ωl)

2 dν = ∑
l

αl
2

.

This implies that one can get an approximation of any αl that has a resonance frequency
Ωl far from any other resonance frequency by integrating real

{
S̃(ν)

}
over a domain where

there are no other resonance components. In practice, one needs to estimate S̃ given time
series data of the FID signal s (see Equation (1)). One then assumes the resonance index l of
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interest has a resonance frequency Ωl that is far from the frequencies of the other resonance
components, and integrate real

(
S̃
)

near Ωl to get an estimate for αl .
One can think of S̃ as a canonical representation that could be estimated from the

collected data of the time series, s, before performing metabolite assignment or quan-
tification procedures on this estimated canonical representation. This reason motivates
spectroscopists to develop methods to estimate the zero-phased spectrum S̃ given the
spectrum S. In reality, one can only approximate the Fourier transform S from the finite
samples of the data-domain data s, since one can only compute the discrete-time Fourier
transform or the discrete Fourier transform from the data samples of the FID signal s.
The estimated S̃ is commonly referred to as the phase-corrected, phased, or auto-phased
spectrum. We shall discuss the estimation of S̃ in Section 3.5.

2.2. Metabolite NMR

The unique peak patterns for each metabolite in the test sample is a manifestation of
its spin interactions with an external magnetic field and radio-frequency pulse excitation.
Some patterns are attributed to parameters that are intrinsic to a molecule, with chem-
ical shift and J-coupling constants being the most relevant in the final NMR spectrum.
The chemical shift parameter can also be affected by various external factors such as the po-
tential of hydrogen (pH) of the sample or the presence of other metabolites. The frequency
units in NMR spectroscopy are usually ppm or Hz; chemical shifts are expressed in ppm,
and J-coupling constants are expressed in Hz.

Informally speaking, these parameters are a characterization of the location of the
nucleus of the 1H spin and its electronic environment. They affect the resonance frequency
position Ωl and intensity αl of that resonance component. There are existing studies that
estimate these parameters from empirical data [27,28], as well as works that simulate the
NMR spectrum given these parameters [29]. See [30] for a brief guide on how these param-
eters can help with identifying metabolites, and [31] for a survey of various methodologies
to estimate them.

3. Challenges for Automatic Quantification for Bioreactor Monitoring

We summarize in Table 1 some differences between NMR experiments collected
from cell cultures and biofluids. Continual monitoring refers to the collection of samples
and NMR experimentation in short time intervals, and is only possible in the bioreactor
application of cultivating cell cultures. The number of samples for a generic bioreactor
application is based on the assumption of having a continual monitoring setup where
measurements are carried out every 15 min over a 20-day bioreactor run. This would result
in 1920 NMR experiments. On the other hand, biofluid analysis requires either animal
models or patients samples, which makes it difficult to collect a large numbers of samples.

Table 1. Comparison between biofluid vs. cell culture NMR experiments.

Bioreactor/Cell Cultures Biofluids
Continual measurement Possible Impossible
Sample size Nonlimiting Limiting
Condition changes Straightforward Difficult
Condition control Straightforward Possibly difficult
Sample preprocessing Minimal Possible
Number of samples Possible in 1000’s Mostly below 100
2D NMR or additional MS
experiments

Possible for small subset
of samples

Possible

Sample collection effort Trivial Complicated
Dynamic range across
metabolites and samples

Very large across metabo-
lites and samples

Large in some samples
(e.g., urine)
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The challenges of quantifying a generic 1D 1H NMR cell culture experiment are: (1)
many metabolites have overlapping peaks due to similar resonance frequencies, (2) low
sensitivity of the NMR experiment can lead to unresolved metabolites of interest, (3) the
possibility of unknown contaminants in the test sample, (4) differences in experimental
conditions (especially for online monitoring) can cause a discrepancy between the cata-
logued spectra from NMR databases and the observed spectrum in experiment at hand for
a given metabolite, and (5) the presence of the phase parameter βl .

Specifically to the bioreactor application, the main issue is in the large number of
experiments that need to be performed and quantified quickly, which makes methods that
require extensive sample processing and application of 2D NMR difficult. An automated
quantifier is required because it is impractical to manually input different parameters for
each experiment in a continual monitoring setup. In this setting, an automated NMR
quantifier needs to be robust to unpredictable small changes in metabolite peak positions
(osmolality and pH), the presence of a strong solvent (water) signal, the possible presence
of larger particles (e.g., exosomes) if a filtering or centrifugation step is not performed,
and a short data acquisition time.

3.1. Peak Overlap

The spectral window of 1D 1H NMR spectroscopy is relatively narrow for spectroscopy,
and it is likely that some of the metabolites in a sample will have their most prominent
resonance frequencies close to each other. This visually appears as overlapping peaks in the
data spectrum. Such an example is shown in Figure 2 for L-Leucine, L-Isoleucine, L-Valine,
and a bioreactor media that contains these three amino acids.

Figure 2. The autophased spectrum of four NMR experiments: (top left) experiment containing only L-Isoleucine, (top right)
experiment containing only L-Leucine, (bottom left) experiment containing only L-Valine, and (bottom right) experiment
containing a mixture of L-Isoleucine, L-Leucine, L-Valine, and other metabolites. Autophasing is discussed in Section 3.5.
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To simplify the pattern matching, some Fourier-based quantifiers select frequency
ranges that are associated with only the most prominent peaks for each metabolite, as op-
posed to modeling the peak pattern for the entire frequency range. For manual quantifica-
tion, one typically looks at the uncluttered frequency ranges that is specific to the metabolite
of interest. This approach has poor performance when there are spectral overlaps from the
different types of metabolites in the sample. There may also be ambiguous identifications
of metabolites that have similar selected frequency ranges. For this reason, some form of
uncertainty quantification over the concentration estimates is desirable.

