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Abstract. Identifying patterns and detecting irregularities regarding
individual mobility in public transport system is crucial for transport
planning and law enforcement applications (e.g., fraudulent behavior).
In this context, most of recent approaches exploit similarity learning
through comparing spatial-temporal patterns between normal and irreg-
ular records. However, they are limited in utilizing passenger-level infor-
mation. First, all passenger transits are fused in a certain region at a
timestamp whereas each passenger has own repetitive stops and time
slots. Second, these differences in passenger profile result in high intra-
class variance of normal records and blur the decision boundaries. To
tackle these problems, we propose a modelling framework to extract
passenger-level spatial-temporal profile and present a personalised sim-
ilarity learning for irregular behavior detection. Specifically, a route-to-
stop embedding is proposed to extract spatial correlations between tran-
sit stops and routes. Then attentive fusion is adopted to uncover spatial
repetitive and time invariant patterns. Finally, a personalised similarity
function is learned to evaluate the historical and recent mobility pat-
terns. Experimental results on a large-scale dataset demonstrate that
our model outperforms the state-of-the-art methods on recall, F1 score
and accuracy. Raw features and the extracted patterns are visualized
and illustrate the learned deviation between the normal and the irregu-
lar records.

Keywords: Irregular pattern detection · Spatial-temporal profiling ·
Similarity learning

1 Introduction

Smart public transit card is now widely used in cities all over the world. It brings
massive convenience for both passengers and transit operators in daily lives.
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Online recharging and fare calculation can be automatically achieved with min-
imum labour cost involved. In this context, large volume of transit smart card
data is continuously generated, which provides an unprecedented opportunity to
profile passenger mobility patterns [8]. For example, the Opal card in the Greater
Sydney area involves millions of users and records travel patterns of them on a
daily basis. Uncovering recurrent patterns, and systematic variations, and irreg-
ular behavior patterns from these large datasets can aid in future transit route
and stop planning or refinement, bus or train scheduling. Moreover, detecting
irregular behavior patterns may also help alleviate or limit potential fraudulent
behavior with smart transit card and subsequent loss.

The repetitiveness or regularity of travel patterns indeed allow planners and
operators to optimally design public transport systems. However, in recent years,
with a growing availability of individual mobility data, detecting irregularities
regarding individual mobility in public transport system and quantifying the
impacts of these become increasingly important, which can help the system
operator and planner to more proactively accommodate both systematic behav-
ior variations and stochasticity related to travel in public transit systems. At the
same time, discovering and preventing potential fraudulent behavior with smart
transit cards is also important in many cities. For example, the public transit
card in cities such as Sydney, Melbourne, and Hong Kong is often linked to users’
credit cards. Moreover, public transit cards in some cities (e.g., Octopus card in
Hong Kong) can also be used to purchase daily goods from a variety of shops.
Detecting irregular and potential fraudulent behavior with smart transit cards
at early stages may help avoid considerable loss of travelers who lose their smart
transit cards.

In order to address the problem of detecting irregular or fraudulent behavior
in smart transit data, recent efforts have been made in spatial-temporal profile
extraction and pattern comparison. First, convolutional-based or graph-based
methods are adopted for describing spatial connections and layout for different
stops [1,5,14]. Then a sequential layer is applied to model temporal correlations
among historical transits. In this way, the model is able to predict a traffic-related
value for a location at a timestamp. Finally, similarity-based algorithms are used
to compare different passenger patterns. The similarity function can either be
measured by a statistical distance metric between the normal and fraud data,
or defined by a reconstruction error derived from an encoder-decoder structure
[6,13,16]. Therefore, a reference passenger pattern can be discriminated from a
potential irregular/fraudulent pattern.

