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Background: After an outbreak of the SARS-CoV-2 
Beta variant in the district of Schwaz/Austria, vac-
cination with Comirnaty vaccine (BNT162b2 mRNA, 
BioNTech-Pfizer) had been offered to all adult inhab-
itants (≥ 16 years) in March 2021. This made Schwaz 
one of the most vaccinated regions in Europe at that 
time (70% of the adult population took up the offer). In 
contrast, all other Austrian districts remained with low 
vaccine coverage. Aim: We studied whether this rapid 
mass vaccination campaign provided indirect protec-
tion to unvaccinated individuals such as children (< 16 
years) living in the same district. Methods: To study 
the effect of the campaign we used two complemen-
tary approaches. We compared infection rates among 
the population of children (< 16 years) in Schwaz with 
(i) the child population from similar districts (using the 

synthetic control method), and (ii) with the child popu-
lation from municipalities along the border of Schwaz 
not included in the campaign (using an event study 
approach). Results: Before the campaign, we observed 
very similar infection spread across the cohort of chil-
dren in Schwaz and the control regions. After the cam-
paign, we found a significant reduction of new cases 
among children of −64.5% (95%-CI: −82.0 to −30.2%) 
relative to adjacent border municipalities (using the 
event study model). Employing the synthetic con-
trol method, we observed a significant reduction of 
−42.8% in the same cohort. Conclusion: Our results 
constitute novel evidence of an indirect protection 
effect from a group of vaccinated individuals to an 
unvaccinated group.

Public health impact of this article

What did you want to address in this study?

Current COVID-19 vaccines have a high efficacy in preventing symptomatic infections, especially for pre-Omicron variants, and 
severe disease for all variants. We investigated whether a mass vaccination campaign conducted in the adult population in the 
district Schwaz/Austria in March 2021 had an indirect protective effect on unvaccinated children.  

What have we learnt from this study?

SARS-CoV-2 infections were reduced in the unvaccinated children in the district Schwaz/Austria following the mass vaccination 
compared with border municipalities in the neighbouring district or with a control region.

What are the implications of your findings for public health?

Our results demonstrate that high COVID-19 vaccine coverage in the population can provide indirect protection for groups where 
a vaccine is not yet approved or vaccine-induced immunity may be poor (e.g. old age or underlying conditions).
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Introduction
In 2021, many countries still did not have vaccines 
against coronavirus disease (COVID-19) available for 
young age cohorts. In addition, some parents were and 
still are hesitant regarding potential risks and benefits 
of inoculating their children, meaning that vaccina-
tion coverage for this population remains modest [1-4]. 
This raises the important question whether population 
immunity can be achieved by high vaccination rates 
when a sufficiently large share of vaccinated adults 
provide indirect protection to unvaccinated individu-
als in the community [5,6]. If this indirect vaccination 
effect exists, a high coverage among older cohorts may 
protect younger cohorts such as children from infection 
[7]. More generally, community protection may help 
contain the pandemic even in the presence of groups 
unwilling or unable to get vaccinated.

To analyse this indirect protection effect, we studied a 
unique rapid mass vaccination campaign. In particular, 
following an outbreak of the Beta variant (Phylogenetic 
Assignment of Named Global Outbreak (Pango) line-
age designation B.1.351) of severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) in the district 
of Schwaz (Austria), the government of Austria sup-
plied 100,000 extra doses of the Comirnaty vaccine 
(BNT162b2 mRNA, Pfizer/BioNTech) to rapidly mass-
vaccinate the entire adult population (≥ 16 years) of 
Schwaz [8,9]. After the first campaign weekend in 
March 2021, around 70% of the adult population of 
Schwaz (71,463 people) had received their first dose. 
In contrast, the rest of the country had a very low 

vaccination coverage (first dose) of around 10% at that 
time [8,9]. This local mass vaccination campaign cre-
ated a situation in which the vaccination coverage of 
the adult population differed sharply at the district 
border of Schwaz, while the coverage of those younger 
than 16 years remained the exact same, basically zero 
(the European Medicines Agency approved the first 
vaccine for those under 16 years only on 28 May 2021). 
We exploited this sharp difference in adult vaccination 
rates to study the indirect protection effect on unvac-
cinated children. It is important to note that the SARS-
CoV-2 Alpha variant (B.1.1.7) was the dominant variant 
in Austria at the time of our study [10].

