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Abstract
Background: Master athletes (MAs) prove that preserving a high level of physical function up to very 
late in life is possible, but the mechanisms responsible for their high function remain unclear.
Methods: We performed muscle biopsies in 15 octogenarian world-class track and field MAs and 14 
non-athlete age/sex-matched controls (NA) to provide insights into mechanisms for preserving func-
tion in advanced age. Muscle samples were assessed for respiratory compromised fibers, mitochon-
drial DNA (mtDNA) copy number, and proteomics by liquid-chromatography mass spectrometry.
Results: MA exhibited markedly better performance on clinical function tests and greater cross-
sectional area of the vastus lateralis muscle. Proteomics analysis revealed marked differences, 
where most of the ~800 differentially represented proteins in MA versus NA pertained to mito-
chondria structure/function such as electron transport capacity (ETC), cristae formation, mito-
chondrial biogenesis, and mtDNA-encoded proteins. In contrast, proteins from the spliceosome 
complex and nuclear pore were downregulated in MA. Consistent with proteomics data, MA had 
fewer respiratory compromised fibers, higher mtDNA copy number, and an increased protein ratio 
of the cristae-bound ETC subunits relative to the outer mitochondrial membrane protein voltage-
dependent anion channel. There was a substantial overlap of proteins overrepresented in MA 
versus NA with proteins that decline with aging and that are higher in physically active than seden-
tary individuals. However, we also found 176 proteins related to mitochondria that are uniquely 
differentially expressed in MA.
Conclusions: We conclude that high function in advanced age is associated with preserving mito-
chondrial structure/function proteins, with underrepresentation of proteins involved in the spliceo-
some and nuclear pore complex. Whereas many of these differences in MA appear related to their 
physical activity habits, others may reflect unique biological (e.g., gene, environment) mechanisms 
that preserve muscle integrity and function with aging.
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Editor's evaluation
Proteomics studies of skeletal muscle biopsies in healthy individuals demonstrate that older age 
was associated with an underrepresentation of mitochondrial proteins, especially those associated 
with oxidative phosphorylation and energy metabolism. Ubaida-Mohien et al. analyzed muscle 
protein differences between octogenarian master athletes and non-athletes demonstrating that high 
muscle function during aging is associated with the preservation of structural and functional proteins 
in mitochondria such as electron transport capacity, cristae formation, mitochondrial biogenesis, 
and mtDNA-encoded proteins. The authors propose that the study of these unique proteins may 
uncover molecular mechanisms to design therapeutic strategies for skeletal muscle functional 
decline with aging.

Introduction
The aging process is associated with profound changes in body composition that includes a substan-
tial decline of muscle mass and a disproportionally more severe decline in strength (Goodpaster 
et al., 2006). Such decline in skeletal muscle mass and strength starts between the third and the 
fourth decades of life both in men and women, substantially accelerates after the age of 75 years, and 
in some individuals becomes so severe as to cause mobility loss and frailty (Cawthon et al., 2020). 
However, there is clear evidence that the degree of such ‘usual’ decline of strength and function 
is less severe in some individuals. For example, master athletes (MAs) exhibit considerably higher 
physical performance capacity in their 80s and 90s than their sedentary counterparts and there have 
been sporadic mentions of centenarians who compete in marathons (https://www.runnersworld.com/​
runners-stories/a20812407/whos-the-fastest-centenarian/). The study of these extreme examples 
provides a unique opportunity to identify mechanisms that in most individuals determine a decline 
of muscle health with aging, but that are partially counteracted in highly functioning individuals. For 
example, we have previously shown in a cohort of highly functioning octogenarian track and field 
athletes that there was better maintenance of the number and transmission stability of motor units 
(Power et al., 2016) and indications of high muscle fiber reinnervation capacity (Sonjak et al., 2019) 
compared to healthy octogenarian non-athletes and pre-frail/frail octogenarians, respectively.

Using an unbiased discovery proteomics approach on skeletal muscle biopsies collected in very 
healthy individuals aged 20–87 years, we previously found that older age was associated with under-
representation of mitochondrial proteins, especially those associated with oxidative phosphorylation 
(OXPHOS) and energy metabolism (Ubaida-Mohien et al., 2019b). Besides, independent of age, 75% 
of proteins overrepresented in persons who were more physically active in their daily life were mito-
chondrial proteins across the different sub-localization or function (Ubaida-Mohien et al., 2019a). 
These data strongly suggest that maintaining mitochondrial function is a key to healthy muscle with 
aging. However, because both mitochondrial function and physical activity level decline with aging 
even in healthy individuals, discriminating their independent effects on muscle health remains prob-
lematic. The study of muscle biopsies in highly trained, older individuals compared with age-matched 
controls should overcome, at least in part, this limitation.

In this study, we used data and biological specimens collected in 15 track and field MAs aged 75–93 
years (eight females), 8 of whom were world record holders in their age group for at least one event at 
the time of study, with the remaining individuals ranked in the top five worldwide for their respective 
age and discipline. These individuals are representative of the extreme tail of the distribution of phys-
ical fitness in their age group. These MAs were compared with 14 age- and sex-matched non-athletes 
recruited from the greater Montreal area (NA; six females) to represent healthy independent octoge-
narian individuals. We compared in these two groups cardiopulmonary fitness (cycle test), isokinetic 
knee extensor strength, and lower extremity function (time to walk 4 m fast, chair stands, timed-up 
and go fast, balance time). In addition, we used MRI of the thigh to determine muscle cross-sectional 
area (CSA). We performed in-depth skeletal muscle phenotyping using muscle biopsies collected by 
Bergstrom needle from the vastus lateralis for an unbiased proteomics analyses, histochemical char-
acterization of proteins involved in OXPHOS, and assessment of mitochondrial DNA (mtDNA) copy 
number by real-time polymerase chain reaction (qPCR). High physical function in octogenarians was 
associated with overrepresentation of the mitochondrial proteome, underrepresentation of mRNA 
processing and pre-mRNA splicing, fewer OXPHOS compromised muscle fibers, and higher mtDNA 
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copy number, implicating mitochondrial health in skeletal muscle as a key feature facilitating high 
physical function in advanced age.

Methods
Note that additional details of the methods may be found in Appendix 1.

Ethical approval
All procedures carried out with human subjects were done with prior approval from the Institutional 
Review Board of the Faculty of Medicine at McGill University (A08-M66-12B) and according to the 
Declaration of Helsinki. All subjects provided written informed consent.

Human subject characteristics
Age- and sex-matched octogenarian world-class track and field athletes (n = 15; eight females) and 
non-athlete participants (n = 14, six females) were recruited for this study. No explicit power anal-
ysis was performed a priori due to the rare nature of the octogenarian world-class athletes, but the 
premise was to select populations of widely different physical function in advanced age so that insights 
concerning the role of potential differences in muscle biology in the differences in physical function 
might be obtained.

Sample collection
A variety of clinical function tests, thigh CSA by MRI, and a vastus lateralis muscle biopsy were 
performed in 15 octogenarian world-class track and field athletes and 14 non-athlete age- and sex-
matched non-athlete controls. A portion of muscle from a subset of 12 MAs (MA mean age 81.19 ± 
5.1 years) and 12 non-athlete controls (NA mean age 80.94 ± 4.5 years) was used from these subjects 
for liquid-chromatography mass spectrometry (LC-MS) to generate quantitative tandem mass tag 
(TMT) proteomics data. In addition, we measured mtDNA copy number, the abundance of represen-
tative subunits of OXPHOS complexes by Western blot, and muscle histological assessment for fiber 
type and respiratory compromised fibers (see below).

Muscle fiber-type labeling and imaging in muscle cross-sections
10-µm-thick sections that were serial to those used in histochemical labeling for respiratory compro-
mised fibers were used in immunolabeling experiments to demonstrate fiber type by probing for 
the major myosin heavy chain (MHC) isoforms in human skeletal muscle. Sections were first hydrated 
with 1× phosphate buffered saline (PBS) and blocked with 10% normal goat serum for 30 min in 1× 
PBS. Sections were subsequently incubated with the following primary antibodies for 1 hr at room 
temperature: polyclonal rabbit anti-laminin IgG (L9393, 1:700; Sigma-Aldrich), monoclonal mouse 
anti-MHCI IgG2b (BA-F8, 1:25), monoclonal mouse anti-MHCIIa IgG1 (Sc71, 1:200), and monoclonal 
mouse anti-MHCIIx IgM (6H1, 1:25). MHC primary antibodies were obtained from the Developmental 
Studies Hybridoma Bank (University of Iowa, USA). Tissue sections then underwent three washes in 1× 
PBS, and subsequent incubation with the following secondary antibodies for 1 hr at room tempera-
ture: Alex Fluor 488 goat anti-rabbit IgG (A11008, 1:500), Alexa Fluor 350 goat anti-mouse IgG2b 
(A21140, 1:500), Alex Fluor 594 goat anti-mouse IgG (A21125), and Alexa Fluor 488 goat anti-mouse 
IgM (A21042, 1:500).

Following immunolabeling experiments, slides were imaged with a Zeiss Axio Imager M2 fluores-
cence microscope (Carl Zeiss, Germany) and analyzed with ImageJ (National Institutes of Health, USA) 
by an observer blinded to the identity of the samples. An average of 366 ± 131 fibers were analyzed 
per sample.

