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Abstract: Since 2001, cardiovascular disease (CVD) has had the second-highest mortality rate,
about 15,700 people per year, in Taiwan. It has thus imposed a substantial burden on medical
resources. This study was triggered by the following three factors. First, the CVD problem reflects an
urgent issue. A high priority has been placed on long-term therapy and prevention to reduce the
wastage of medical resources, particularly in developed countries. Second, from the perspective of
preventive medicine, popular data-mining methods have been well learned and studied, with excellent
performance in medical fields. Thus, identification of the risk factors of CVD using these popular
techniques is a prime concern. Third, the Framingham risk score is a core indicator that can be used
to establish an effective prediction model to accurately diagnose CVD. Thus, this study proposes an
integrated predictive model to organize five notable classifiers: the rough set (RS), decision tree (DT),
random forest (RF), multilayer perceptron (MLP), and support vector machine (SVM), with a novel
use of the Framingham risk score for attribute selection (i.e., F-attributes first identified in this study)
to determine the key features for identifying CVD. Verification experiments were conducted with
three evaluation criteria—accuracy, sensitivity, and specificity—based on 1190 instances of a CVD
dataset available from a Taiwan teaching hospital and 2019 examples from a public Framingham
dataset. Given the empirical results, the SVM showed the best performance in terms of accuracy
(99.67%), sensitivity (99.93%), and specificity (99.71%) in all F-attributes in the CVD dataset compared
to the other listed classifiers. The RS showed the highest performance in terms of accuracy (85.11%),
sensitivity (86.06%), and specificity (85.19%) in most of the F-attributes in the Framingham dataset.
The above study results support novel evidence that no classifier or model is suitable for all practical
datasets of medical applications. Thus, identifying an appropriate classifier to address specific medical
data is important. Significantly, this study is novel in its calculation and identification of the use of
key Framingham risk attributes integrated with the DT technique to produce entropy-based decision
rules of knowledge sets, which has not been undertaken in previous research. This study conclusively
yielded meaningful entropy-based knowledgeable rules in tree structures and contributed to the
differentiation of classifiers from the two datasets with three useful research findings and three
helpful management implications for subsequent medical research. In particular, these rules provide
reasonable solutions to simplify processes of preventive medicine by standardizing the formats and
codes used in medical data to address CVD problems. The specificity of these rules is thus significant
compared to those of past research.
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1. Introduction

This section explores the research background and problem in the relevant medical domains,
the research gaps and motivations, and the study goals and research objectives.

1.1. Research Background and Research Problem

Cardiovascular disease (CVD) is one of the main causes of death [1] in most countries and likely
results in related problems in the blood vessels or the heart, such as cerebrovascular disease (i.e., stroke),
congenital heart disease, coronary heart disease (CHD) [2], heart failure, peripheral artery disease,
raised blood pressure (i.e., hypertension), and rheumatic heart disease. It is estimated that 25 million
new cases of heart disease each year are diagnosed. Thus, CVD has been a key cause of death by a
serious illness in recent years [1,3]. Effective identification of the risk factors of CVD is therefore highly
important for clinical research for long-term therapy and prevention to reduce wastage of medical
resources. Based on past studies, the main risk factors of CVD include an unhealthy diet, harmful
use of alcohol and tobacco, and physical inactivity. According to a report from the World Health
Organization [4], in 2015, there were 17.7 million deaths related to CVD, representing 31% of global
deaths and a higher mortality risk than that of general diseases. Among these deaths, 6.7 million died
from a stroke, and 7.4 million died from CHD. In 2015, 82% of premature deaths (under age 70) were
caused by non-communicable diseases (NCDs) in low- and middle-income countries (LMICs), 37% of
which resulted from CVD. In recent decades, the mortality rate of CVD has declined in high-income
countries (HICs). Conversely, it has increased in LMICs surprisingly rapidly. However, it is possible
that efforts to improve healthcare interventions against risk factors of CVD result in a significant
reduction of deaths and medical resources and socioeconomic burdens. Thus, identification of the
CVD problem is first emphasized in this study. This problem poses significant challenges and an
opportunity in advanced preventive medicine for medical application research.