Methods

Study design and data sources
Our study design compared unvaccinated age cohorts 
(younger than 16 years) in the district of Schwaz with 
the same age cohort in the control regions before 
and after the mass vaccination campaign. The study 
population comprised of two age cohorts: The first 
age cohort were children under the age of 16 years, 
who remained unvaccinated. The second cohort were 
individuals aged 16–50 years, who are likely to repre-
sent the population that interacts the most with the 
cohort of children under 16 years of age [11]. As out-
come variable we employed all infections by age group 
recorded in Schwaz and the control regions. We used 
data from the Austrian epidemiological reporting sys-
tem (Österreichisches Epidemiologisches Meldesystem 
(EMS)). These data comprise epidemiological data at 
municipality and district-level from all Austrian dis-
tricts and the municipalities within those districts.

Our research design rested on two alternative 
approaches to estimate the effect of the campaign: 
Firstly, we apply the  synthetic control method, which 
compared the district of Schwaz with a control group 
of highly similar districts. Secondly, we compared 
infection dynamics in municipalities along the district 
border of Schwaz using an  event study (difference-
in-difference (DID))  design. This research design has 
already been used in a related study analysing the 
effect of the mass vaccination campaign on infection 
rates of the adult population [9]. For more methodo-
logical details we refer to that study.

Schwaz vs synthetic control group
The synthetic control method is widely applied in causal 
analysis [12] and also in recent health and COVID-19 
research [13,14]. Using this method, we selected from 
all 91 Austrian districts the districts which approxi-
mated as closely as possible the pre-intervention char-
acteristics of Schwaz. The selection of this synthetic 
control group was based on a number of variables, 
namely the spread of SARS-CoV-2 infection before the 
vaccination campaign as well as the population size, 
geographical area size and number of municipalities 
within a district.  Supplementary Table S1  provides 
descriptive statistics of Schwaz and the chosen control 

Figure 1
COVID-19 vaccination coverage in people aged 16–50 
years in Schwaz vs the rest of Tyrol, Austria, March 2021
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regions. Infection rates prior to the mass vaccination 
campaign were comparable in Schwaz and the con-
trol group as we previously published [9]. We then 
compared age group-specific incidence rates between 
Schwaz and its synthetic counterpart before and after 
the mass vaccination campaign. We also executed a 
placebo in-space exercise to draw inferences and, fol-
lowing [15], provided confidence sets for the estimated 
cumulative effects of the vaccination campaign (details 
on pre-treatment profiles of Schwaz and the synthetic 
control group are provided in  Supplementary Table 
S1; the results of the placebo in-space test are shown 
in Supplementary Figure S1).

Schwaz vs border municipalities
As a second approach, we exploited the fine geograph-
ical variation the mass vaccination campaign created 
and compared Schwaz with bordering municipali-
ties that were not included in the campaign. For this 
analysis we used an event-study model based on a DID 
design to estimate the effect of the campaign on the 
incidence among the people younger than 16 years in 
Schwaz relative to the same age group in the border 
municipalities [16].  Supplementary Table S2  provides 
municipality-level descriptive statistics of Schwaz and 
the bordering municipalities included in the study, 
showing great similarity between the two groups 
regarding geographical and sociodemographic char-
acteristics. The dependent variable was the number 

of new infections per 100,000 inhabitants for the age 
group younger than 16 years. We executed a two-way 
fixed effects model with an indicator variable for munic-
ipalities from the district of Schwaz. We calculated for 
each week  k  the DID in the 7-day moving average of 
new infections per 100,000 inhabitants for children 
younger than 16 years in the bordering municipalities 
and Schwaz. The regression equation is given by

Where  yit,w  denotes the 7-day moving average of new 
infections per 100,000 for children below 16 years 
from municipality  ii  (Schwaz or border municipalities) 
on day  t,  which is nested in week  w.  δi  and  δw  rep-
resent municipality- and week-fixed effects, respec-
tively.  Dit,w  is a binary variable taking a value of 1 for 
municipalities in Schwaz and 0 for border municipali-
ties just outside of Schwaz.  k  in the sum operators 
stands for the weeks before (first sum) and after 
(second sum) the vaccination campaign. βk depicts the 
difference in outcomes (e.g. incidence among children 
younger than 16 years) between Schwaz and the border 
municipalities in any given week relative to the week 
when the first dose of the vaccination campaign was 
given (calendar week 10) [17].