Sample preparation and protein extraction for MS
Roughly, 5–8 mg of vastus lateralis muscle tissue per subject was pulverized in liquid nitrogen and 
mixed with the modified SDT lysis buffer (100 mM Tris, 140 mM NaCl, 4% SDS, 1% Triton X-114, 
pH 7.6; Sigma) (Wiśniewski et al., 2009). Tissues were sonicated, protein concentration was deter-
mined, and the sample quality was confirmed using NuPAGE. 300 µg of muscle tissue lysate was used 
for tryptic digestion. Samples were basic reverse-phase fractionated and analyzed in nano LCMS/

https://doi.org/10.7554/eLife.74335
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MS (Q-Exactive HF) using previously published method (Ubaida-Mohien et al., 2019b). The method 
details are given in Appendix 1.

Proteomics informatics
The raw MS data acquired from 24 samples (MA = 12, NA = 12) was converted to .mgf files (using 
MSConvert, ProteoWizard 3.0.6002) for each sample fraction and was searched with Mascot 2.4.1 
and X!Tandem CYCLONE (2010.12.01.1) using the SwissProt Human sequences from UniProt (version 
year 2017, 20,200 sequences, appended with 115 contaminants) database. The search engine was 
set with the following search parameters: TMT 10-plex lysine and n-terminus as fixed modifications 
and variable modifications of carbamidomethyl cysteine, deamidation of asparagine and glutamate, 
carbamylation of lysine and n-terminus, and oxidized methionine. A peptide mass tolerance of 20 
ppm and 0.08 Da, respectively, and two missed cleavages were allowed for precursor and fragment 
ions in agreement with the instrument’s known mass accuracy. Mascot and X!Tandem search engine 
results were analyzed in Scaffold Q+ 4.4.6 (Proteome Software, Inc). The TMT channels’ isotopic purity 
was corrected according to the TMT kit. Peptide and protein probability was calculated with Pepti-
deProphet and ProteinProphet probability model (further details are given in Appendix 1).

The log2 transformed reporter ion abundance was normalized by median subtraction from all 
reporter ion intensity spectra belonging to a protein across all channels. Relative protein abundance 
was estimated by the median of all peptides for a protein combined. Protein sample loading effects 
from sample preparations were corrected by median polishing, that is, subtracting the channel median 
from the relative abundance estimate across all channels to have a median zero as described else-
where (Herbrich et al., 2013; Kammers et al., 2015). Quantified proteins were annotated, and corre-
sponding gene names were assigned to each protein for simplicity and data representation. Annotation 
of the proteins was performed by manual curation and combining information from UniProt, GO, and 
Reactome database. Further bioinformatics analysis was performed using R programming language 
(3.4.3) and the free libraries available on Bioconductor. The validation of the age effects and physical 
activity was performed by comparing the MA dataset with the GESTALT dataset. The details of the 
GESTALT dataset are available on PRIDE repository PXD011967, and GESTALT subject characteristics 
are provided in Figure 5—source data 1.

Histochemical labeling for respiratory compromised muscle fibers
COX/SDH histochemistry (Old and Johnson, 1989; Taylor et al., 2003) was performed to assess the 
relative activity of OXPHOS complexes IV (COX) and II (SDH), and thus identify muscle fibers with 
low (CoxInt) or deficient (COXNeg) COX activity relative to SDH activity. The COX incubation medium 
was prepared by adding 100 μM cytochrome c to 4 mM of 3,3-diaminobenzidine tetrahydrochloride 
(DAB) with 20 μg of catalase. Further method details are included in Appendix 1. Counts of COX-
positive (COXPos), COXInt, and COXNeg myofibers were performed for the whole-muscle cross-section. 
COX-negative fibers are indicative of cells with high levels of mtDNA mutations and will thus not 
demonstrate the brown reaction product (oxidized DAB) during the first incubation but will stain blue 
following the second incubation for SDH activity. This is because the nuclear DNA entirely encodes 
SDH, so any mtDNA mutations will not affect its activity. In contrast, mtDNA mutations could affect 
complex IV activity and prevent DAB oxidation if a mutation affects a region of mtDNA containing 
the COX subunit genes. Similarly, COXInt fibers exhibit low COX activity relative to SDH and appear 
bluish-gray, and are thought to represent muscle fibers/segments that are in the process of transition 
to COXNeg status (Murphy et al., 2012).

Mitochondrial DNA copy number
Groups of 25 fibers (5 × 5 fibers) in an unstained 20-μm-thick muscle cross-section from each subject 
were randomly selected (random number generator and numbered grid), laser captured, and their 
DNA extracted using the lysis method and stored at –20°C. The products were then separated and 
the bands visualized using a G-Box chem imaging system (Figure 3—figure supplement 6—source 
data 1A). The mtDNA fragment was extracted and the total mtDNA copy number in muscle fibers was 
determined using a standard curve (Greaves et al., 2010; Figure 3—figure supplement 6—source 
data 1B). The method details are in Appendix 1.

https://doi.org/10.7554/eLife.74335
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Western blotting for mitochondrial proteins
Western blotting for representative mitochondrial proteins was performed as described previously 
(Spendiff et al., 2016). Briefly, 10–20 mg of muscle was homogenized in a Retch mixer mill (MM400) 
with 10× (w/v) of extraction buffer (50 mM Tris base, 150 mM NaCl, 1% Triton X-100, 0.5% sodium 
deoxycholate, 0.1% sodium dodecyl sulfate), and 10 µl/ml of Protease Inhibitor Cocktail. Following 
2 hr of gentle agitation at 4°C, samples were centrifuged at 12,000 × g for 20 min at 4°C, and the 
supernatant removed for protein assessment by Bradford assay. Samples were diluted in 4× Laemmli 
buffer to yield a final protein concentration of 2 µg/ml and then boiled for 5 min at 95°C. Immuno-
blotting was done using 20 µg of protein, loaded onto a 12% acrylamide gel, electrophoresed by 
SDS-PAGE and then transferred to polyvinylidene fluoride membranes (Life Sciences), blocked for 1 hr 
at room temperature in 5% (w/v) semi-skinned milk, and probed overnight at 4°C with the following 
primary antibodies (diluted in 5% BSA): mouse monoclonal anti-VDAC (1:1000; Abcam ab14734) and 
mouse monoclonal Total OXPHOS Cocktail (1:2000, Abcam ab110413). To address the poorer sensi-
tivity to the CIV subunit in this cocktail after boiling human samples, we also probed using mouse 
monoclonal CIV (1:1000, Life Technologies A21348). Ponceau staining was performed to normalize 
protein loading. Following washing, membranes were incubated with HRP-conjugated secondary 
antibodies (diluted in 5% milk, Abcam) for 1 hr at room temperature. Protein bands were detected 
using SuperSignal West Pico Chemiluminescent Substrate (Thermo Scientific, USA) and imaged with 
a G-Box Chem Imaging System. Analysis of protein bands was performed using GeneTools software 
(Syngenem, UK).

Statistical analyses
Statistical comparisons of physical function tests, vastus lateralis CSA, mtDNA copy number, and 
protein abundance by Western blot (VDAC) were performed using a two-tailed Student’s t-test, with 
the p-value for significance set at <0.05. Statistical comparison of fiber type proportion (type × group), 
fiber size by type (type-specific size × group), Western blot (OXPHOS complex subunit abundance 
× group), and the abundance of respiratory chain compromised fibers (COX status × group) was 
performed by two-way ANOVA, with a Sidak multiple-comparison post-hoc test.

For LC-MS analyses, protein significance was determined with p-values derived from one-way 
ANOVA test to check any possible statistically significant difference between groups. The p-value 
threshold for a protein was considered as significant if p<0.05. Partial Least Square (PLS) analysis was 
used to derive models with the classification that maximized the variance between MA and NA groups. 
PLS loadings were derived from log2 normalized protein reporter ion intensity from all proteins. The 
statistical method was performed using R 3.3.6 with inbuilt libraries. Heatmaps and hierarchical cluster 
analyses were performed using the nonlinear minimization package in R. GraphPad Prism 6.07, and R 
Bioconductor packages were used for statistical analysis and generation of figures. STRING analysis 
(Szklarczyk et al., 2019) was used for obtaining protein-protein interaction network. Enrichment anal-
ysis was performed using ClueGO (Bindea et al., 2009) and PANTHER; the pathways were mapped 
and visualized using Cytoscape 3.7.2. One-way ANOVA, nonparametric, and chi-square tests (contin-
uous and categorical variables) were used to test for sample differences.

Table 1. Characteristics of non-athletes (NA) and master athletes (MA).

NA (n = 14) MA (n = 15) p-Value

Age (years) 80.9 ± 4.5 80.1 ± 4.8

Sex

 � Male 7 7

 � Female 8 8

Body mass (kg) 72.1 ± 11.4 62.2 ± 10.7 0.04

Body fat (%) 36.0 ± 6.6 21.9 ± 5.0 <0.00

Values are mean ± SD.

https://doi.org/10.7554/eLife.74335


 Research article﻿﻿﻿﻿﻿﻿ Epidemiology and Global Health

Ubaida-Mohien et al. eLife 2022;0:e74335. DOI: https://doi.org/10.7554/eLife.74335 � 6 of 27

Results
Superior clinical function in master athletes (MA) versus non-athlete 
controls (NA)
The general characteristics of the 15 MA and 14 NA participants are summarized in Table 1.