Despite promising success in excavating spatial-temporal profile based on
morphological layout or traffic flow, passenger level information is often fused
within a certain region, which is inadequate when distinguishing fine-grained
passenger profile since everyone has their own mobility patterns. Besides, most
of the existing fraud or irregularity detection methods only consider all passen-
ger data in an aggregate manner and learn a decision boundary for common
outlier patterns. However, these methods tend to fail when normal data has
high intra-class variance, meaning that normal data is not compacted and the
boundary between the normal and fraud data is blurry, or reconstructed errors
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are high even for normal data. This is exactly the case of mobility pattern where
one passenger’s normal record can be another one’s abnormal data and totally
confuses the aforementioned methods, thus calling for a personalised fraudulent
behavior detection method.

In this paper, we build a deep learning framework to detect irregu-
lar/fraudulent behavior with respect to smart transit card (note that we may
simply use “fraud” or “fraudulent” to refer to “irregular” behaviors later on).
We managed to extract passenger level spatial-temporal profile and present a
personalised similarity learning for detection. More specifically, a route-to-stop
embedding is first proposed to extract spatial correlations between different tran-
sit stops and routes for each passenger. Then attentive fusion is adopted to find
spatial repetitive and time invariant pattern. Finally, a personalised similarity
function is learned to evaluate the historical and recent mobility patterns. To
summarize, this paper makes the following major contributions.

– We propose a novel route-to-stop embedding to explore spatial correlations
between routes and transit stops. It does not need to compute tens of thou-
sands of global nodes in a graph. Instead, it only focuses on personalised
nodes for each passenger, meanwhile maintain the ability to abstract node
and edge correlations.

– We propose a learnable similarity function to measure the distance between
repetitive invariant mobility pattern and recency pattern. Instead of integrat-
ing all the passenger data with high intra-class variance, the function directly
applies to each passenger and makes personalised decision.

– We conduct experiments on a large-scale real-world dataset. Results demon-
strated that using 20% of the total fraudulent data can achieve state-of-the
art performance. With overall data, our model gains significant improvements
on F1 and accuracy.

2 Related Works

Recently a host of studies have investigated to extract spatial-temporal profile
for a passenger. One typical approach is to use convolutional layers over a spatial
map and to use recurrent layers over a time sequence. Lan et al. [7] and Chen
et al. [3] adopted convolutional layers on the morphological layout of a city and
LSTM to estimate travel time and predict urban air quality index. Recently
convolutional graph networks have drawn more attention in helping discover
non-linearity correlation between nodes and edges in a graph [5,17]. Each node
is represented by a vector while connections of each node are represented by
an adjacency matrix or by fixed edge features. Nevertheless, most of existing
approaches [1,14] fuse passenger features in a node, while features on the same
node can be dynamic for different passengers, since two passengers on the same
stop may have different time slot preference. Also, usually nodes were built by
segmenting city layout into hundreds of grids so as to compute adjacency matrix.
However, in our scenario nodes are tens of thousands of transit stops, demanding
highly expensive computation to build a traditional graph.
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In order to distinguish unique passenger profile from potential irregular or
fraudulent behavior, distance-based and reconstruction-based detection methods
have been widely used. The distance-based approaches assume that normal data
are compact in distribution and far from sparse fraud. Conventional methods
include isolation Forest [9], and One-Class Support Vector Machine. Present
deep learning-based models try to learn a distinguished density space between
the normal and fraud data [10,11,15]. DevNet [10] defines a deviation loss based
on z-score of a prior Gaussian distribution and squeezes the outliers to the tail of
the distribution. Perera et al. [11] present a compactness and a descriptiveness
loss for one-class learning. Yoon et al. [15] propose a learnable scoring matrix to
detecting incongruity between news headline and body text. The reconstruction
based methods adopt encoder-decoder structures and claim that fraud can not be
well-reconstructed through the structure. Cao et al. [2] and Xu et al. [13] propose
variation-auto-encoder based models with extensive experiments. Zhang et al.
[16] detect fraud on reconstructed residual correlation matrix. LSTM-NDT [6]
and OmniAnomaly [12] adopt dynamic thresholding on reconstructed feature
errors. Despite great effectiveness, these approaches tend to underperform in
our task due to high intra-class variance of normal data, where one passenger’s
normal records can be irregular/fraudulent for others.