Results

Impact of the mass vaccination campaign on 
vaccine coverage
To illustrate the stark difference in vaccine coverage 
after the mass vaccination campaign we display the 
shares of individuals aged 16–50 years who received 
the first and second dose.  Figure 1  plots vaccination 
rates of this age group for the district of Schwaz vs all 
other Tyrolian districts (pooled together). The impact 
of the mass vaccination campaign in Schwaz vis-à-vis 
the other districts was striking. Before the first dose 
of the campaign (11–16 March), vaccination coverage 
(one dose) among the 16–50-year-olds was exactly the 
same between Schwaz and everywhere else, at around 
5%. After the campaign, this vaccination coverage 
(one dose) increased more than 10-fold in Schwaz, to 
around 60%. In contrast, for children below 16 years, 
vaccines were not available (except off-label), and 
vaccination rates among this population remained 
the same between Schwaz and the control regions 
(see  Supplementary Figure S2  for the vaccination 
coverage in children). 

Impact of the vaccination campaign on 
SARS-CoV-2 infections in children: Schwaz vs 
synthetic control group
Figure 2  depicts the difference in cumulative daily 
infections by age group between the synthetic control 
region and Schwaz (sample size for children in 
Schwaz/control group: 12,993/13,337; and for adults: 
37,652/19,851; see Supplementary Table S1  for further 
details). The age groups from Schwaz and the control 

Figure 2
Difference in cumulative daily SARS-CoV-2 infections 
by age group between the synthetic control group and 
Schwaz, Austria, March 2021
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region had very similar levels of SARS-CoV-2 infections 
before the first dose of the mass vaccination campaign. 
While shortly after the first dose, the control region 
had somewhat lower daily infections, infection levels 
diverged with the second dose of the campaign: At the 
end of the observational period (28 May), we observed 
a difference of 1,007.2 (95% confidence interval (CI): 
416.1–1,627.1) cumulative daily infections per 100,000 
inhabitants for the adults aged 16–50 years (2,762.8 
cumulative daily infections per 100,000 in the control 
group vs 1,755.6 in Schwaz). This figure translates into 
a difference of 57.4%. For children below 16 years, 
we found a difference of 675.3 avoided infections per 
100,000 (95% CI: 146.9–1,232.6; 2,253.1/100,000 in 
the control group vs 1,577.8/100,000 in Schwaz), a rel-
ative difference of 42.8%.

Impact of the vaccination campaign on SARS-
CoV-2 infections in children: Schwaz vs border 
municipalities
In a second approach, we compared Schwaz with 
border municipalities that were not included in the 
campaign.

Figure 3  plots the weekly campaign effect of an 
event-study model according to Formula 1, displaying 
the difference between Schwaz and the border 

municipalities relative to the week when the first dose 
of the campaign took place, calendar week 10-2021). In 
the weeks before the mass vaccination campaign, we 
did not find any statistically significant difference in 
infection levels between Schwaz and the border munic-
ipalities. After the second dose from the mass vaccina-
tion campaign, the number of new cases in Schwaz for 
both age groups decreased significantly vis-à-vis the 
border municipalities. Furthermore, we used a stand-
ard two-period (before/after) DID regression to esti-
mate the average reduction in daily infections across 
all post-campaign weeks (Figure 3) [9]. We found a 
significant reduction of new cases after the campaign 
(relative to the border municipalities) of −75.1% (95% 
CI: −85.8 to −47.8%) for adults aged 16–50 years. For 
children below 16 years, we observed a significant 
reduction of −64.5% (95% CI: −82.0 to −30.2%).

Discussion
In this study, we scrutinised the impact of community-
level protection on incidence rates of unvaccinated 
children. We exploited a unique rapid mass vaccina-
tion campaign to estimate this indirect protection 
effect on unvaccinated children under the age of 16 
years. As controls we used the same age cohorts from 
comparable but untreated districts and border munici-
palities (i.e. without community-level protection) which 

Figure 3
Daily infections with SARS-CoV-2 in the two age groups, Schwaz, Austria, March 2021

-50

-40

-30

-20

-10

0

10

20

30

40

Di
ffe

re
nc

e 
in

 7
-d

ay
 m

ov
in

g 
av

er
ag

e 
pe

r 1
00

,0
00

-6 -5 -4 -3 -2 -1 1 2 3 5 6 7 8 9 10 11d1 d2

Weeks relative to vaccination campaign (1st dose: d1)

Point estimate

95% CI

-50

-40

-30

-20

-10

0

10

20

30

40

Di
ffe

re
nc

e 
in

 7
-d

ay
 m

ov
in

g 
av

er
ag

e 
pe

r 1
00

,0
00

-6 -5 -4 -3 -2 -1 1 2 3 5 6 7 8 9 10 11d1 d2

Weeks relative to vaccination campaign (1st dose: d1)

Point estimate

95% CI

B. Children 0–15 yearsA. Adults 16–50 years

CI: confidence interval; d1: first dose; d2: second dose; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2.