The athletes could generally be subdivided into two groups based upon their preferred compe-
tition events. Sprint/power athletes comprised individuals who competed in multisport jumping, 
throwing, and sprinting events, and individuals who competed in sprint running. Endurance athletes 
competed in track running and road running distances from 400 m to a full marathon (26.2 miles). An 
overview of the training and competition history of the MA group is given in Table 2. With respect to 
their training habits, it should be noted that each subject commented that the training load (particu-
larly intensity) varied not only within a competition season but also within a 5-year age bracket (e.g., 
75–79 years, 80–84 years). Training typically increased in the months approaching a birthday that 
would move them up to the next age category to take advantage of being the ‘youngest’ in their 
new age bracket at international competitions. In addition, regardless of the preferred competition 
events, all athletes noted a very mixed training regimen consisting of varying amounts of running, 
cycling, walking, stretching, yoga, and strength training. The rationale for selecting athletes from a 
broad array of athletics disciplines was that we were not interested in the effects of a specific type 
of exercise training per se (e.g., endurance or strength training), but rather in identifying individuals 
with exceptional physical capabilities regardless of their training. Consistent with this rationale, MA 
participants had superior function during the assessment of VO2max, peak cycle work rate, time to walk 
4 m fast, chair stands, timed-up and go, and balance time versus NA (Figure 1a–f), confirming that 
they represent high-functioning octogenarians.

Greater preservation of muscle mass in octogenarian MA
All MA and NA participants underwent an MRI scan of the mid-thigh region at the same level as the 
muscle biopsy. Thigh cross-sectional images (Figure 1g and h) and MRI cross-sectional images of 
participants were analyzed (Figure 1i). The area of the vastus lateralis muscle (biopsied muscle) was 
determined for both legs. The estimated CSA of the vastus lateralis (average of both legs) was 30% 
higher in MA than NA (Figure 1j). Maximal isokinetic strength during knee extension was significantly 
greater in MA than NA. To consider the myosin genes that encode muscle mass maintenance and 
skeletal muscle contraction, we performed a fiber type proportion and fiber size type analysis (type 
I, type IIa, type IIx, and hybrid) by immunolabeling for the major MHC isoforms in MA and NA. This 
analysis shows no difference in fiber type proportion and a 28% higher mean fiber CSA in MA versus 
NA (Figure 1—figure supplement 1a). The lack of fiber type proportion differences between groups 
is corroborated by our proteomics data, which also shows no significant differences in the expression 
of MYH7 (type 1), MYH2 (type IIa), MYH1 (type 2x), and negligible expression of MYH4 (type IIb) as 
expected (Figure 1—figure supplement 1b). Indeed, after accounting for the false discovery rate 
(FDR), there were no significant differences in MHCs between groups. Furthermore, there were no 
significant differences in fiber size by type or in the type I to type II MHC protein expression ratio 
between MA and NA (Figure 1—figure supplement 1c and d, respectively).

Quantitative proteomics reveals temporal proteome differences 
between MA and NA
To understand how skeletal muscle protein composition differs between MA and NA octogenarians, 
we performed a discovery proteomic analysis of muscle biopsies using LC-MS. We used a 10-plex 

Table 2. Training and competition history of octogenarian master athletes (MA).

n Age (years) Training per week (hr)
Years 
competing

Sprint, power 8 (4F) 79.9 ± 6.1 16 ± 3 16.6 ± 6.2

Endurance 7 (4F) 80.3 ± 3.4 14 ± 3 26.6 ± 9.4

Values are mean ± SD.

https://doi.org/10.7554/eLife.74335
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Figure 1. Muscle characteristics of master athletes (MA) and non-athletes (NA). (a–f) Clinical function tests in NA and MA. (g) Thigh cross-sectional 
image of an 80-year-old male NA (h) and an 83-year-old male MA. (i) Vastus lateralis muscle cross-sectional area (CSA) was greater in MA than NA. 
(j) Maximal isokinetic strength during knee extension was greater in MA than NA. Graphs show means and standard deviations. Groups were compared 
by a two-tailed Student’s t-test, with <0.05.

Figure 1 continued on next page

https://doi.org/10.7554/eLife.74335
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TMT labeling approach that allows quantification and direct comparison between samples. Analyzing 
28 participants, we were able to quantify 6176 proteins (Figure 2a, Figure 2—figure supplement 
1). Of these, 4178 proteins (68%) were quantifiable across three TMT batches (present in all donors) 
and 1998 proteins (18%) were quantifiable in only one TMT batch (present in at least 10 donors). The 
quantitative protein expression between the TMT batches (Figure 2b) was mostly similar. The list 
of all proteins quantified from the MA and NA skeletal muscle is reported in Supplementary file 1. 
The partial least square (PLS) dimensionality reduction method used to stratify proteome distribution 
between MA and NA from 24 donors (Figure 2c) reveals a clear separation between the groups along 
the PC1 (11.6%) and PC2 (16.7%) axes and PC3 (11.1%) axes.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Fiber type and fiber size quantification.

Figure 1 continued

(d)

(c)(b)

(e)

(a)

Figure 2. The quantitative proteome reveals temporal proteome changes between master athletes (MA) and non-athletes (NA). (a) Number of proteins 
quantified among three tandem mass tag (TMT) batches. (b) Quantitative protein expression between three TMT batches. (c) Partial least square (PLS) 
plot of MA and NA donors. Red circles are MA donors, and cyan circles are NA donors. (d) Proteins differentially expressed between MA and NA. 
Each circle is a protein, red circles are proteins increased in abundance in MA, and blue circles are proteins decreased in abundance in MA. (e) Cellular 
location of the differentially expressed proteins in MA and the number of proteins encoded for each component are shown (X-axis).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Normalized tandem mass tag (TMT) batches.

https://doi.org/10.7554/eLife.74335
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Of all the 6176 proteins quantified, 880 were differentially represented between MA and NA 
(Student’s t-test, p<0.05, fold change [FC] > 1.02 for overrepresented proteins and <0.9 for under-
represented proteins), and of these, 544 proteins were overrepresented and 336 proteins were under-
represented in MA compared to NA (Figure 2d, Supplementary file 2). UniProt cellular localization 
coverage for these divergently represented proteins is shown in Figure 2e. Of note, 42% of the total 
880 significantly altered proteins in octogenarians were mitochondrial proteome, and most of the 
differentially represented proteins relate to mitochondrial structure or OXPHOS. This ample coverage 
of the mitochondrial proteome enables us to explore the modulating role of mitochondria in high-
functioning octogenarians' muscle metabolism.

Mitochondrial protein enrichment in octogenarian MA
The 369 mitochondrial proteins overrepresented in MA include 117 mitochondrion inner membrane 
proteins, 21 outer membrane proteins, 18 matrix proteins, 10 inter-membrane space proteins, and 
5 outer membrane proteins. The abundance of all mitochondrion proteins is higher in MA, except 
eight proteins (Figure 3a). Enrichment analysis with the whole human genome as a statistical back-
ground revealed oxidoreductase activity, electron transport activity, and cofactor binding as the top 
significantly enriched pathways in MA after FDR correction and Fisher’s exact test cutoff at p<0.01 
(Figure  3b). Specifically, 110 proteins associated with TCA and respiratory electron transport, 71 
proteins from OXPHOS and 43 protein constituents of complex I, 3 in complex II (SDHA, SDHB, 
SDHC), 8 in complex III, 13 in complex IV, and 10 in complex V were significantly more abundant in 
MA (Figure 3c).

The cytoplasmic and nuclear SIRTs were not quantified in our dataset; however, we explored SIRT3 
and SIRT5 mitochondrial sirtuins, which are master regulators of mitochondrial biology, including ATP 
production, metabolism, apoptosis, and intracellular signaling. Both SIRT3 and SIRT5 proteins were 
1.2-fold more abundant in MA than NA (p<0.01) (Figure 3d). Of note, the overrepresentations of 
SIRT3 in MA were consistent with higher deacetylation of long-chain acyl-CoA dehydrogenase (LCAD) 
in MA (FC 1.14 and p=0.007), which suggest elevation of lipid catabolism and fatty acid oxidation 
pathways. The deacetylase activity of SIRT3 improves mitochondrial function by the deacetylation 
of mitochondrial complex I protein NADH ubiquinone oxidoreductase subunit A9 (NDUFA9) (Ahn 
et al., 2008) and succinate dehydrogenase from complex II (SDH) (Cimen et al., 2010). SIRT3 also 
deacetylates the mitochondrial permeability transition-regulating protein, cyclophilin D, to reduce 
likelihood of opening of the mitochondrial permeability transition pore (Hafner et al., 2010). Finally, 
SIRT3 deacetylates lysine residues on SOD2 to promote its antioxidant activity and thereby reduce 
the level of reactive oxygen species (ROS) released outside mitochondria. While we would expect this 
deacetylation to increase SOD2 activity independent of changes in SOD2 content, in our study SOD2 
protein (FC = 1.17, p=0.037) was also more highly expressed in MA. Comparatively less is known 
about SIRT5 than SIRT3, but it has been reported that SIRT5 physically interacts with cytochrome c 
(CYCS) and CYCS abundance was 1.3-fold higher in MA (Figure 3—figure supplement 1a).