Summary. The proposed method in this paper is fundamentally different from
the literature in the following aspects. Firstly, the proposed route-to-stop embed-
ding does not need to compute tens of thousands of node features in a graph.
Instead, it only concentrates on personalised nodes for each passenger, meanwhile
maintaining the ability of abstracting node and edge correlations. Furthermore,
this study directly applies a personalised similarity function to learn the dis-
crepancy between historical and new records for each passenger. In this way, the
variance of data can be reduced by only focusing records of the same passenger.
Therefore, the high intra-class variance problem of some existing approaches is
avoided.

3 Proposed Approach

3.1 Data Characteristics

Data Description. We use public transit card of the Greater Sydney area
(Opal card) in the case study. In total 187,000 passenger records were collected
from April 1st to 30th, 2017. Each record is characterized with transit stop
features and route features. Transit stop features consist of tap on/off time, lon-
gitude/latitude and postcode of stops, stop id and whether the tap is a transfer
from another vehicle. Transit route features include vehicle type, vehicle id, dura-
tion, distance bands, journey costs and run direction. In this way, every record
can be described as a starting stop to an ending stop through a route, and a
passenger can be represented as a sequence of such records. As demonstrated in
Fig. 1, there are four transit stops marked as red and three connecting routes for
this passenger. Each stop has one or more records, representing the passenger
pattern such as visiting frequency.
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Fig. 1. Passenger spatial-temporal profile.

From Fig. 1, it is able to profile a passenger through spatial-temporal pattern.
For instance, a route is made from Milsons Point Station to Town Hall Station
nearly every weekday morning, indicating home/office location and potential
occupation of the passenger. These repetitive stops together with less visiting
stops, each with their own time invariant pattern, profile a unique passenger. We
hereby aim to leverage this profile by excavating spatial correlations between
transit stops and temporal preferences for each route, named “personalised
spatial-temporal profile” for short. We expect to learn discriminative passen-
ger profile, which can not only help transit operators provide more customised
service, but can also alert passengers when irregular/fraudulent behavior occurs.

3.2 Problem Statement

Given a set of historical records X = {x1, x2, ..., xN} with xi ∈ R
D and a recent

record xN+1 for a passenger, each record xi = (si1, si2, ri) can be viewed as a
route ri from a stop si1 to a stop si2 where (., .) denotes concatenation. The
goal is to learn a personalised similarity function φ : (xN+1,X) �→ R

2 in a way
that xN+1 is similar to X if φ(xN+1,X)1 > φ(xN+1,X)2. Otherwise, it is a
irregular/fraudulent behavior.

3.3 The Proposed Framework

Figure 2 presents the overall framework of the personalised spatial-temporal sim-
ilarity learning network. Historical pattern uN and the latest pattern uN+1 are
extracted and compared from the corresponding data {x1, x2, ..., xN} and xN+1

to detect a irregular/fraudulent behavior. There are four major components
in the framework: a route-to-stop embedding to describe the spatial mapping
function from routes to stops, an attentive fusion to capture repetitive and time
invariant pattern, a fully connected layer to extract recent pattern, and a similar-
ity function to learn the discrepancy between the historical and recent patterns.
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Fig. 2. The framework of personalised spatial-temporal similarity learning.