Given the above characterizations, it is clear that the issue of identifying CVD is urgent.
Thus, the related issue of the CVD problem is a key research concern and is one of the core research
goals of this study. The benefits of this study are an exploration of the risk factors of CVD fatal diseases
and effective methods for their identification. In the context of past studies, these are novel findings.

1.2. Research Gaps and Motivations

Table 1 lists the top five causes of death in 2015 in Taiwan, as reported by the Ministry of Health
and Welfare [5]. It is clear that CVD has been the second most common cause of death since 2001.
CVD not only results in higher medical resource expenses but also greater long-term expenditure
for countries and individual families. To tackle this severe problem, developing countries have
dedicated funds to CVD prevention and treatment through national education and training resources,
thereby reducing incidence and mortality rates [6]. However, due to changes in lifestyle and eating
habits in recent decades, incidence rates of CVD among younger people have experienced a growing
trend. Thus, early detection and prevention of CVD and closing this research gap related to younger
people have become critical issues. From the perspective of preventive medicine, the design of an
effective predictive (classification) model to help doctors in the early and accurate diagnosis of CVD
is required, and the effectiveness and quality of prevention and treatment need to be improved.
Thus, this study is motivated by the following. First, the classification function of machine learning
techniques for mining meaningful CVD rules (knowledge) from large amounts of data is a valuable
approach. Notably, classification techniques have been successfully applied in medical fields, such as
breast cancer [7,8] and heart diseases [9,10], by studying past research. Furthermore, Boursalie et al. [11]
efficiently utilized a support vector machine (SVM) classifier to monitor CVD via effective features
and characteristics. Second, it is clear from a limited literature review that using effective risk factors
(e.g., Framingham risk attributes) to mine CVD data is efficient and effective [1]. Although past studies
have used features of Framingham risk to help prevent CVD [12], they have rarely used a hybrid model
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to integrate the Framingham risk score and classification techniques to address the issue of CVD for
doctors and patients. Finally, the Framingham risk score is an effective instrument that can be used
to build a hybrid prediction model to accurately diagnose CVD. Thus, this study is beneficial both
theoretically and practically.

Table 1. Top five causes of death in 2015 in Taiwan.

Rank Origins of Death Mortality

1 Malignant neoplasm 46,829
2 Cardiovascular disease 19,202
3 Cerebrovascular disease 11,169
4 Pneumonia 10,761
5 Diabetes mellitus 9530

Based on the above descriptions, serious diseases (e.g., CVD) require greater healthcare and the
identification of potential preventable materials or approaches at both the country and individual
family levels. The challenge related to CVD has thus attracted significant attention from practitioners
and academics. Therefore, the study examines the noteworthy and important issue of effectively
identifying the risk factors of CVD.

1.3. Study Goals and Research Objective

The CVD problem reflects an urgent issue. A high priority has been placed on long-term therapy
and prevention to reduce the wastage of medical resources via the greater use of preventive medicine,
particularly for developed countries. Furthermore, popular data-mining methods have been well
learned and studied, with excellent performance in medical fields. Thus, identification of the risk
factors of CVD using popular data-mining techniques is also a major goal of this study. In addition
to addressing the issue of CVD, the study also aims to reduce the wastage of medical resources and
financial expenditure.

In data-mining fields, various emerging machine learning models have been found to be superior
in their application to healthcare issues [13]. Thus, in this study, a hybrid predictive model was first built
to identify CVD using five well-performing classifiers in the medical domain, namely, decision tree (DT),
multilayer perceptron (MLP), random forest (RF), rough set theory (RST), and SVM, and simultaneously
measure the performance of the Framingham risk score with full attributes. In practice, the study
used two real datasets collected from a Taiwan teaching hospital with CVD cases and a public
Framingham dataset from the Internet for the further benefit of preventive treatment. To summarize,
this study has three research purposes: (1) construction of a hybrid predictive model of CVD based
on diverse classifiers and the Framingham risk score; (2) identification of the key determinants of
CVD by attribute selection methods and extraction of comprehensible entropy-based rule sets based
on DT; and (3) provision of analytical results and research findings with management implications
to healthcare providers, physicians, and patients as a useful medical reference. The entropy-based
method is beneficial for information gain [14].