While our proteomics analyses identified a globally higher abundance of OXPHOS proteins 
(Figure 3c), markers of mitochondrial content specifically assessed by Western blot were not univo-
cally associated with MA status. For example, VDAC was not different between groups, whereas 
citrate synthase by proteomics was elevated in MA (Figure  3—figure supplement 1b). Further-
more, we observed a significant effect (p=0.046) for a higher abundance of OXPHOS complexes 
relative to VDAC in MA when analyzed by Western blot, consistent with the higher abundance of 
OXPHOS complexes by proteomics in MA (Figure 3—figure supplement 1c; uncut blots for VDAC 
and OXPHOS subunits are shown in Figure 3—figure supplement 2—source data 1). Histochem-
ical analysis was performed to quantify muscle fibers with compromised respiratory function based 
upon the ratio of staining intensity of COX (contains three mtDNA-encoded subunits and thus sensi-
tive to a high burden of mtDNA mutations) relative to SDH (entirely nDNA-encoded). Specifically, 
muscle fibers with low COX relative to SDH (COXInt) and deficient COX relative to SDH (COXNeg) were 
considered to have compromised respiratory function. This analysis revealed a significantly higher 
abundance of healthy COXPos fibers (p=0.0291) and fewer respiratory chain compromised (COXInt) 
myofibers (p=0.0448) in MA (Figure 3e and f). Thus, the proteomics data is consistent with histochem-
ical phenotypic data showing better maintenance of respiratory competent muscle fibers (COXPos 
fibers) in MA and a greater abundance of ETC subunits relative to VDAC. This latter observation could 

https://doi.org/10.7554/eLife.74335
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Figure 3. Mitochondrial protein enrichment in octogenarian master athletes (MA). (a) Dysregulation of significant mitochondrial proteins shown as 
red circles. (b) Functional classification of mitochondrial proteins with protein-protein interaction enrichment p-value<1.0e-16. (c) Heatmap showing 
upregulated respiratory chain complex proteins in MA. 71 complex proteins on y-axis. X-axis shows donors. (d) Enrichment of mitochondrial sirtuins 
SIRT5 and SIRT3 in muscle of MA versus non-athletes (NA). (e) Respiratory chain compromised fibers in skeletal muscle. COX/SDH image showing the 

Figure 3 continued on next page
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suggest greater cristae surface area relative to mitochondrial volume or differences in the clearance 
of mitochondrial membranes.

In contrast to the general higher abundance of mitochondrial proteins noted above, eight mito-
chondrial proteins had a lower abundance in MA, which were NADH-cytochrome b5 reductase 3 
(CYB5R3), phosphatidate cytidylyltransferase 2 (CDS2), long-chain-fatty-acid--CoA ligase 3 (ACSL3), 
dimethylarginine dimethylaminohydrolase 1 (DDAH1), WD repeat-containing protein 26 (WDR26), 
serine/threonine-protein phosphatase PGAM5 (PGAM5), SHC-transforming protein 1 (SHC1), and 
StAR-related lipid transfer protein 7 (STARD7).

mtDNA protein enrichment and maintenance of cristae architecture in 
octogenarian MA
Previous studies suggest that respiratory chain defects in skeletal muscle may result from high levels of 
mtDNA mutations (Bua et al., 2006; Murphy et al., 2012) and/or mtDNA depletion (Müller-Höcker 
et al., 1993; Mueller et al., 2012). To address this issue in our subjects, we specifically explored mito-
chondrial proteins in our proteomics dataset encoded in mtDNA. Of the known 13 mtDNA proteins, 
8 were quantified in our data, and all of them were significantly more abundant in MA than in NA 
(p<0.05) (Figure 3g). The proteomics data were consistent with findings that absolute mtDNA copy 
number evaluated using a quantitative method was higher in MA than in NA (Figure 3h) and indi-
cated parallel greater abundance of mtDNA copies and mtDNA-encoded proteins in MA. Further, 
the observation of a lower abundance of respiratory compromised fibers (defined as low or absent 
complex IV staining in COX-SDH double-stained muscle cross-sections) (Figure 3e and f) in MA versus 
NA is consistent with a lower burden of mtDNA mutation in highly functioning MA octogenarians 
compared to NA.

Consistent with the higher protein levels of many mitochondrial proteins in MA, our results show 
that 38 proteins from 28S and 39S mitoribosomal proteins were significantly more abundant in MA, 
suggesting an increased mitochondrial protein synthesis. Conversely, cytoplasmic ribosomal protein 
(RPS2, RPLP0) abundance was lower in MA, suggesting reduced cytoplasmic ribosome protein 
synthesis (Figure 3—figure supplement 1d).

Mitochondrial morphology is regulated by proteins that modulate fission (e.g., DRP1) and fusion 
(e.g., OPA1, MFN1 and 2). For example, OPA1 induces mitochondrial inner membrane fusion (Mishra 
et al., 2014) to promote cristae tightness, increase the activity of respiratory enzymes, and enhance 

identification of COXPos (brown cells), COXInt (empty stars), and COXNeg muscle fibers (solid star). COXNeg fibers have lost complex IV activity relative 
to SDH and appear blue, COXInt retain small amounts of COX activity relative to SDH and appear gray, and COXPos fibers have normal COX activity 
relative to SDH and appear brown. Scale = 200 μm. (f) Quantification revealed a significantly higher abundance of healthy COXPos fibers (*p=0.0291) 
and fewer respiratory chain compromised (COXInt) myofibers (*p=0.0448) in MA compared to NA. (g) Upregulation of mitochondrial DNA (mtDNA) 
in MA. MA and NA donors are shown on X-axis; quantified mtDNA proteins are shown on Y-axis. (h) Increased mtDNA copy number in MAs. Absolute 
mtDNA copy number was determined using a standard curve constructed from known amounts of mtDNA. MA had significantly more copies of mtDNA 
than NA (*p=0.0177; t-test). Graph shows the means and standard deviation. (i) Protein groups that maintain the functional integrity of mitochondria 
were higher in MA. (j) Upregulated MA proteins in MICOS complex system and the fold change of the proteins. Cellular location of the proteins is color 
coded.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Figure supplement 1. Abundance of mitochondrial proteins, VDAC, and subunits of the oxidative phosphorylation (OXPHOS) chain assessed by 
Western blot and mass spectrometry (MS) in master athletes (MA) versus non-athletes (NA).

Figure supplement 2. Mitochondrial protein quantification.

Figure supplement 2—source data 1. Uncut blots for VDAC and oxidative phosphorylation (OXPHOS) subunits.

Figure supplement 2—source data 2. Source data for the Western blotting of oxidative phosphorylation (OXPHOS) subunit and VDAC proteins are 
found in Figure 3—figure supplement 2.

Figure supplement 3. Mitochondrial DNA (mtDNA) enrichment analysis and cristae formation.

Figure supplement 4. Autophagy lysosomal system and ubiquitin proteasome pathway proteins.

Figure supplement 5. Nuclear pore membrane proteins.

Figure supplement 6. Generating a standard curve in order to determine absolute mitochondrial DNA (mtDNA) copy number.

Figure supplement 6—source data 1. Mitochondrial DNA copy number determination blots.

Figure 3 continued

https://doi.org/10.7554/eLife.74335
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the efficiency of mitochondrial respiration (Cogliati et  al., 2013). Interestingly, OPA1, MFN1, and 
DRP1 were overrepresented in MA (Figure 3i), although DRP1 fold elevation in MA donors was not 
statistically significant. The mitochondrial contact site and cristae organizing system (MICOS) complex 
are crucial for maintaining cristae architecture, and experimental knockdown of MICOS components 
leads to mitochondria with altered cristae morphology and compromised OXPHOS (Friedman et al., 
2015; Yang et al., 2015). In this study, 15 out of 17 UniProt annotated MICOS complex proteins 
were quantified, and 9 of them were significantly more abundant in MA (Figure 3j). For example, 
the mitochondrial inner membrane protein mitofilin (MIC60), which controls cristae morphology and 
is thus indispensable for normal mitochondrial function (John et al., 2005), was 1.2-times-fold more 
abundant in MA donors. Of note, we have previously reported a decrease in the abundance of these 
nine proteins with healthy aging (Ubaida-Mohien et al., 2019b).

A complex array of dynamic protein interactions (Sam50, Metaxin, and the inner membrane-
localized MICOS) at cristae junctions that form the mitochondrial intermembrane space bridging (MIB) 
complex was reported recently (Huynen et al., 2016). The outer mitochondrial membrane protein 
Metaxin2 (MTX2), which was significantly more abundant in MA (Figure 3—figure supplement 3a), 
interacts with MICOS complex and MTX3, which are the part of MIB complex (Huynen et al., 2016). 
Metaxins, together with Sam50, are also important for the stability of respiratory complexes (Ott 
et al., 2012). A general translocase mediates the import of nuclear-encoded mitochondrial prepro-
teins in the outer membrane, the TOM complex, and by two distinct translocases in the mitochondrial 
inner membrane, the TIM23 complex, and the TIM22 complex. The average expression of 2 TOM 
complex proteins (TOMM22 and TOMM40) and 10 TIM complex proteins (TIM10, TIM13, TIM14, 
TIM16, TIM21, TIM22, TIM23, TIM29, TIM44, and TIM50) was found to be more abundant in MA 
(Figure 3—figure supplement 3b).