Route-to-Stop Embedding (R2S). As mentioned before, every record is
featured by two transit stops and a route. Instead of directly input raw features
xi = (si1, si2, ri) into the model, we want to map two stop features si1, si2
into the same space since starting and ending stops share the same raw input
space. Also, stop and route features (si, ri) have strong dependency correlations,
for example, in Fig. 1, given route features like vehicle id, time duration and
cost and starting stop features like tap on time and location, it is possible to
speculate corresponding ending stop features. Hence, route features should also
be projected to the same space as transit stops. Inspired by [4], a route-to-
stop(R2S) embedding that is generalizable for each passenger is proposed to
represent spatial correlation: {route ri: starting stop si1 �→ ending stop si2 }:

ei = E(si1, si2, ri) = (F [h(ri) � si1],F [h(ri) � si2]) (1)

where ei is the embedding of the i-th record. F and h denote neural networks.
h(ri) has the same dimension as si1 and si2, and � denotes element-wise multi-
plication. What R2S has achieved is to use h to project route features into stop
space and to share a projection F between two stops.

The advantage of R2S layers lies in the ability to draw a customized spatial
profile for each passenger. Different weights h(ri) are assigned to stops. The
starting and ending stops are treated equally with F . In this way, two passengers
who share the same starting stop will have distinguished weights on that stop
during to other factors like duration or costs.
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Repetitive and Time Invariant Pattern. A unique passenger profile lies in
repetitive visiting stops and invariant transit time slot preference observed from
historical records. To capture such repetitive and time invariant pattern uN , an
LSTM layer followed by an attentive fusion is adopted:

ui = LSTM(ei, ui−1), s.t. 2 ≤ i ≤ N,u1 = 0

a = softmax(u ∗ Wu) ∈ R
N×1, uN =

N∑

i=0

aiui

(2)

where ui is the hidden layer of the i-th record defined by the R2S embedding ei
and the hidden layer of the last timestamp ui−1. Then, an attentive probability
ai is calculated for each ui through attention matrix Wu. The attention matrix
is learned to focus on repetitive and time invariant stops so that the extracted
pattern uN is distinguished from irregular/fraudulent behavior pattern.

Recency Mobility Pattern. For the latest record, the spatial profile eN+1 is
directly fed into a fully-connected layer to get recency mobility pattern uN+1:

uN+1 = FCN(eN+1) (3)

The structure of hidden layers were chosen as same as the lstm hidden layers
in order to learn a homogeneous projection as the historical pattern.

Personalised Similarity Learning. Given historical and recent record pat-
terns uN and uN+1, A similarity function is modified from [15] aiming to provide
personalised discrepancy decision:

Pfraud = (uN+1)TM1uN + b1

Pnormal = (uN+1)TM2uN + b2

P (uN+1, uN ) = softmax([pfraud, pnormal])

(4)

where M1, b1,M2, b2 are learnable parameters. If pfraud > pnormal, then it
is irregular/fraudulent behavior. Using uTMu instead of directly adopting inner
product uTu introduces a learnable matrix that can diminish differences between
normal and historical data meanwhile enlarge the distributional gap between his-
torical and fraud data. Hence, during training process, a pair of three records, i.e.,
(normal, irregular/fraudulent, historical) is built intentionally. The loss function
is defined as:

L(uN+1, uN ) = −EuN+1∼uN log[P (uN+1, uN )] − EuN+1 �∼uN log[1 − P (uN+1, uN )]
(5)

uN+1 ∼ uN refers to normal data and uN+1 	∼ uN refers to fraud data. The
reason why the problem is designed in a supervised manner is that a limited
number of labeled anomalies can always provide critical prior knowledge for an
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unsupervised model [10]. However, in many real-world applications it is unable to
collect massive labels. In order to address this issue, we generate labels based on
the intuition that uN+1 is a normal record if it comes from the same passenger
as the historical records and it is an irregular record if it comes from other
passengers. In this way, hand-crafted labels are not necessary.

4 Experiments

4.1 Experimental Settings

For the data set, records of 175,000 and 12,000 passengers were used as training
and testing data. For each passenger, the number of historical records N is set to
be 20. Embedding was adopted for categorical features. The overall dimension
after the embedding is 322, with the dimension of stop1, stop2 and route features
equalling 105, 105 and 112 respectively. For the R2S embedding E , hidden units
of the neural network h is the same as the stop dimension 105, and the number
of hidden units of F is 50. The hidden states and output dimensions of LSTM
are set to be 50 and 30. The hidden units of the FCN are 50 and 30.