The figure displays the results from regression Formula 1 and uses the 7-day moving average of daily cases per 100,000 as outcome variable 
for Schwaz and its bordering municipalities. The plotted coefficients represent the weekly difference in the 7-day moving average of new 
cases between Schwaz and the border municipalities relative to the reference period (week when dose 1 of campaign was administered, i.e. 
calendar week 10 of 2021). The vertical dashed lines represent the first dose (d1) and the second dose (d2) administered as part of the mass 
vaccination campaign.



5www.eurosurveillance.org

followed very similar trends in infection spread before 
the campaign.

We first documented considerable vaccine uptake that 
raised coverage from 5% to 60% for the population 
between 16 and 50 years old through the campaign, 
which is broadly in line with earlier evidence on the 
vaccination campaign in Schwaz [9]. More importantly, 
our analysis showed that the substantial rollout of the 
Comirnaty vaccine in Schwaz was also accompanied by 
a significant reduction of 40–65% in new SARS-CoV-2 
infections in the age cohort of unvaccinated children 
relative to the same age cohort in the control regions. 
This constitutes a systematic and substantial indirect 
protection effect from vaccinating a majority of the 
adult population.

So far, evidence of this indirect protection effect from 
mass vaccination against COVID-19 is scarce. To the 
best of our knowledge, only one study estimated this 
indirect effect of population-wide mass vaccination 
coverage [10], focusing on the community-level tem-
poral variation in vaccine coverage in Israel and relat-
ing this coverage to the temporal variation of positive 
SARS-CoV-2 tests. The underlying variation in vaccine 
coverage between the two time periods that study 
employed was modest, ranging from a 5 to a maximum 
20 percentage point change in the fraction of vacci-
nated individuals. In contrast, the variation in vacci-
nation coverage in our study was considerably larger, 
with coverage jumping from around 10% to more than 
70% within one weekend. Thus, our analysis is very 
well suited to study the potential effect of community-
level protection. Our results demonstrating indirect 
protection are further supported by studies showing a 
lower secondary attack rate in unvaccinated household 
members when the index case was fully vaccinated 
compared with an unvaccinated index case [18,19].

Our study has potential limitations. Firstly, our study 
was not a randomised clinical trial but an observational 
study, which may be influenced by confounders such 
as lockdown policies. Although most non-pharmaceu-
tical interventions (such as school closures or mask 
mandates) were identical for Schwaz and the control 
regions, there was an additional requirement to take 
SARS-CoV-2 test between 11 March and 8 April when 
crossing the district border [9]. This test requirement 
may have affected the spread of infections. However, 
we previously showed that in none of the five other 
Austrian districts that had the same test requirement, 
did infection numbers drop at a similar magnitude as 
they did in Schwaz after the campaign [9].

Secondly, while our DID design controlled for time-var-
ying general trends over time in infection spread (such 
as a third wave), we could not account for changing indi-
vidual behaviour such as vaccinated individuals being 
less mindful of physical distancing measures. However, 
a previous analysis of mobility data did not show large 
differences between Schwaz and the control districts 

[9]. In fact, even if the vaccinated adult population of 
Schwaz may indeed have been less observant of the 
physical distancing rules after the campaign, we still 
noted a significant indirect effect on the unvaccinated 
group of children.

Lastly, our study had been conducted in the first half of 
2021 when the Alpha variant was the predominant vari-
ant in Austria and therefore results cannot be directly 
transferred to later SARS-CoV-2 variants of concern and 
the Omicron variant. We assume that the level of indi-
rect protection conferred to unvaccinated children by 
a high vaccine coverage in adults might be similar for 
the Delta variant as Comirnaty vaccination provides a 
similar level of protection against acquiring infection 
with the Alpha and the Delta variant [19]. However, the 
situation may be different for the Omicron variant as 
Comirnaty vaccination was less efficient in prevent-
ing overall infection with this variant although efficacy 
against severe COVID-19 disease was still high [20-22]. 
However, with new, Omicron-specific vaccines rolled 
out in autumn 2022, our results on indirect protection 
may become very relevant again.

Conclusion
Our study provides evidence of an indirect protection 
effect from a rapid COVID-19 mass vaccination cam-
paign on an unvaccinated group. Given that the vac-
cination coverage in Schwaz was very similar to the 
vaccination coverage in many other countries in 2021 
(around 70%), our results may also be relevant for 
other regions and countries.
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