Autophagy and proteostasis pathway proteins in octogenarian MA
Skeletal muscle mass is influenced by the proteolytic process of protein turnover and degradation. 
The major regulatory process of the proteolytic system is chaperone-mediated autophagy by lyso-
somes and the ubiquitin proteasome pathway. There were 267 proteins from these pathways quan-
tified and 47 proteins were significantly associated with MA (p<0.05, 17 underrepresented in MA). 
The proteins were categorized as autophagy, autophagy-lysosome, chaperones, proteasome, and 
other proteostasis cluster proteins (Figure 3—figure supplement 4). Proteasome proteins PSMB1, 
PSMA2, small heat shock protein HSPB8, DNAJ proteins like DNAJB4 and DNAJC3, were lower in 
MA. Activation/inhibition of autophagy – such as V-type proton ATPase 116 kDa subunit isoform 
1 (ATP6V0A1), heat shock 70 proteins like HSPA2 and HSPA1A proteins – were also lower in MA. 
A lower ATP6V0A1 was reported previously in highly active aging healthy donors (Ubaida-Mohien 
et al., 2019a). In contrast, many mitochondrion-localized proteostasis proteins like HSCB, MRPL18, 
TIMM9, HSPE1, and HSPA9 were higher in abundance in MA. PRKAG2, 5′-AMP-activated protein 
kinase subunit gamma-2, a component of AMP kinase main energy-sensor protein kinase that 
responds to changes in the cellular AMP:ATP ratio and regulates the balance between ATP produc-
tion and consumption, was one of the highly expressed proteins (log2FC 1.3) in MA octogenarians, 
suggesting a tightly monitored balance between energy production and utilization (Mounier et al., 
2015).

Impact of nuclear pore membrane proteins and transport proteins in 
octogenarian MA
Nuclear pore complexes (NPCs) facilitate and regulate the transport of different macromolecules 
across the nuclear envelope, allowing bilateral exchanges between the nuclear and cytoplasmic 
environment (Strambio-De-Castillia et al., 2010; Wente and Rout, 2010). 25 nuclear pore proteins 
were quantified, all less expressed in MA than in NA, and for 12 of them, the difference was statis-
tically significant (p<0.05) (Figure 3—figure supplement 5a). Nucleopore cytoplasmic filaments like 
NUP358, NUP98, and NUP88, and adaptor NUPs like NUP98/96 were less abundant in MA. Tpr, the 
central architectural element of nuclear pore formation, Nup93, which is critical for nuclear perme-
ability, was also less abundant in MA (Figure 3—figure supplement 5b). The lower abundance of 
proteins of the nuclear pore in MA was unexpected and should be further explored in future studies.

https://doi.org/10.7554/eLife.74335


 Research article﻿﻿﻿﻿﻿﻿ Epidemiology and Global Health

Ubaida-Mohien et al. eLife 2022;0:e74335. DOI: https://doi.org/10.7554/eLife.74335 � 13 of 27

Spliceosome pathway proteins are underrepresented in octogenarian 
MA
Alternative splicing produces protein variants by combining information from different exon sequences 
in the same genes. Aging is associated with the emergence of different splicing variants of the same 
genes (Harries et al., 2011; Holly et al., 2013; Bhadra et al., 2020). However, it remains unknown 
whether these changes in the human proteome are part of the aging process or represent resil-
ience strategies to cope with the damage accumulation and functional decline associated with aging 
(Deschênes and Chabot, 2017). Previous studies have shown that alternative splicing is particularly 
abundant in skeletal muscle, and we have shown that proteins that regulate alternative splicing are 
significantly overrepresented in skeletal muscle tissue from older compared to younger healthy indi-
viduals (Ubaida-Mohien et al., 2019b). Interestingly, after accounting for age and other covariates, 
being physically active in daily life was associated with a lower representation of spliceosome proteins 
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Figure 4. Dysregulation of spliceosome pathway proteins in octogenarian master athletes (MA). (a) Underrepresentation of spliceosome pathway 
proteins. Significant spliceosome proteins (22) underrepresented in MA are marked as red circles, and all other proteins are marked as gray circle. 
X-axis shows log2 fold expression of the proteins in MA versus non-athletes (NA). (b) The functional characteristics of the spliceosome proteins are 
shown. Each GO annotation cluster is color coded. (c) Downregulation of TRA2 protein in MA donors. Y-axis shows the log2 relative protein abundance. 
(d) Interaction partners of TRA2 protein; with RNA splicing regulation proteins, mRNA major splicing pathway, and mRNA minor splicing pathway 
proteins.
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in skeletal muscle (Ubaida-Mohien et al., 2019a). Also, one of the strongest signals in the current 
analysis was a lower representation of proteins related to mRNA metabolic process, mRNA splicing, 
and mRNA processing in MA. In particular, we were able to quantify 132 spliceosome proteins, and 
of these 22 proteins were less abundant in MA (p<0.05) (Figure 4a). The functional characteristics of 
the spliceosomal proteins are shown in Figure 4b. Of note, TRA2A, an RNA-binding splicing factor 
protein that modulates splicing events and translation, was among the significantly affected proteins 
(p=0.0004) in this category and also had the greatest fold-difference from NA (Figure  4c). Func-
tional analysis of TRA2A suggests a highly interconnected functional interaction network with two 
major pathway proteins: mRNA splicing major pathway (red) and mRNA splicing minor pathway (blue) 
proteins (Figure 4d). Despite not having a direct interaction within this network, the DCPS protein 
has a role in the first intron splicing of pre-mRNAs (Figure 4d). Taken together, the lower represen-
tation of spliceosome proteins that regulate alternative mRNA splicing in MA is consistent with the 
effects of physical activity in our previous study and is consistent with our previous hypothesis that 
alternative splicing is part of a resilience response in the face of lower mitochondria function (Ferrucci 
et al., 2022). Such a resilience response is not required in MA because of high mitochondrial func-
tion maintenance despite old age (Ubaida-Mohien et al., 2019a). This hypothesis is also consistent 
with previous data showing that after adjusting for age and physical activity better skeletal muscle 
oxidative capacity assessed by 31P-MR spectroscopy is associated with overrepresentation of splicing 
machinery and pre-RNA processing proteins (Adelnia et al., 2020).

Modulation of mitochondrion and splicing machinery with aging, 
physical activity, and exercise
To further explore the hypothesis that alternative splicing is part of a compensatory adaptation to 
impaired mitochondrial function, we combined the results of this study with the skeletal muscle 
proteomic data in 58 healthy participants collected in the GESTALT study (Figure 5—source data 
1; Ubaida-Mohien et al., 2019a; Ubaida-Mohien et al., 2019b). Notably, we searched for proteins 
that were underrepresented with age (GESTALT, Age-) and overrepresented with both higher physical 
activity (GESTALT, PA+) and in master athletes (MA+) compared to age-matched controls (Figure 5). 
Enrichment analysis of proteins at the intersection showed 50 proteins enriched at all three shared 
interceptions, including proteins representing mitochondrial biogenesis, TCA cycle and respiratory 
electron transport, MICOS complex, and cristae formation (Figure 5).

Although there was considerable overlap between proteins overrepresented with higher physical 
activity in the GESTALT study and proteins overrepresented in MA, a large group of proteins related 
to mitochondrial protein import and mitochondrion organization were specific to the MA group (not 
associated with physical activity per se). This suggests that although many of the proteins that are 
more abundant in MA versus NA can be attributed to MAs’ physical activity habits, this does not 
account for all of the differences observed. Specifically, out of 301 unique MA+ proteins, a subset of 
proteins – mitochondrial translation (36 proteins), mitochondrial inner membrane (75 proteins), and 
mitochondrial matrix proteins (65 proteins) – appear unrelated to physical activity and may reflect 
unique biology in our MA group (Figure 6).

In the next analysis, we considered the proteins that were overrepresented with age (GESTALT, 
Age+) and underrepresented with both higher physical activity (GESTALT, PA-) and in master athletes 
(MA-) compared to age-matched controls (Figure 7a). Interestingly, we found 40 proteins in all three 
meaningful interceptions (Age+/PA-/MA-; Age+/PA-/; Age+MA-), and these involved mRNA splicing, 
capped introns containing pre-RNA, sarcolemma, regulation of glucokinase, spliceosome, and metab-
olism of RNA (Figure 7). The other notable category pathway differentially represented in Age+ and 
MA- was the NLRP inflammasome pathway, indicating the inflammasome proteins that increase with 
aging are antagonized in MA subjects. Although more proteins were affected in PA than MA versus 
NA, several proteins were underrepresented in MA versus NA that were not underrepresented in 
PA, supporting the idea that there are likely factors beyond physical activity involved in protecting 
the MA group’s muscle proteome. Specifically, 162 MA-exclusive proteins were underrepresented in 
MA versus NA and reflect the unique physiology of MA participants. Enrichment analysis identified 
proteins regulating nuclear pore organization (NUP133, NUP153, NUP54), heterochromatin organi-
zation (HP1BP3, H3F3B, and HMGA1) and telomere (HMBOX1, PURA, TERF2IP), mRNA and splicing 
process, and contractile/sarcomere fiber proteins (Figure 7b, Supplementary file 3).

https://doi.org/10.7554/eLife.74335
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Discussion
MS-based proteomics studies strongly suggest in a select group of individuals free of major disease 
risk factors and morbidity that skeletal muscle mitochondrial proteins are underrepresented in older 
compared to younger persons, and, independent of age, are overrepresented in those who are more 
physically active in daily life (Kleinert et al., 2018; Ubaida-Mohien et al., 2019a; Ubaida-Mohien 
et al., 2019b). In this respect, these prior studies suggest that aging and physical activity have oppo-
site effects on mitochondrial health. However, as most individuals’ level of physical activity declines 
with aging, a clear-cut dissection of the effect of aging independent of declining physical activity has 
proven difficult to achieve. To address this question, 15 exceptionally fit and physically very active 
octogenarian MA were compared to 14 healthy but non-athletic octogenarian NA. In accordance with 
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Figure 5. Aging proteins countered by physical activity (PA) and master athletes (MA). Proteins that decline with aging but are antagonized in physically 
active subjects (GESTALT, n = 58) and MA group. Enriched pathways from 50 proteins that increase with PA and MA and decrease with Age are shown 
(top), and pathways from 12 proteins are are in common between PA and Age (left) and enriched pathways from 22 proteins that are in common 
between MA and Age (right). Top enriched pathways are color coded (significance threshold false discovery rate [FDR] < 0.05). Proteins without 
interaction partners are omitted from visualization.