3.2. Experimental Sensitivity

Low concentrations of metabolites such that its signal is barely registering in the
NMR experiment data can lead to an unreliable concentration estimate. Relative ratio
analysis of the low concentration metabolite, while in the presence of a higher concentration
metabolite, may result in a significant error level. This is problematic in samples that have
a high concentration dynamic range. In the bioreactor setting, both high- and low-level
metabolites can affect cell growth. Furthermore, the concentration of metabolites can
change dramatically over time. For example, a significant concentration difference between
toxic byproducts and nutrients is usually of interest to bioreactor metabolomic studies.

3.3. Contaminants

A quantification scheme that compares the observed data against a database of cata-
logued metabolites can have performance issues when the observed peaks do not line up
with the catalogued metabolite representations. This might occur when experimental condi-
tions differ from the conditions used to produce the database and leads to misidentification
of metabolites. If the user cannot constrain the quantifier to a preset target of metabolites,
this could lead to a large false positive identification error. A robust quantifier needs to
be able to achieve good sensitivity and specificity as measures of the misidentification of
compounds. Quantifiers that only use a limited spectral region (i.e., only selected peaks)
as a way to represent a metabolite are more susceptible to misidentification. Furthermore,
the observed peaks in frequency regions that do not correspond to a catalogued metabolite
are treated as a contaminant compound. This complicates contaminant discovery and
analysis studies since parts of noncontaminant metabolites that failed to align with the
catalogued spectra are treated as signals from potential contaminant metabolites.

An example is the internal reference compound sodium trimethylsilylpropanesul-
fonate (DSS), which has a prominent peak at 0 ppm, but also has secondary peaks around
0.6, 1.6, and 2.9 ppm. If a quantification scheme does not use the latter three regions as its
internal representation of DSS, then DSS’ spectrum between 0.6 and 2.9 ppm in the data will
appear to be a contaminant. This is especially troublesome when quantifying metabolites
that have a much lower concentration than DSS and have small multiplet peaks around
0.6, 1.6, and 2.9 ppm. For example, L-Leucine also has a small multiplet pattern around
1.7 ppm, and a quantifier algorithm that only considers the 1.7 ppm range to quantify
L-Leucine could have performance issues when both DSS and L-Leucine are present in the
sample. DSS could possibly also react with certain metabolites [32]. Although more inert
reference compounds have been proposed [32], most of the entries in publicly available
NMR metabolomics databases use DSS as the reference. Other popular NMR references
include trimethylsilylpropanoic acid (TMSP or TSP) and tetramethylsilane (TMS), and the
user has to consider possible differences in relative peak positions due to change in the
0 ppm reference.

3.4. Different Experimental Conditions

Our main focus in this paper is on mammalian cell bioreactors, which are often used
for vaccine production and gene therapy applications. Aqueous media is used in these
applications, and the large concentration of the water solvent presents a challenge for NMR
experiment. Water-drying of samples is possible in a bioreactor setup, but impractical if
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a large number of samples are required for the NMR experiment. Additionally, drying
is impossible if NMR experiments are performed using flux probe systems that directly
collect and measure samples from the reactor without any preprocessing steps. In this
case, NMR experiment protocol-based solvent suppression techniques can attenuate the
large resonance signal from the solvent. However, such a technique could also distort the
resonance frequencies near the solvent’s resonance frequency [33].

The resonance frequencies and intensities that make up a metabolite’s spectral profile
can be affected by a sample’s pH and osmolality. Although the sample is usually buffered
to 7–7.4 pH, this monitoring is difficult to enforce in an online monitoring application.
Solution osmolality depends on the type and amount of all metabolites that are present
in the test sample. In [34], it was found that resonance frequency shift due to different
concentration makeup could be predicted for a specific mixture of 60 metabolites that
are common in urine, provided that the concentration of a few select key metabolites are
estimated correctly in a preprocessing step from the test sample. Unfortunately, this type
of study is only emerging, and public databases presently do not have enough data of this
type to provide a training set for constructing a data-driven peak shift prediction model.

3.5. Phase and Baseline

A popular preprocessing step to quantification is to autophase the data spectrum S.
The idea is to treat the phase term βl in Equation (2) as an artifact, and try to exclude it
from the preprocessed data spectrum S̃. The use of an autophased spectrum of the NMR
experiment data S̃ does not require one to have knowledge of the resonance frequencies Ωl
before quantification.

Most autophasing algorithms assume the phase of the observed spectrum follows the
affine model

β(ν) = c0 + c1ν, (6)

and the phase terms βl from Equation (2) are assumed to satisfy

βl ≈ c0 + c1
Ωl
2π

. (7)

The autophasing algorithm first estimates the parameters c0 and c1 from the data
spectrum; then, it modifies the data such that the βl terms in the modified data’s spectrum
S̃ are all close to zero. Most algorithms do this by multiplying the data spectrum S by the
negative affine phase model, i.e.,

S̃(ν) = S(ν)e−β(ν). (8)

If Equation (7) is a good approximation for each phase term βl , then the phase terms
will be close to zero in the transformed spectrum S̃. Many quantifiers take the real part
of S̃ as a weighted sum of absorption Lorentzian components, therefore avoiding βl in
subsequent steps in their quantification procedure.

The disadvantage of using Equation (8) is that all off-resonance frequencies
(i.e., any ν 6= Ω

2π ) are subjected to a frequency-dependent phase distortion by −β(ν).
These distortions may unpredictably manifest as a negative peak in the real part of the
transformed spectrum, especially at frequency locations that have significant tail contri-
butions from nearby Lorentzian components. Figure 3 is an example of a negative peak
around the water solvent peak (4.7 ppm). Despite this issue, autophasing is a simple proce-
dure that is widely used in the community. We refer the reader to [35] for a comparison of
existing autophasing algorithms.
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Figure 3. The real part of the autophased spectrum of an mammalian cell bioreactor NMR experiment.