4.2 Experimental Results

Baseline Methods. We choose three fraud detection methods on general data:
OCSVM, iForest and DevNet, and two fraud detection methods on time series
data: LSTM-NDT, MSCRED as baseline models. Also, two variants of our
method are compared to test efficiency.

– OCSVM. The One-Class Support-Vector-Machine profiles normal data dis-
tribution boundary and claims xN+1 a fraud if it is outside the frontier.

– iForest [9]. The isolation Forest finds anomalies far from distributed-dense
data. Each passenger data (xN+1,X) is fit with an iForest model and a score
of xN+1 is given.

– DevNet [10]. A new deviation loss based on z-score is proposed for anomaly
detection. The objective is to squeeze normal data into a small range and devi-
ate outliers from this range using a network. Since it does not have sequential
layers, all historical as well as the latest features were stacked to prevent input
information loss.

– LSTM-NDT [6]. The LSTM with the Nonparametric Dynamic Thresholding
uses LSTM for multivariate time series prediction and defines a reconstructed
error threshold based on historical error mean and variance.

– MSCRED [16]. The Multi-Scale Convolutional Recurrent Encoder-Decoder
encodes the correlation matrix for multivariate time series and uses the resid-
ual reconstructed matrix to detect a fraud.

– Conv-Sim. A variant of our approach that replaces R2S embedding with 1d
convolution layers. A 1 × 1 kernel whose channel equals to input dimension
slides over the 20 historical data. The motivation is that all historical data
should share the same kernel.
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– R2S-Net. A variant of our approach whose similarity function is a fully con-
nected neural network. The input of the function is the concatenation of his-
torical and recent data representation, and the output is irregular/fraudulent
score.

Each experiment is given 10 runs and the mean and deviation values of the
metrics are displayed in Table 1. The general fraud detection methods (OCSVM,
DevNet) outperforms the sequential methods (LSTM-DNT and MSCRED). This
is probably due to high intra-variance of the normal data, whereas a binary
decision for a general method is easier to make than generating reconstructed
data for a sequential model.

Overall, R2S-Sim as well as two variants significantly improves the state-of-
the-art algorithms and is robust on different runs. It achieves high performance
on all of the metrics other than a skewed precision. It gains 0.11 and 15.6%
improvements on F1 and accuracy over DevNet. Conv-Sim is the closest to our
method since attentive fusion compensates for the lack of temporal layers in
1d-convolution. The accuracy of R2S-Sim is around 2% higher than R2S-Net,
verifying the effectiveness of the learned similarity function.

Table 1. Performance comparison

Method Precision (Std.Dev.) Recall (Std.Dev.) F1 (Std.Dev.) Acc (Std.Dev.)

OCSVM 0.984 (0) 0.286 (0) 0.443 (0) 0.641 (0)

iForest [9] 0.562 (0.002) 0.873 (0.006) 0.684 (0.003) 0.596 (0.004)

DevNet [10] 0.668 (0.028) 0.900 (0.042) 0.765 (0.006) 0.724 (0.018)

LSTM-NDT [6] 0.700 (0.003) 0.485 (0.006) 0.573 (0.005) 0.638(0.003)

MSCRED [16] 0.484 (0.010) 0.888 (0.078) 0.626 (0.028) 0.473 (0.017)

Conv-Sim 0.866 (0.007) 0.879 (0.007) 0.873 (0.002) 0.872 (0.002)

R2S-Net 0.847 (0.005) 0.880 (0.008) 0.863 (0.003) 0.861 (0.003)

R2S-Sim(ours) 0.868 (0.005) 0.895 (0.005) 0.881 (0.003) 0.880 (0.003)

4.3 Ablation Study

Injection of fraud data. The original ratio of normal to fraudulent data is 1:1. We
try to decrease the proportion of fraud training data. If 0% fraud data is injected,
then it becomes a completely unsupervised problem. Hence, we use different
proportion of fraud training data: {1%, 5%, 10%, 20%, 50%, 70%, 90%, 100%} to
validate the performance. The ratio of test data is still 1:1 to keep consistency.
Therefore if all the test data is treated as normal, the accuracy is 0.5 and the
recall 1.0.