The online version of this article includes the following source data for figure 5:

Source data 1. Baseline characteristics of the GESTALT skeletal muscle participants.
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our hypothesis, we found an overrepresentation of mitochondrial proteins and these data were consis-
tent with the finding of higher mtDNA copy number, fewer respiratory chain compromised muscle 
fibers by histochemistry, and an increased ratio of mitochondrial inner membrane-bound ETC subunits 
relative to the outer mitochondrial membrane protein VDAC in skeletal muscle of MA octogenarians. 
We also found a lower abundance of proteins regulating RNA splicing in MA, confirming that in older 
persons with high mitochondrial function the upregulation of the splicing machinery usually observed 
with older age is not occurring (Ubaida-Mohien et al., 2019b).

In general, we found that many proteins overrepresented in MA were similar to the proteins that 
have been associated with higher physical activity in daily life, independent of age in previous studies 
(Ubaida-Mohien et al., 2019a). These findings demonstrate that some of the biological mechanisms 
that facilitate the high function of our octogenarian MAs in spite of old age are similar to those bene-
ficially affected by moderate physical activity in skeletal muscle (Nilsson and Tarnopolsky, 2019). 
However, we also found differentially represented proteins in highly functioning octogenarian MA that 
were unique from those affected by physical activity, suggesting that unique biological mechanisms 
also contribute to the extreme performance capacity in this select group of individuals. This unique 
set of proteins unrelated to physical activity may provide novel insight on mechanisms, either genetic 
and/or linked to life-course exposure, that may lessen the physical function decline that is observed 
in the great majority of aging individuals. In total, we found 176 proteins related to mitochondria that 
were overrepresented in MA versus NA that had not been previously linked to physical activity. For 
example, amongst these, 22 proteins that mediate mitochondrial protein import and are involved in 
establishing and modulating the mitochondrial architecture were overrepresented in MA but had not 
been previously reported as affected by physical activity (Ubaida-Mohien et al., 2019a).

A striking result of this study is that 80 proteins involved with mRNA splicing, metabolism of RNA, 
capped intron containing pre-RNA, and transcription coregulator activity that were shown previ-
ously to significantly increase with aging (Rodríguez et  al., 2016; Ubaida-Mohien et  al., 2019b) 
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Figure 6. Master athletes (MA)-exclusive overrepresented proteins. The subset of 301 MA+ proteome represents 
clusters of mitochondrial translation pathway enrichment (blue circles, 36 proteins), mitochondrial inner membrane 
(red circles, 75 proteins), and mitochondrial matrix proteins (pink, 65 proteins). Mitochondrial translation pathway 
proteins are localized either as inner membrane proteins or as matrix proteins. Each circle node is a protein 
exclusive to MA from (MA+, PA+, and Age-) analysis, Nodes without any interaction are excluded from the 
enrichment analysis.
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were globally underrepresented in MA. These data are consistent with previous suggestions that 
the production of alternative splicing variants of structural and regulatory proteins is an integral part 
of the preprogrammed resilience strategies aimed to counteract drifts toward loss of function and 
damage accumulation (Ferrucci et al., 2022), such as those that follow the decline of energy avail-
ability secondary to mitochondrial impairment (Bhadra et al., 2020).

Mitochondria and aging skeletal muscle
Mitochondria have long been implicated in aging biology in general, including skeletal muscle aging. 
Mitochondrial derangement may contribute to functional decline with aging though various mechanisms, 
including but not limited to reduced energy availability for contraction and other essential cellular activities, 

Figure 7. Master athletes (MA)-exclusive underrepresented proteins. (a) Proteins that increase with aging but are antagonized in physically active 
subjects (GESTALT, n = 58) and MA group. Enriched pathways from 40 proteins that decrease with PA and MA and increase with Age are shown (top), 
and pathways from 141 proteins that are in common between PA and Age (left) and enriched pathways from 80 proteins that are in common between 
MA and Age (right) are shown. Network analysis and enrichment analysis are performed using STRING analysis tool; the top enriched pathways are color 
coded (p<0.05). Proteins without interaction partners are omitted from visualization. (b) The subset of 162 MA- proteome represents cluster of chromatin 
organization, nuclear pore, mRNA splicing process, and contractile fiber proteins. This cluster of proteins appear unrelated to physical activity and 
may reflect unique biology in the MA group. Protein-protein interaction pathways and GO cellular components shown here are significantly enriched 
(p<1.0e-16).

https://doi.org/10.7554/eLife.74335
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increased production of ROS, inflammatory signaling, and release of Ca2+ and activation of caspase 3 conse-
quent to an event known as mitochondrial permeability transition (Hepple, 2016). In addition, fragments 
of mitochondrial membrane or mtDNA may trigger the NLRP3 inflammasome and contribute to local and 
systemic inflammaging (Pereira et al., 2019). Hence, preserving skeletal muscle mitochondrial function is a 
central mechanism for maintaining skeletal muscle health with aging.

Our analysis found mitochondrial proteins that cover a large variety of locations and functions were 
more abundant in highly functioning octogenarians than controls, including signaling proteins that fine-tune 
mitochondrial dynamics, mitochondrial biogenesis, TCA cycle, and respiratory electron transport. Evidence 
in the literature suggests that most of these changes are a consequence of higher physical activity (Ubaida-
Mohien et al., 2019a). In keeping with this view, we recently showed that a reduction in intrinsic mitochon-
drial respiratory capacity (respiration normalized to the abundance of a complex III subunit) was only seen 
in very sedentary but not in physically active septuagenarian men (Spendiff et al., 2016), and data from the 
literature show that low physical activity rather than aging per se causes an increase in skeletal muscle mito-
chondrial ROS emission (Gram et al., 2015). Although we can only speculate on this point, one contributing 
factor to the higher abundance of mitochondrial proteins in MA may relate to mitochondrial adaptations 
incurred at the initiation of training in the MA group. Noting that the athletes in our MA group started 
training between 55 years of age (endurance athletes) and 65 years (sprint/power athletes) (see Table 2), the 
nature of the mitochondrial adaptations was likely in excess of the mild age-related impairment that would 
have been present at the age training was initiated. Thus, perhaps this training built in a ‘buffer,’ such that 
even similar rates of age-related decrements in mitochondrial proteins between both MA and NA would 
still yield the higher levels of mitochondrial proteins that we observed in MA versus NA at the participants’ 
age when the muscle was sampled. Unfortunately, the cross-sectional nature of our study limits conclusions 
regarding this and other possibilities.

The mechanisms by which physical activity attenuates oxidative stress are complex and not completely 
understood. On the one hand, the promotion of autophagy and mitochondrial biogenesis jointly contributes 
to the recycling of damaged mitochondria and subsequent replacement with healthy mitochondria that are 
less likely to generate excessive ROS. On the other hand, exercise in MA likely upregulates enzymatic antiox-
idants such as SOD2 by an NRF2-KEAP1 mechanism (Gao et al., 2020). Although our proteomic analysis did 
not detect PGC-1α, we did observe higher levels in MA skeletal muscle for PGC-1 and ERR-induced regu-
lator in muscle protein 1 (PERM1), a regulator of mitochondrial biogenesis (Cho et al., 2016). In addition, 
the mitochondrial SIRT3 was elevated in MA muscle. Exercise activates SIRT3 by an AMP-activated protein 
kinase-dependent mechanism (Brandauer et al., 2015), and, in turn, SIRT3 deacetylates the mitochondrial 
antioxidant enzyme SOD2 boosting its ROS-scavenging activity (Tao et al., 2010). This is consistent with a 
previous study where they also reported a significantly higher level of SIRT3 and SOD2 in the skeletal muscle 
of master athletes (~15 years younger than studied here) compared to age-matched controls (Koltai et al., 
2018). Finally, mitochondrial permeability transition is an important source of elevated mitochondrial ROS in 
skeletal muscle (Burke et al., 2021) and SIRT3, which was elevated in MA, reduces mitochondrial permea-
bility transition by deacetylation of cyclophilin D (Hafner et al., 2010).