In practice, one performs either the discrete-time Fourier transform or the discrete
Fourier transform to the sampled FID time-series data to approximate S̃. Present-day
NMR spectrometer also exhibit some time delay between the end of the excitation radio
pulse sequence and the collection of data. The analog and digital electronic filters in the
spectrometer might have problematic nonlinear phase characteristics. The magnetic field
may also be nonuniform across the sample. These and others factors (e.g., see [36]) all
contribute toward a discrepancy between the spectrum of the collected time series data and
the Lorentzian model that was discussed in Section 2. In the NMR literature, these effects
are referred to as baseline distortion. The issues from hardware and Fourier transform
approximation are discussed in detail in [37], as well as possible methods to mitigate them
through experiment protocol.

Despite recent advancements in spectrometer technology and having better NMR
protocol design knowledge, the use of autophasing as a preprocessing step would still
introduce some distortion to the data, sometimes significantly. Therefore, many quantifiers
employ the use of baseline compensation algorithms (e.g., [38–41]) after autophasing so
that the data can be well-approximated by the Lorentzian model.

3.6. Model Parameterization

As we discussed in Section 3.4, the peaks in the observed spectra of a sample is likely
to differ from a catalogued spectra due to different experimental conditions and sample
osmolality. An automated approach to quantification requires one to either predict the
perturbation behavior, or to solve for nuisance variables that parameterize the peak shifts
from the data.

The first approach poses a challenge since osmolaity is difficult to analytically quantify
in our setting. However, the data-driven chemical shift prediction mapping reported in [15]
could render this approach relevant for the future generation of quantifiers. The second
approach can get computationally intensive as the number of metabolites to be quantified
increases, since the number of nuisance parameters are related to the number of resonance
components in the data spectrum. This approach is not scalable unless approximations
to the data generation model are made. For this reason, most quantifiers use only a
select number of peaks to characterize a metabolite. Autophasing is usually done as
a preprocessing step to avoid having to estimate the phase parameters jointly with the
metabolite concentrations.

4. Existing Quantifiers

Existing quantifiers that use the FID signal model have the advantage that the FID
model is a generative model for the data, i.e., no Fourier transform is used in the data
model. This makes it possible to directly quantify uncertainty under a Bayesian inference
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framework. It does not have issues due to unpredictable baseline nor phase distortion that
arise from Fourier transform approximation and autophasing. The disadvantage is that all
of the FID parameters and the metabolite concentrations must be accurately estimated.

Working in the time domain involves fitting the model (Equation (1)) to the observed
time series (the FID data), but the overlapping set of an unknown number of resonance
frequencies places significant computational strain on the numerical optimization algorithm
used. Due to the number of FID variables involved with just a single metabolite, it is
difficult to scale up this approach to handle the number of metabolites and experiments
that are needed in a bioreactor monitoring application. Quantifiers that use the Fourier
transformed FID signal model tend to require less computational resources, since the
resonance frequencies are easier resolved in the Fourier domain without requiring accurate
estimates of the other FID parameters. The quantifiers that we benchmark in Section 5 all
use this type of signal model.

As discussed in Section 3.6, most of the Fourier domain quantification schemes use
some autophase algorithm as a preprocessing step to reduce the computational burden.
However, these preprocessing steps could have issues when the signal-to-noise ratio of
the NMR experiment is low. Since time-domain NMR quantification approaches typically
avoid such preprocessing steps, they could perform better on experiments that are collected
in low signal-to-noise ratio environments. Such a time-domain quantifier for quantifying a
low number of compounds was reported by Matviychuk et al. [42].

Some recent quantifiers place constraints on the FID parameters. E-RANSYS (Ex-
tractive ratio analysis NMR spectroscopy) [43] and AQuA (Automated quantification
algorithm) [44] work by constraining the relative ratio of the amplitude of peaks of each
metabolite in its internal library. ASICS (Automatic statistical identification in complex
spectra) [15] fits a deformation mapping of the peak positions to account for peak shifting.
However, since the resonance frequency shiftdue to experimental conditions is hard to
predict (see Section 3.4), such a deformation mapping approach to predict the peak shifts
should require a sizeable amount of data, sampled at various concentrations and chemical
environment conditions. The promising report [34] used a few thousand NMR experiments
sampled at different concentrations to construct a predictive mapping for the chemical
shift of selected metabolites that are common in urine. Peak alignment approaches such
as [45] can be used prior to the quantification to compensate for peak shifts. Due to user-
induced bias in the adjustment of peak positions, this approach can lead to assignment and
overestimation errors.

Some quantifiers require input parameters that needs to be manually determined from
the data of each NMR experiment to be quantified. The BATMAN (Bayesian automated
metabolite analyzer for NMR) quantifier [46] requires the user to specify various peak
location and shift values of the targeted metabolites. This is a time-intensive and error-
prone task, especially when the required information must be determined individually for
each peak of each metabolite. Differences in spectral resolution of the instrument, peak
overlap, and peak shift can lead to errors in this approach even after the extensive manual
user-led input step.

Although there are a few NMR quantifiers in the literature, some are no longer
maintained, e.g., BATMAN. Many require proprietary software to run, e.g., E-RANSYS,
AQuA, and the quantifier by Filntisi et al. [47]. In this review, we focus on the Bayesil [12],
the ASICS [15], and the rDolphin [14] quantifiers. These quantifiers employ third-party
autophasing and baseline correction as preprocessing steps, and are currently accessible to
the public for running quantification jobs. They do not require extensive manual input of
metabolite-specific instructions, making them appropriate for automated quantification.