Different Historical Window Size. Default window size is 20 in the setting. We
assume that a passenger tap a card twice a day, then 20 is approximately a
collection of weekly data. Different window sizes including {5, 10, 15} were tested
to see if passenger profile can be captured within a shorter time span.
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(a) (b)

(c) (d)

Fig. 3. Performance w.r.t. fraud data ratio and window
size. (a) Precision. (b) Recall. (c) F1. (d) Accuracy.

(a)

(b)

Fig. 4. t-sne visualiza-
tion on (a) raw features.
(b) learned features.

(a) (b)

Fig. 5. KL divergence between normal and fraud on
(a) raw features. (b) learned features.

Fig. 6. Performance with/
without R2S embedding.

Figure 3 demonstrates the metrics with respect to data proportion and win-
dow size. All test data was regarded as normal using 1% fraud data. However,
with 5% data, the performance of the model using a 20-time-step sequence begins
to improve. A pattern is observed that the longer the sequence, the less training
data is needed for better performance. With 20% of the overall fraud data, all
models can achieve the state-of-the-art accuracy of 0.7.

Remove R2S Embedding. Route-to-Stop embedding is removed and raw input
features are input to attentive fusion. From Fig. 6, we can observe that except
for precision, all the other metrics are improved with the embedding. Also, due
to the reduced dimension of the input for the later LSTM layer, the overall
training time is shorter than using raw features even with the added embedding.
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4.4 Visualization on the Passenger Pattern

In order to test if distinguishable patterns were learnt, a subset of the test data
is visualized on raw features and learned features uN , uN+1 (see Fig. 4). A t-sne
model is trained with the pair (historical, normal, fraudulent). The relative
vectors vhistorical − vfraudulent,vhistorical − vnormal are displayed rather than
vhistorical, vfraudulent,vnormal. In this way, each data point in the plot is the
difference between the historical and the latest representation of every passen-
ger. Besides, test data was split into 40 groups and KL divergence was com-
pared. Specifically, KL(normal||historical) and KL(fraudulent||historical)
were compared and the violin plot is given in Fig. 5.

It is observed from Fig. 4(a) that the center of both normal and fraud
cluster is around (0,0), meaning that the distribution of historical, normal
and irregular/fraudulent raw data are homogeneous. This can also be con-
cluded from Fig. 5(a) where difference between KL(normal||historical) and
KL(fraud||historical) is negligible. After passenger pattern extraction, both
differences are enlarged in Fig. 4(b) and Fig. 5(b), indicating that the model is
pushing recent data away from historical one yet push irregular/fraudulent data
harder so as to be distinctive. Also, there is a clear boundary between irregu-
lar/fraudulent and normal data.

5 Conclusions

In this study, we build a deep learning framework to detect irregular or fraudu-
lent behavior with respect to smart transit card usage. We managed to extract
passenger-level spatial-temporal profile and present a personalised similarity
learning for detection. More specifically, a route-to-stop embedding is first pro-
posed to exploit spatial correlations between different transit stops and routes.
Then attentive fusion is adopted to find spatial repetitive and time invariant
pattern. Finally, a personalised similarity function is learned to discriminate the
historical and recent mobility patterns. Experimental results on a large-scale
dataset demonstrate that the proposed model outperforms baseline methods
in terms of recall, F1 score, and accuracy. Moreover, with 20% of the total
fraud/irregular data, we can achieve state-of-the-art performance. Visualization
on learned patterns reveals that the method can learn distinctive features among
the irregularity/fraud and the normal records.
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