The differential representation of proteins that fine-tune mitochondrial dynamics between MA and NA 
is particularly interesting because an optimal dynamic balance of expression between pro-fusion (OPA1, 
MFNs) (Tezze et al., 2017) and pro-fission (DRP1) processes (Dulac et al., 2020) is essential for mitochon-
drial health. Consistent with this idea, our data showed a higher abundance of pro-fusion (OPA1, MFN2) 
and pro-fission (OMA1) proteins, as well as a higher abundance of mitochondrial electron transport complex 
assembly proteins (NUBPL, COA1, ACAD9, etc.) in MA donors. Collectively, the higher abundance of these 
proteins in MA suggests better maintenance of processes involving mitochondrial dynamics and cristae 
remodeling in MA. In addition, maintained mitochondrial dynamics is also likely conducive to the better 
preservation of mtDNA that we observed in MA, given the importance of mitochondrial dynamics to 
mtDNA integrity (Bess et al., 2012). Importantly, our proteomics data are consistent with phenotypic data 
showing a higher abundance of respiratory competent muscle fibers and higher mtDNA copy number in 
MA versus NA. Interestingly, there were eight mitochondrial proteins that had a lower abundance in MA 
than would be expected by random chance. Of these, four proteins were associated with GO Biological 
Process lipid biosynthesis (CYB5R3, CDS2, ACSL3, and STARD7). CDS2 is an essential intermediate in the 
synthesis of phosphatidylglycerol, cardiolipin, and phosphatidylinositol (PI), an important regulator of lipid 
storage (Qi et al., 2016). STARD7 is an intramitochondrial lipid transfer protein for phosphatidylcholine. 
These data are generally consistent with a recent magnetic resonance spectroscopy analysis of aging human 

https://doi.org/10.7554/eLife.74335
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muscle, showing that elderly subjects who did not exhibit significant muscle atrophy had lower levels of skel-
etal muscle phospholipids (Hinkley et al., 2020). The other four proteins that had lower expression in MA 
were PGAM5 (regulator of mitochondrial dynamics), dimethylarginine dimethylaminohydrolase 1 (DDAH1), 
SHC1 (mitochondrial adapter protein), and WDR26 (negative regulator in MAPK signaling pathway). The 
significance of the lower expression of these proteins in MA is unclear. Of note, most of these proteins are 
primarily located in the endoplasmic reticulum, although they are also found in mitochondria. WDR26 is 
expressed mostly during mitochondrial stress and hypoxia, which is less likely to occur in MA compared to 
controls. The underrepresentation in MA of STARD7, a protein important to efficient phosphatidylcholine 
import by mitochondria as well as mitochondrial function and morphogenesis, may be considered counter-
intuitive. However, recent studies have suggested that STARD7 is a candidate effector protein of ceramide, 
a lipid known for its ability to initiate a variety of mitochondria-mediated cytotoxic effects. Thus, the under-
representation of STARD7 in MA may be beneficial in this latter context (Bockelmann et al., 2018).

In summary, our data suggest that overrepresentation of mitochondrial quality control proteins and mito-
chondrial dynamics proteins in octogenarian MA muscle likely translates to better maintenance and remod-
eling of mitochondrial cristae, with higher energy availability that positively affects cellular adaptation to 
stress, and better maintenance of muscle metabolism.

RNA splicing, nuclear pore complex, and aging
An upregulation of alternative splicing is commonly seen with aging in a variety of tissues that include skel-
etal muscle in both animal models (Rodríguez et al., 2016) and aging humans (Ubaida-Mohien et al., 
2019b). Interestingly, after accounting for physical activity and age, we previously found that higher mito-
chondrial oxidative capacity as measured by 31P-spectroscopy was associated with upregulation of spliceo-
some proteins (Adelnia et al., 2020), which we have interpreted to suggest that upregulation of alternative 
splicing may represent a resilience response to confer benefits to mitochondrial function and thus limit the 
negative effects of aging (Ferrucci et al., 2022). On this basis, we hypothesized that highly functioning 
octogenarians would require less of upregulation of this resilience mechanism. Consistent with this idea, 
80 proteins involved with mRNA splicing, metabolism of RNA, capped intron containing pre-RNA, and 
transcription coregulator activity that were shown previously to increase with aging (Rodríguez et al., 2016; 
Ubaida-Mohien et al., 2019b) were globally underrepresented in MA compared to controls. On this basis, 
we suggest that the lower representation of spliceosome proteins that regulate alternative mRNA splicing in 
MA may indicate that such compensatory upregulation of alternative splicing is not required in these individ-
uals because their mitochondrial biology is better protected by other means (e.g., physical activity). Future 
analysis of RNA expression to examine expression of splice variants in MA versus NA would be important to 
further evaluate this premise.

An unexpected finding was that NPC proteins were less represented in MA than controls. The NPC 
proteins are involved in mRNA splicing regulation (Stewart, 2019), and therefore underrepresentation 
of NPC proteins in MA may be part of a global downregulation of splicing. In this respect, since post-
translational oxidative modification and activation of mitochondrial-mediated apoptotic pathways are asso-
ciated with upregulation of NPC proteins (Lindenboim et al., 2020), a higher level of mitochondrial function 
in MA probably requires less protein turnover and thus less synthesis of nucleoporins and structural proteins. 
This idea is consistent with the discordant responses of mitochondrial versus non-mitochondrial ribosomal 
proteins, where we observed that 38 mitochondrial ribosomal proteins from 28S and 39S were significantly 
higher expressed in MA, whereas cytoplasmic ribosomal proteins (RPS2, RPLP0) were less abundant in MA.

Proteostasis maintenance pathways are important for skeletal muscle as components of myofibers are 
often damaged and must be replaced regularly. Proteins involved in proteostasis appear to have no single 
trend of change in MA octogenarians, with some chaperones and autophagy proteins underrepresented 
and some overrepresented in MA. It is possible that the long-term physical activity adaptation of the skeletal 
muscle in MA reduces the need for replacement of muscle proteins, for example, the higher fidelity of their 
mitochondria coupled with the higher expression of antioxidant proteins such as SOD2 may limit post-
translational damage to proteins, thereby reducing the rate at which they need to be replaced.

Evidence for factors other than exercise in MA proteome
To a large extent, the results of this study are consistent with the well-established benefits of exercise on 
mitochondrial and skeletal muscle health (Hood et al., 2019). However, the individuals we studied were 
world-class athletes in their 80s and it is unlikely that their high function can be accomplished by the majority 
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of older people, even assuming that they adhere to a strict exercise regimen. We expect that a fortuitous 
combination of genetics and environmental factors beyond exercise per se make them winners. Consistent 
with the idea that factors beyond those linked to physical activity contribute to such an extreme pheno-
type, we observed several mitochondrial-related proteins that were uniquely upregulated in MA versus 
normal aging, and several proteins involving RNA processing and the inflammasome that were uniquely 
downregulated in MA versus normal aging. As these proteins are not among those previously identified 
as exercise-responsive (Ubaida-Mohien et al., 2019a), we refer to these as the MA-specific proteome (see 
Figures 6 and 7). Although our MA cohort is too small to permit assessment of genetic/hereditary factors in 
these protein differences, our results identify important candidate protein pathways to explore for antiaging 
effects and suggest additional studies with larger numbers of subjects (and including other types of athletes) 
would be worthwhile.

In conclusion, our data underscore that mitochondrial pathways are key to maintaining a high level of 
physical function in advanced age. Furthermore, our data show that high physical function is also associated 
with preventing the general increase with aging in NPC proteins and spliceosome proteins. Whereas many 
of the differentially represented proteins in MA overlap with those affected by daily physical activity, we also 
identified several proteins that typically change with aging and were uniquely countered by MA but not by 
physical activity. The study of these unique proteins may reveal mechanisms that allow sporadic individuals 
to maintain high level of physical activity late in life, and understanding these mechanisms may indicate new 
therapeutic strategies for attenuating sarcopenia and functional decline with aging.
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Appendix 1

Histochemical labeling for respiratory compromised muscle fibers
COX/SDH histochemistry (Old and Johnson, 1989; Taylor et al., 2003) was performed to assess 
the activity of OXPHOS complexes IV (COX) and II (SDH), and thus identify muscle fibers with a 
respiratory chain deficiency (COXNeg). The COX incubation medium was prepared by adding 100 μM 
cytochrome c to 4 mM of 3,3-diaminobenzidine tetrahydrochloride (DAB) with 20 μg of catalase. 
The slides were incubated for 45 min at 37°C in a humidified chamber. Following three washes in 
PBS, SDH incubation medium (130 mM sodium succinate, 200 μM phenazine methosulfate, 1 mM 
sodium azide, and 1.5 mM NitroBlue tetrazolium) was added to the sections. The sections were again 
incubated for 45 min at 37°C, washed 3× PBS, and then dehydrated through a graded ethanol series 
and xylene before being mounted in DPX. Images of the whole-muscle section were captured on a 
Zeiss Axio Imager M2 fluorescent microscope (Zeiss, Germany). Counts of COX-positive (COXPos), 
COXInt, and COXNeg myofibers were performed for the whole-muscle cross-section. COX-negative 
fibers are indicative of cells with high levels of mtDNA mutations (Bua et al., 2006) and will thus 
not demonstrate the brown reaction product (oxidized DAB) during the first incubation but will stain 
blue following the second incubation for SDH activity. This is because the nuclear DNA entirely 
encodes SDH, so any mtDNA mutations will not affect its activity. In contrast, mtDNA mutations 
could affect complex IV activity and prevent DAB oxidation if a mutation affects a region of mtDNA 
containing the Cox subunit genes.