4.1. Bayesil

The Bayesil quantifier [12] optimizes nuisance variables that perturb the peak posi-
tions of its internally catalogued metabolite representations. Each catalogued metabolite
stores frequency region information that are called clusters. The library was constructed
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using the spectra and metadata from the Human Metabolome Database (HMDB) at
www.hmdb.ca (8 March 2021). This quantifier assumes the peaks in each cluster all shift
by the same amount and in the same direction. A common shift variable with a window
of +/−0.025 ppm is assigned to each region. The algorithm uses a cost function to fit the
reconstructed Lorentzian spectrum against the autophased data spectrum S̃. The cost
function is the sum-of-squares difference between the two spectra with a penalty term
based on discrepancy of the derivatives. Further details are available in the Supplementary
Materials of [12]. The frequency shift nuisance variables for each cluster in each metabolite
is jointly estimated with the concentration of each metabolite.

The cost function is treated as the energy in a Gibbs distribution, and a sequential
Monte Carlo (SMC) algorithm is used to iteratively refine a finite population of candidate
solutions of the shift and concentration variables. The population mode of the last iteration
for each variable is taken as the solution shift and concentration values. Although tech-
nically a probabilistic inference problem, this approach to obtaining a point estimate of
the variables is similar in spirit to a heuristic-search optimization algorithm, except that
the algorithm strives to fit the population histogram to the Gibbs distribution. The con-
fidence and detection threshold scores for the estimated concentrations are based on the
signal-to-noise ratio of the NMR experiment and are determined by the quantifier from the
metadata associated with the number of scans used in the experiment.

As discussed in Section 3.6, jointly optimizing the concentration and the shift values is
a high-dimensional nonconvex problem. In addition to the use of SMC as an optimization
search strategy, Bayesil utilizes existing probabilistic inference methods for efficient com-
putation over factor graphs, which requires the variables to be placed in interdependent
groups. To construct factor graphs, Bayesil segments the autophased spectrum S̃ into a
frequency partition. Each frequency range in this partition must have the same clusters
from the same metabolites.

For example, consider the scenario where there is only one cluster of peaks from
metabolite A and also one cluster of peaks from metabolite B in the 1.5–3 ppm range of the
NMR experiment, and that no other metabolite peaks are present in that range. Suppose
the cluster from metabolite A occupies 2–3 ppm and the cluster from metabolite B occupies
1.5–2.3 ppm. The frequency partition over 1.5–3 ppm used to construct the factor graph
would be the ranges 1.5–2 ppm, 2–2.3 ppm, and 2.3–3 ppm. The use of such a partition
scheme assumes the user specifies all the metabolites that are present in the data. This is
because the spectrum of unaccounted metabolites might invalidate the requirements of a
factor graph, which might impact the quantifier’s performance.

Bayesil is a closed-source software, but is available for public use at www.bayesil.ca
(accessed on 8 March 2021). The user can choose a custom set of metabolites to be used,
and the data should be acquired by a 500 or 600 MHz spectrometer. Bayesil can provide
the absolute concentration of metabolites if the user provides the absolute concentration of
the experiment reference compound. The current version of Bayesil accepts either DSS or
TSP as the reference compound. The user can select a list of metabolites from their library
for a targeted quantification.

4.2. ASICS

The ASICS quantifier [15] used custom NMR experiments to build its internal library
of at least 175 catalogued metabolites. The first version used only one 1D 1H NMR experi-
ment per catalogued metabolite, but this was expanded to using multiple experiments in
the latest version. Whereas Bayesil estimates shift variables for the regions in each cata-
logued metabolite at run-time, ASICS estimates a monotone function for each catalogued
metabolite at run-time. The monotone function for a metabolite is then applied to the
catalogued spectrum of that metabolite. One can think of this function as a distortion
mapping that models the perturbation due to variable experimental conditions.

http://www.hmdb.ca
http://www.hmdb.ca
http://www.bayesil.ca
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The weighted sum of all distorted catalogued spectra is then fitted against the data
spectrum using a least absolute shrinkage and selection operator (LASSO) estimator,
with concentration variables as the weights. The procedure of the sparse estimation of the
weights and the monotone functions are performed in multiple stages of refinements, and a
statistically motivated variation of LASSO is used to solve for the concentration variables
in the final stage. The ASICS publication [15] stated that the final output of the weights are
to be interpreted as a relative concentration to the most abundant compound in the test
sample, but we do not observe any estimated compounds with a relative concentration
of one in our benchmarks. We speculate that either ASICS automatically removes the
concentration of the solvent from the reported results, or that the current version of ASICS
no longer normalizes to the most abundant compound.

Unlike Bayesil, ASICS does not allow the user to select a custom list of metabolites
from its library for a targeted quantification. In other words, ASICS always quantifies
with the assumption that all its catalogued metabolites could be in the test sample. This is
their motivation for using their sparsity-promoting LASSO estimator. They also perform a
preprocessing step that removes a catalogued metabolite type from the quantification job if
no significant spectral activity is observed in the data spectrum at the frequency regions
associated with that catalogued metabolite. The current version of ASICS is part of the
Bioconductor family of libraries for the R programming language. The library contains
mostly binary files, and source code of the core methods is not provided.

4.3. Dolphin

The Dolphin quantifier [13] was developed for MATLAB. The rDolphin quantifier [14]
is a variant of this quantifier that was developed using the R programming language.
The idea behind Dolphin is to use 2D NMR data to help with quantification. For a metabo-
lite to be quantified, it first needs to be detected by peak matching against a catalogued list
of metabolites using 1D data as well as multiplet matching using 2D data. Once identified,
Dolphin searches the spectral neighborhood for assigning peaks and multiplets using both
1D and 2D data. The quantification step follows, and is based on the constrained total line-
shape fitting method of estimating peak parameters given multiplets [48]. The line-shape
fitting algorithm fits a combination of Gaussian and Lorentzian functions to the multiplets,
and the fit variables of these combination functions are subject to constraints that are based
on its internal library of catalogued metabolite peaks and multiplet information. Dolphin
quantifies a detected metabolite by the area under the fitted Lorentzian–Gaussian function
that corresponds to the library-defined region for that metabolite.