The remainder of this paper is organized as follows: A literature review of the study issues,
including CVD, the Framingham risk score, and the five classification techniques, is provided in
Section 2. The research concepts justifying the procedure of the proposed method are presented in
Section 3. The analysis results and the core research findings from the experiments are provided in
Section 4. Finally, Section 5 concludes and suggests subsequent research.

2. Related Work

The literature and concepts related to the identification of CVD, the Framingham risk score,
and the five classification techniques are introduced and explored in this section.
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2.1. Cardiovascular Disease and Its Identification Applications

CVD is a disease related to the blood vessels and heart, and coronary artery diseases (CAD,
e.g., heart attacks or angina). Its major clinical symptoms have various levels of severity and include
cardiomyopathy, congenital heart disease, hypertensive heart disease, peripheral artery disease,
rheumatic heart disease, and stroke [15]. In clinical practice, CVD and cerebrovascular disease have
a cause-and-effect relationship [16]; thus, CVD is a sign of a serious illness because CVD patients
usually also have various extensions of serious chronic diseases (e.g., hypertension, stenocardia,
hyperlipidemia, hyperuricemia, diabetes mellitus, and obesity). Similarly, other heart diseases, such as
coronary sclerosis, valvar heart disease, and ventricular fibrillation arrhythmia, and serious conditions,
such as cerebral embolism and myocardial infarction, are complicated and exacerbated by the negative
effect of CVD. Henriksson et al. [17] provided evidence that cardiorespiratory fitness, body mass index,
and muscular strength in adolescents can lead to later chronic incapacity and CVD disability, including
cerebrovascular disease, heart failure, and ischemic heart disease.

The risk factors of CVD must first be explored and identified. These risk factors are classified
into two categories. The main risk factors include diabetes mellitus, an older age, family history,
hyperlipidemia, hypertension, and obesity. Subordinate risk factors include high uric acid, narrow heart
disease, myocardial infarction, arrhythmia, cardiogenic shock, peripheral vein disease, and smoking.
The three main risk factors of CVD disease are as follows:

(1) Hypertension: Blood pressure refers to the arterial blood pressure based on the vessel wall and
is divided into two types: diastolic blood pressure (DBP) and systolic blood pressure (SBP).
According to a WHO standard, normal SBP is between 90 and 140 mmHg, and DBP is between 50
and 90 mmHg. With hypertension, the value of SBP/DBP exceeds 140/90 mmHg. Based on a report
from the USA entitled “Hypertension prevention, detection, and treatment criteria”, SBP has an
average of 140 mmHg, but DBP is over 90 mmHg [18]. In particular, McManus et al. [19] showed
by a meta-analysis that the primary prevention of CVD consisted of treating patients with blood
pressure under 140/90 mmHg. Thus, hypertension is a risk factor for CVD, and it is important to
lower blood pressure.

(2) Hyperlipidemia: Hyperlipidemia refers to a higher-than-normal concentration of cholesterol or
triglycerides in the blood [20]. Dyslipidemia for non-normal hyperlipidemia is the major
cause of atherosclerosis with high cholesterol, high triglycerides, and their combination,
which may increase the probability of coronary and heart diseases, and results in CVD. Moreover,
Burkhardt [20] indicated that elevated plasma levels of low-density lipoprotein (LDL) are
modifiable major risk factors for atherosclerotic CVD. However, high-density lipoprotein (HDL)
is a good factor for identifying CVD. Thus, subsequent researchers should identify and measure
crucial factors causing LDL and HDL in Taiwan’s CVD patients.