Mitochondrial DNA copy number
Groups of 25 fibers (5 × 5 fibers) in an unstained 20-μm-thick muscle cross-section were randomly 
selected (random number generator and numbered grid), laser captured, and their DNA extracted 
using the lysis method (Spendiff et  al., 2013) and stored at –20°C. The products were then 
separated on a 1% agarose gel containing Sybr Safe DNA Gel Stain at 70 V for 30 min, and the bands 
visualized using a G-Box chem imaging system (Figure  1—figure supplement 1a). The mtDNA 
fragment was extracted using a QIAquick Gel Extraction Kit and quantified using a NanoDrop-2000 
spectrophotometer (Thermo Scientific). Total mtDNA copy number in muscle fibers was determined 
using a standard curve created from the amplification of MTND1 (1011  bp fragment, forward 
primer: 5′ TGTA​AAAC​GACG​GCCA​GT 3′, reverse primer: 5′ CAGG​AAAC​AGCT​ATGA​CC) (Greaves 
et al., 2010; Figure 1—figure supplement 1b). The products were separated on a 1% agarose 
gel, and the mtDNA fragment extracted using a QIAquick Gel Extraction Kit and quantified with a 
NanoDrop-2000 spectrophotometer (Thermo Scientific). A standard curve was generated by serially 
diluting down the sample in dH2O. Groups of 25 fibers (5 × 5 fibers) were randomly selected (random 
number generator and numbered grid) and laser captured. Samples along with the standard curve 
were run in triplicate using an MTND1 TaqMan qPCR assay (forward primer: 5′ ​CCCT​​AAAA​​CCCG​​
CCAC​​ATCT​ 3′, reverse primer: 5′ ​GAGC​​GATG​​GTGA​​GAGC​​TAAG​​GT 3′, probe: 5′ VIC-​CCAT​​CACC​​
CTCT​​ACAT​​CACC​​GCCC​ 3′). The total mtDNA copy number was then determined using the sample 
Cq values and the equation generated from the standard curve. Results were divided by the total 
area of the captured cells to give mtDNA copy number per area.

Western blotting for mitochondrial proteins
Western blotting for representative mitochondrial proteins was performed as described previously 
(Spendiff et al., 2016). Briefly, 10–20 mg of muscle was homogenized in a Retch mixer mill (MM400) 
with 10× (w/v) of extraction buffer (50 mM Tris base, 150 mM NaCl, 1% Triton X-100, 0.5% sodium 
deoxycholate, 0.1% sodium dodecyl sulfate), and 10 µl/ml of Protease Inhibitor Cocktail. Following 
2 hr of gentle agitation at 4°C, samples were centrifuged at 12,000 × g for 20 min at 4°C, and 
the supernatant removed for protein assessment by Bradford assay. Samples were diluted in 4× 
Laemmli buffer to yield a final protein concentration of 2 µg/ml and then boiled for 5 min at 95°C. 
Immunoblotting was done using 20 µg of protein, loaded onto a 12% acrylamide gel, electrophoresed 
by SDS-PAGE and then transferred to polyvinylidene fluoride membranes (Life Sciences), blocked 
for 1 hr at room temperature in 5% (w/v) semi-skinned milk, and probed overnight at 4°C with the 
following primary antibodies (diluted in 5% BSA): mouse monoclonal anti-VDAC (1:1000; Abcam 
ab14734) and mouse monoclonal Total OXPHOS Cocktail (1:2000, Abcam ab110413). To address 
the poorer sensitivity to the CIV subunit in this cocktail after boiling human samples, we also probed 
using mouse monoclonal CIV (1:1000, Life Technologies A21348). Ponceau staining was performed 
to normalize protein loading. Following washing, membranes were incubated with HRP-conjugated 
secondary antibodies (diluted in 5% milk, Abcam) for 1  hr at room temperature. Protein bands 
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were detected using SuperSignal West Pico Chemiluminescent Substrate (Thermo Scientific, USA) 
and imaged with a G-Box Chem Imaging System. Analysis of protein bands was performed using 
GeneTools software (Syngenem, UK).

Sample preparation and protein extraction for MS
Roughly, 5–8  mg of vastus lateralis muscle tissue was pulverized in liquid nitrogen and mixed 
with the modified SDT lysis buffer (100  mM Tris, 140  mM NaCl, 4% SDS, 1% Triton X-114, pH 
7.6; Sigma) (Wiśniewski et al., 2009). Tissues were sonicated using preprogrammed tabletop tip 
sonicator, centrifuged at +4°C for 15 min at 14,000 rpm, aliquoted, and stored at –80°C until further 
processing. Protein concentration was determined using a commercially available 2-D quant kit (GE 
Healthcare Life Sciences). The sample quality was confirmed using NuPAGE protein gels stained 
with fluorescent SyproRuby protein stain (Thermo Fisher). 300 µg of muscle tissue lysate was used 
for tryptic digestion.

Detergents and lipids were removed by standard methanol/chloroform extraction protocol 
(sample:methanol:chloroform:water – 1:4:1:3) (Wessel and Flügge, 1984). Purified proteins were 
resuspended using a small aliquot (30  μl) of concentrated urea buffer (8  M urea, 2  M thiourea, 
150  mM NaCl; Sigma), reduced with 50  mM DTT for 1  hr at 36°C, and alkylated with 100  mM 
iodoacetamide for 1 hr at 36°C in the dark. Concentrated urea was diluted 12 times with 50 mM 
ammonium bicarbonate buffer. Proteins were digested for 18 hr at 36°C using trypsin/LysC mixture 
(Promega) in 1:50 (w/w) enzyme to protein ratio. Protein digests were desalted on 10 × 4.0 mm C18 
cartridge using Agilent 1260 Bio-Inert HPLC system connected to the fraction collector. Purified 
peptides were speed vacuum dried and stored at –80°C.

Initially, three independent 10-plex TMT (TMT 10-plex) experiments were designed. Samples 
in each TMT experiment were blinded and randomized between TMT channels to avoid labeling 
and sampling bias. Each LC-MS experiment used 100 μg of muscle tissue digest from five MA 
samples matched with five controls (NA) that were independently labeled with 10-plex tags 
(Thermo Fisher). Of the three 10-plex experiment, a total of 24 biological replicates and 6 technical 
replicates were included, technical replicates were used to optimize instrument performance 
and to estimate technical reproducibility. 200 femtomole of bacterial beta-galactosidase digest 
(SCIEX) was spiked into each sample prior to TMT labeling to control labeling efficiency and 
overall instrument performance. Labeled peptides were combined into one experiment and 
fractionated.

High-pH RPLC fractionation and concatenation strategy
Basic reverse-phase fractionation was done on Agilent 1260 Bio-Inert HPLC system as previously 
described (Wang et al., 2011). XBridge 4.6 mm × 250 mm column (Peptide BEH C18) equipped with 
3.9 mm × 5 mm XBridge BEH Shield RP18 XP VanGuard cartridge (Waters). The solvent composition 
was as follows: 10 mM ammonium formate (pH 10) as mobile phase (A) and 10 mM ammonium 
formate and 90% ACN (pH 10) as mobile-phase B. Labeled peptides were separated using a linear 
organic gradient (5–50% B in 100 min). Initially, 99 fractions were collected during each LC run at 
1 min intervals each. Three fractions separated by 33 min intervals were concatenated into 33 master 
fractions, as previously described (Ubaida-Mohien et al., 2019a).

Nano LC-MS/MS analyses
Purified peptide fractions from muscle tissues were analyzed using UltiMate 3000 Nano LC Systems 
coupled to the Q Exactive HF mass spectrometer (Thermo Scientific, San Jose, CA). Each fraction 
was separated on a 45 cm capillary column with 150 µm ID on a linear organic gradient using 550 nl/
min flow rate. Gradient went from 5% to 35% B in 195 min. Mobile phases A and B consisted of 0.1% 
formic acid in water and 0.1% formic acid in acetonitrile, respectively. Tandem mass spectra were 
obtained using Q Exactive HF mass spectrometer with the heated capillary temperature +280°C 
and spray voltage set to 2.5 kV. Full MS1 spectra were acquired from 330 to 1600 m/z at 120,000 
resolution and 50 ms maximum accumulation time with automatic gain control (AGC) set to 3 × 106. 
Dd-MS2 spectra were acquired using dynamic m/z range with a fixed first mass of 100 m/z. MS/MS 
spectra were resolved to 30,000 with 150 ms of maximum accumulation time and AGC target set 
to 1 × 105. Fifteen most abundant ions were selected for fragmentation using 29% normalized high 
collision energy. A dynamic exclusion time of 70 s was used to discriminate against the previously 
analyzed ions.
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Proteomics informatics
The PeptideProphet model fits the peptide-spectrum matches into two distributions, one an extreme 
value distribution for the incorrect matches, and the other a normal distribution for correct matches. 
The protein was filtered at thresholds of 0.01% peptide FDR, 1% protein FDR, and requiring a 
minimum of one unique peptide for protein identification.

Single-peptide hits were allowed when any quantifiable peptide was detected across at least 30% 
of all samples (n = 24) and if proteins were identified with more than one search engine. Reporter ion 
quantitative values were extracted from Scaffold and decoy spectra, and contaminant spectra and 
peptide spectra shared between more than one protein were removed. Typically, spectra are shared 
between proteins if the two proteins share most of their sequence, usually for protein isoforms. 
Reporter ions were retained for further analyses if they were exclusive to only one protein, and 
they were identified in all 10 channels across each TMT batch. Further protein bioinformatics was 
performed, as previously described (Ubaida-Mohien et al., 2019a).

https://doi.org/10.7554/eLife.74335
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