In rDolphin, users could specify their own metabolite peaks, multiplet, chemical shift,
J-coupling values, and allowed shift tolerance information in a custom profile file. If there
are multiple frequency regions associated with a metabolite in the profile file, rDolphin
returns a quantification result for every region. Unfortunately, we are unaware of a detailed
peer-reviewed publication about the internal workings for rDolphin. The rDolphin software
is open-source, so interested users can explore the code for this approach.

5. Benchmark Results

In this section, we benchmark a 1D 1H NMR experiment to the Bayesil, ASICS,
and rDolphin quantifiers. The experiment sample is a commercial Dulbecco’s modified
Eagle’s complete medium (DMEM) cell growth medium diluted at 80%. We believe this
NMR experiment data is appropriate for testing performance of existing quantification
methods because the concentrations of the metabolites in this sample are known from the
product specification, and it is a commonly used cell medium for mammalian cell bioreactor
applications. DMEM has relatively high concentration of glucose when compared with the
other ingredients, and this large dynamic range is appropriate for methodology testing.
NMR metabolomics measurements were performed using fast 1D experimentation and
minimal sample preparation amenable to continual bioreactor monitoring application.
DSS was used as the reference compound, and the solvent is deuterated water (D2O).
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A Bruker 600 MHz spectrometer was used in this experiment with spectral width of 10
ppm. The pulse sequence setting noesygppr1d was used. Table 2 contains a list of nonsalt
compounds taken from the DMEM product specification. We have provided the NMR data
for this experiment in the Supplementary Materials, and more experiment-related settings
can be found it its metadata.

Table 2. Absolute concentrations from the Dulbecco’s modified Eagle’s medium (DMEM) sample.

Compound Concentration (mg/L)
Glycine 30

L-Arginine 84
L-Cystine 62.57

L-Glutamine 584
L-Histidine 42
L-Isoleucine 105

L-Leucine 105
L-Lysine 146

L-Methionine 30
L-Phenylalanine 66

L-Serine 42
L-Threonine 95

L-Tryptophan 16
L-Tyrosine 103.79

L-Valine 94
Choline 4

D-Ca-Pantothenate 4
Folic acid 4

Nicotinamide 4
Pyridoxal 4
Riboflavin 0.4
Thiamine 4
i-Inositol 7.2

D-Glucose 4500

ASICS and rDolphin return concentration estimates relative to some internal quan-
tity [14,15], and Bayesil returns concentration estimates relative to a user-specified concen-
tration of the reference compound, DSS [12]. The quantifiers did not return the same set of
detected metabolites. In order to compare the results across the quantifiers, we compared
each concentration estimate to the concentration estimates of both D-Glucose and L-Leucine.
These two metabolites were chosen as concentration references because they were present
in the concentration estimates of all three quantifiers benchmarked, except ASICS estimated
D-Glucose-6-Phosphate instead of D-Glucose. L-Leucine and D-Glucose are both typically
present in bioreactor metabolomic studies as a major energy molecule and an essential
amino acid, respectively. They also have different absolute concentrations in the product
specification (Table 2), and we can infer whether the different estimation bias caused by
different amounts of the compounds in the test sample is severe enough to significantly
change the computed relative concentration of the estimates.

In each row of the tables below, the relative concentration of a compound A with
respect to D-Glucose (column RCG) and with respect to L-Leucine (column RCL) is reported.
RCG is given by

RCG of compound A :=
concentration estimate for compound A

concentration estimate for D-Glucose
. (9)

A similar definition is used for RCL.
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The relative error between a quantifier’s RCG estimate and the DMEM specification’s
RCG is denoted by the column REG. It is given by

REG for compound A :=
(quantifier’s REG for A− specification’s REG for A)

specification’s REG for A
, (10)

and the additive error AEG is defined as the numerator of the relative error. Note that this
is a signed quantity, like the relative error. A similar definition is used for the relative and
additive errors for the relative concentration of a compound with respect to L-Leucine,
which are denoted by REL and AEL, respectively. These definitions of error imply that an
overestimate yields a positive error and an underestimate yields a negative error.

5.1. Bayesil Benchmark

Bayesil allows the user to pick the targeted metabolites from its library. In most
bioreactor applications for cell growth, the operator has a general knowledge of the possible
metabolites to be expected since the desired growth reaction should be known. We selected
the metabolites from this library that are in the DMEM specification. Not all compounds in
the specification are present in the Bayesil library. The results are in Table 3.

Table 3. Estimated relative concentration of metabolite from Bayesil. Prefix S- stands for the DMEM product specification,
prefix B- stands for Bayesil, and RCG stands for relative concentration compared to D-Glucose. REG is the relative error
for RCG, and AEG is the additive error for RCG. The heading RCL, REL, and AEL are similarly defined for concentration
relative to L-Leucine. C stands for confidence score: higher is more confident. It ranges between 1 to 10, with 10 being most
confidence. All numeric values are rounded to three significant figures.

Compound S-RCG B-RCG REG AEG S-RCL B- RCL REL AEL C
Glycine 0.00667 0.00969 0.453 0.00302 0.286 0.362 0.267 0.0762 10

L-Arginine 0.0187 0.012 −0.357 −0.00666 0.8 0.448 −0.439 −0.352 6
L-Glutamine 0.13 0.228 0.759 0.0985 5.56 8.53 0.533 2.96 10
L-Histidine 0.00933 0.0434 3.65 0.0341 0.4 1.62 3.05 1.22 7
L-Isoleucine 0.0233 0.0343 0.468 0.0109 1 1.28 0.28 0.28 7

L-Leucine 0.0233 0.0268 0.148 0.00344 - - - - 10
L-Lysine 0.0324 0.0327 0.00889 0.000289 1.39 1.22 −0.121 −0.168 9

L-Methionine 0.00667 0.0108 0.613 0.00408 0.286 0.402 0.405 0.116 10
L-Phenylalanine 0.0147 0.0172 0.173 0.00254 0.629 0.643 0.0226 0.0142 10

L-Serine 0.00933 0.101 9.87 0.0922 0.4 3.79 8.48 3.39 4
L-Threonine 0.0211 0.035 0.66 0.0139 0.905 1.31 0.447 0.404 9

L-Tryptophan 0.00356 0.00985 1.77 0.00629 0.152 0.368 1.41 0.215 5
L-Tyrosine 0.0231 0.00542 −0.765 −0.0176 0.988 0.202 −0.795 −0.786 10

L-Valine 0.0209 0.0335 0.601 0.0126 0.895 1.25 0.396 0.354 10
Choline 0.000889 0.00452 4.08 0.00363 0.0381 0.169 3.43 0.131 10
i-Inositol 0.0016 0.0427 25.7 0.0411 0.0686 1.59 22.2 1.52 9

D-Glucose - - - - 42.9 37.3 −0.129 −5.51 10

Bayesil’s quantification result includes a comparison spectra plot between the prepro-
cessed data spectrum (i.e., S̃ from Section 3.5) and the reconstructed spectrum that uses
its quantified results. We exported this plot in the nmrML open data format [49] using
Bayesil’s interface, and it is in the Supplementary Materials. Figures 4 and 5 show two
different levels of detail of Bayesil’s plot.
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Figure 4. Reconstructed spectrum (blue, label: fit) vs. the preprocessed data spectrum (green, label: spectrum). Some signifi-
cant artifacts are visible in the preprocessed data spectrum.

Figure 5. Close-up of Figure 4.

5.2. ASICS Benchmark

Unlike Bayesil, ASICS does not allow the user to specify a list of metabolites to target.
Instead, it automatically detects which of its 150+ catalogued metabolites are present in
the data. We specified ASICS to exclude the water solvent peak region between 4.7–5 ppm.
ASICS returned many concentration estimates for metabolites that were not in our DMEM
product specification. In Table 4, we list only metabolites that match the contents of the
DMEM in Table 2. The complete list of detected metabolites by ASICS are reported in the
Supplementary Materials. Note that we treated D-Glucose-6-Phosphate as D-Glucose in
Table 4, because ASICS did not return an estimate for D-Glucose. We needed a stand-in
for D-Glucose in order to compute our relative concentrations for comparison with the
other quantifiers.

Table 4. Results from the ASICS quantifier. The column headings are defined for this quantifier (with prefix A-) analogous
to the caption of Table 3, except RCG stands for relative concentration compared to D-Glucose-6-Phosphate.

Compound S-RCG A-RCG REG AEG S-RCL A-RCL REL AEL
Glycine 0.00667 0.164 23.6 0.158 0.286 0.34 0.191 0.0546

L-Isoleucine 0.0233 0.346 13.8 0.323 1 0.718 −0.282 −0.282
L-Leucine 0.0233 0.483 19.7 0.459 - - - -
L-Cystine 0.0139 0.539 37.8 0.525 0.596 1.12 0.876 0.522

D-Glucose/D-Glucose-6-Phosphate - - - - 42.9 2.07 −0.952 −40.8

ASICS’ quantifier result includes samples of the preprocessed data spectrum and the
reconstructed spectrum. Figures 6 and 7 show two different levels of detail of this plot,
and the data required for it are in the Supplementary Materials.
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Figure 6. Reconstructed spectrum (orange, label: estimated) vs. the preprocessed data spectrum (blue, label: data).

Figure 7. Close-up of Figure 6.

5.3. rDolphin Benchmark

The rDolphin quantifier comes with three different region-of-interest (ROI) profiles:
blood, fecal, and urine. Each profile specifies a set of metabolites that are common in a
particular type of biofluid. In each of these profiles, multiple regions could be assigned
to the same metabolite, and the quantifier could return a different concentration estimate
for each of the regions. To report only one concentration estimate from these multiregion
metabolites, we averaged the estimates from each of the metabolite’s regions. The con-
centration estimates relative to the concentration estimates of D-Glucose and L-Leucine
are shown in Tables 5–7 for the blood, fecal, and urine profiles, respectively. The original
output from rDolphin for each profile is in the supplementary material.

Table 5. Results from the rDolphin quantifier with the blood profile. The column headings are defined for this quantifier
(with prefix rDb-) analogous to the caption of Table 3.

Compound S-RCG rDb-RCG REG AEG S-RCL rDb-RCL REL AEL
L-Isoleucine 0.0233 0.447 18.1 0.423 1 0.673 −0.327 −0.327

L-Leucine 0.0233 0.663 27.4 0.64 - - - -
L-Valine 0.0209 0.332 14.9 0.311 0.895 0.501 −0.441 −0.395

L-Glutamine 0.13 1.35 9.37 1.22 5.56 2.03 −0.635 −3.53
L-Lysine 0.0324 0.386 10.9 0.354 1.39 0.582 −0.582 −0.809

L-Methionine 0.00667 0.058 7.7 0.0513 0.286 0.0874 −0.694 −0.198
Glycine 0.00667 0.0229 2.43 0.0162 0.286 0.0345 −0.879 −0.251

L-Threonine 0.0211 0.147 5.98 0.126 0.905 0.222 −0.755 −0.683
L-Tyrosine 0.0231 0.0991 3.3 0.0761 0.988 0.149 −0.849 −0.839

L-Phenylalanine 0.0147 0.0882 5.02 0.0736 0.629 0.133 −0.788 −0.496
D-Glucose - - - - 42.9 1.51 −0.965 −41.3

Unfortunately, rDolphin returned a not-a-number (NaN) value for one of the regions
of D-Glucose when we used its fecal profile; see the Supplementary Materials for the
unformatted quantifier output. For Table 6, we excluded the region with the NaN estimate
from the summation to compute the concentration estimate for D-Glucose. We were unable
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to find an option in rDolphin to visualize the reconstructed spectra of every metabolite on
the same plot.

Table 6. Results from the rDolphin quantifier with the fecal profile. The column headings are defined for this quantifier
(with prefix rDf-) analogous to the caption of Table 3.

Compound S-RCG rDf-RCG REG AEG S-RCL rDf-RCL REL AEL
L-Isoleucine 0.0233 0.86 35.9 0.837 1 0.632 −0.368 −0.368

L-Leucine 0.0233 1.36 57.3 1.34 - - - -
L-Valine 0.0209 0.974 45.6 0.954 0.895 0.716 −0.2 −0.179
L-Lysine 0.0324 2.89 88.2 2.86 1.39 2.13 0.53 0.737

L-Methionine 0.00667 0.104 14.6 0.0972 0.286 0.0763 −0.733 −0.209
L-Tyrosine 0.0231 0.385 15.7 0.362 0.988 0.283 −0.714 −0.706
D-Glucose - - - - 42.9 0.735 −0.983 −42.1

Table 7. Results from the rDolphin quantifier with the urine profile. The column headings are defined for this quantifier
(with prefix rDu-) analogous to the caption of Table 3.

Compound S-RCG rDu-RCG REG AEG S-RCL rDu-RCL REL AEL
L-Isoleucine 0.0233 0.447 18.1 0.423 1 0.673 −0.327 −0.327

L-Leucine 0.0233 0.663 27.4 0.64 - - - -
L-Valine 0.0209 0.332 14.9 0.311 0.895 0.501 −0.441 −0.395

L-Glutamine 0.13 1.35 9.37 1.22 5.56 2.03 −0.635 −3.53
L-Lysine 0.0324 0.386 10.9 0.354 1.39 0.582 −0.582 −0.809

L-Methionine 0.00667 0.058 7.7 0.0513 0.286 0.0874 −0.694 −0.198
Glycine 0.00667 0.0229 2.43 0.0162 0.286 0.0345 −0.879 −0.251

L-Threonine 0.0211 0.147 5.98 0.126 0.905 0.222 −0.755 −0.683
D-Glucose - - - - 42.9 1.51 −0.965 −41.3
L-Tyrosine 0.0231 0.0991 3.3 0.0761 0.988 0.149 −0.849 −0.839

L-Phenylalanine 0.0147 0.0882 5.02 0.0736 0.629 0.133 −0.788 −0.496

6. Discussion

The goal of using quantitative NMR metabolomics for a bioreactor application is to
provide a fast and reliable way to estimate metabolite concentrations at different time
stamps during a run of the bioreactor. Measured samples will likely have changing
metabolite profiles throughout the run. This means that not only would the concentration
of existing metabolites change but also new metabolites could appear when comparing
experiments at different time stamps. Factors that promote a variable shift in resonance
frequencies such as the pH and osmolality characteristics of the biofluid in the bioreactor
will change over time. Solvent suppression NMR experiment protocols such as drying
H2O are possible for a small number of samples, but they are difficult to implement in an
online bioreactor application. This calls for a quantifier that is robust to deviations from
the spectra of metabolites from databases, and is robust to the presence of a high-intensity
NMR signal that is produced by the solvent.

An ideal quantifier for NMR metabolomics in this type of bioreactor application
will provide fast and automated estimates for the absolute or relative concentrations
of metabolites. The quantifier must be able to handle at least 40 metabolites in a cell
growth media type of environment, and should operate directly from the NMR experiment
data without too many manual interventions. Some of the challenges that make the
development of such a quantifier difficult are: the small resonance frequency variations
across experiments collected at different time stamps of a run of the bioreactor, the large
dynamic range of the metabolite concentrations, the number of metabolites to quantify,
the need for an automated approach, and the presence of different metabolites with nearby
or overlapping resonance frequencies.
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Of the three quantifiers, ASICS does not allow the user to specify a list of expected
metabolites, rDolphin allows for the user to input any metabolites in the form of a custom
profile, and Bayesil allows the user to specify a list of metabolites from their internal library
via a website interface. rDolphin utilizes a profile system: physical chemistry parameters
such as chemical shift values and J-coupling constants for each targeted metabolite are
used in its quantification algorithm. rDolphin comes with three premade profiles: blood,
fecal matter, and urine.

6.1. Data Preprocessing

We can see significant artifacts in the autophased data spectrum used by Bayesil in
Figure 4, such as the presence of negative peaks in the 3–4 ppm region. The autophased
data spectrum used by ASICS does not have this issue (see Figure 6). We recommend
research efforts on improving the robustness of preprocessing algorithms for samples that
have many overlapping metabolites, or on quantifiers that avoid preprocessing algorithms
when possible.

6.2. Specificity and Sensitivity

The specificity of a quantifier is affected by the false positive detection and true nega-
tive detection of metabolites that are not in the test sample. In a bioreactor setting where
NMR experiments are performed at regular time intervals, one usually has knowledge of
the metabolites that are present at the beginning of the reaction. A quantifier that allows a
user to override the list of metabolites that could be present in the test sample is likely to
lead to better specificity.

Bayesil allows the user to choose a list of target metabolites, and we selected only
metabolites that are known to be present in our DMEM sample. Neither false positive
detection nor true negative detection is possible for Bayesil in our benchmark. ASICS, on
the other hand, does not allow the user to manually select metabolites. The full list of
metabolites reported to be in our data by ASICS is in the Supplementary Materials. There
are 20+ false positive detections; only 5 out of the 30+ reported metabolites match the
DMEM composition, and these are listed in Table 4.

The sensitivity of a quantifier is affected by the true positive detection and false
negative detection of metabolites that are in the test sample. Only a few of the metabolites
in the DMEM composition were detected when using ASICS and rDolphin. ASICS detected
several compounds that are similar to those in the DMEM composition, such as L-Alanine
instead of L-Phenylalanine (see the Supplementary Materials).

6.3. Uncertainty

Bayesil provides a confidence score for its estimates. Although some compounds
estimated with high confidence still had large errors, e.g., L-Glutamine in Table 3, most
of the lower confidence estimates indeed had large errors. The lower confidence seems
to correlate with the low concentration level; see the specification’s relative concentration
column S-RCG and S-RCL in Table 3. Bayesil was able to estimate the highly concentrated
D-Glucose well when compared with the other quantifiers; see the REL column for the
D-Glucose row in Table 3 against the same entry in other tables.

L-Leucine, L-Isoleucine, and L-Valine are metabolites that share a common spectral
region for some of their high-intensity peaks, but have other less intense multiplet peaks in
regions that are different from each other. Our sample composition (Table 2) shows that
these three metabolites have similar concentrations. Bayesil had similar estimates for these
three metabolites, as with ASICS and rDolphin-fecal for L-Leucine and L-Isoleucine; see
the RCG column in Tables 3–6.
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6.4. Bias

Equation (9) implies that if the concentration of D-Glucose was underestimated, then
the RCG of the other metabolites is likely to be overestimated. The errors of the rDolphin
estimates from Tables 5–7 are mostly positive when relative concentrations are taken
with respect to D-Glucose, and mostly negative when taken with respect to L-Leucine.
The definition of error in Equation (10) implies a positive error indicates an overestimate,
and a negative error indicates an underestimate. rDolphin overestimated D-Glucose and
underestimated L-Leucine for our benchmark.

In the setting where experiments are collected at different time stamps during a run of
the bioreactor, this bias behavior due to estimation error of metabolites suggests that rela-
tive concentration estimates should not be computed in reference to any compound that is
changing between the experiments. This is because the particular estimation bias behavior
might be inconsistent for different concentrations of the same compound. The NMR exper-
iment 0 ppm reference compound (e.g., DSS) is chosen to be inert to the bioreactor reaction,
and one can control how much of the reference compound is added to each experiment.
We believe this control of the absolute concentration might help maintain consistency of a
quantifier’s estimation bias on the reference compound across the experiments. Therefore,
we suggest one should compute the relative concentration estimates in reference to the
NMR reference compound.

In our benchmark, we used D-Glucose and L-Leucine as relative concentration refer-
ence because we were unable to get an estimate of DSS, the reference compound used in
our benchmark test sample, from some of the quantifiers reviewed. This highlights the
need for being able to estimate the concentration of common NMR experiment reference
compounds that are used in metabolomics.

7. Conclusions

In this review, we discussed the challenges of building an automatic metabolite
concentration quantifier algorithm for 1D 1H NMR experiments. The main challenges
are the low sensitivity of NMR spectroscopy, variable peak shift due to experimental
conditions, the overlapping of spectra from different metabolites, and the presence of
the phase parameter for every resonance component in the data. We reviewed the FID
observation model, which is a generative model for the data collected by 1D 1H NMR
experiments. Popular preprocessing methods were also discussed. We surveyed the
existing quantifiers that handle this type of NMR experiments, and benchmarked the
Bayesil, the ASICS, and the rDolphin quantification software on a 1D 1H NMR experiment
for a commercial cell growth medium that is generally representative of a bioreactor sample.

All three methods produced quantification results within a few minutes, but there
were significant errors for some metabolites. These quantifiers were not designed to handle
the quantification challenges for cell culture bioreactor applications, and we hope our
review provides some insights that can aid the development of future quantifiers that focus
on the bioprocessing domain. For quantifying bioreactor experiments, we advise using
manual quantification if precision is important. Since computational speed is not an issue
for these quantifiers, we hope future quantification research efforts could afford to explore
approaches that have more computational burden but reduced user involvement.

A future direction of interest may be to incorporate more NMR theory to supplement
the FID observation model. There have been efforts to standardize NMR-related data to
include physical chemistry parameters for each metabolite [50]. It may be worthwhile to
investigate how to utilize these physical chemistry parameters obtained from empirical
fitting against simulated NMR spectra for the NMR metabolite quantification problem.

Another promising direction is to use a data-driven approach to predict the resonance
frequency shifts due to varying experimental conditions. Studies such as [34] hint that
for some metabolites in urine samples, accurate predictive mapping is possible. This
kind of study requires a large number of NMR experiments with known concentration of
the metabolites, e.g., 3000+ NMR experiments that are composed of random metabolite
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concentrations were acquired in [34]. Due to the relatively low cost of 1D 1H NMR
experiments, acquiring a large number of NMR experiments to improve quantification
performance or lower the quantifier’s computational resource requirements might be
financially feasible for important high-throughput bioreactor applications.

Supplementary Materials: The following are available at https://www.mdpi.com/2218-1989/11
/3/157/s1, the data used for the benchmark, the information provided by ASICS that we used to
visualize its reconstructed spectra, the NMRmL file that we exported using Bayesil’s interface to
visualize its reconstructed spectra, the concentration estimates of each quantifier, and Tables 2–7
expressed in units of molar concentration.
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DMEM Dulbecco’s modified Eagle’s medium
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FID Free-induction decay
LASSO Least absolute shrinkage and selection operator
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pH Potential of hydrogen
MS Mass spectrometry
NMR Nuclear magnetic resonance
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ROI Region of interest
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