(3) Tobacco: Tobacco use multiplies the risk of CVD through a number of negative mechanisms [21],
such as damaging the endothelium of the blood vessels, increasing fatty deposits of arteries,
increasing clotting, raising LDL-cholesterol (LDL-C) and lowering HDL-cholesterol (HDL-C),
and promoting coronary artery spasms. Banks et al. [21] noted that tobacco use is a major source
of CVD mortality and morbidity. In particular, nicotine, an addictive component of tobacco,
raises blood pressure and accelerates the heart rate. According to a report from the World Heart
Federation [22], if one started smoking as a child, the potential risk of suffering CVD is many
times higher compared to those who began as a legal adult. Furthermore, passive smoking is
harmful and increases the risk of CVD; chewing tobacco and taking snuff are also dangerous.

In addition to these three main risk factors, other potential factors need to be further examined
and identified effectively to enable the results to be compared to those of the literature.
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2.2. Framingham Risk Score

Identifying and preventing the major modifiable risk factors of CVD in advance can lower the
prevalence rate for related heart disorders [1]. In 1948, the Framingham Heart Study (FHS), directed by
the National Heart Institute, USA, began studying cardiac disease (heart disease) for health research
purposes. At that time, the general cause–effect relationship between heart disease and stroke was not
known. Subsequently, however, the mortality of CVD has steadily increased, reaching epidemic levels
in the USA at the beginning of the current century [23]. The main aims of this project were to identify
the common characteristics and risk factors of CVD patients by monitoring participants who had not
yet suffered strokes and heart attacks due to CVD. The FHS investigated the risk factors of CVD in
well-designed experimental groups, which consisted of 5209 people from Framingham, Massachusetts,
USA, between the ages of 30–62 and free of CVD [23].

Investigators of the FHS first developed the risk equation of CHD [24] for clinicians to predict
coronary disease from 1950 to the mid-1960s, reflecting early efforts from investigators. The long-term
studies of the FHS found data with respect to related heart diseases. In addition to age and gender,
the risk factors of CVD were found to include high SBP, serum cholesterol, glucose intolerance
(e.g., diabetes), and left ventricular hypertrophy (LVH); furthermore, the FHS further identified lifestyle
factors, such as sedentary lifestyle, eating an unhealthy diet, and cigarette smoking. In addition,
the influence of HDL-C [25] was measured and is reflected in the equations. Measurement of total
HDL-C was also found to be superior to that of serum cholesterol as a predictor of CVD. Based on the
above, high blood cholesterol, high blood pressure, diabetes, obesity, physical inactivity, and smoking
were defined as the main risk factors of CVD. Other characteristics, such as age, blood triglycerides,
gender, HDL-C level, and psychosocial issues, have also been determined as relevant factors over the
years [26]. More important, behavioral mechanisms for lowering the main risk factors of CVD showed
a positive relationship with modern medical trends, which resulted in an emerging treatment and
prevention strategy for the practice of clinical medicine.

The National Heart, Lung, and Blood Institute (NHLBI) and Framingham investigators continue to
research genetic factors (genetic material or genetic patterns) of CVD using new diagnostic technologies.
Hojat et al. [1] compared the risk factors of CVD among male and female nurses and found that men
have a higher risk and more complications of CVD than women. According to the FHS conversion
standard, the index factors of Framingham risk are age, blood pressure, diabetes status (e.g., fasting
glucose), gender, HDL-C level, smoking status, and total cholesterol level [27,28]. Consequently,
the transformed scores of the above factors are listed in Tables 2–4 below.

Table 2. Conversion of Framingham risk score for age and cholesterol with gender differences.

Age Cholesterol

Years Man Woman (mg/dL) Man Woman

30–34 −1 −9 <160 −3 −2
35–39 0 −4 160–199 0 0
40–44 1 0 200–239 1 1
45–49 2 3 240–279 2 1
50–54 3 6 ≥280 3 3
55–59 4 7
60–64 5 8
65–69 6 8
70–74 7 8



Entropy 2020, 22, 1406 6 of 22

Table 3. Conversion of Framingham risk score for high-density lipoprotein cholesterol (HDL-C) and
blood pressure with gender differences.

HDL-C Blood Pressure

(mg/dL) Man Woman Systolic/Diastolic (mmHg) Man Woman

<35 2 5 <120/80 0 −3
35–44 1 2 120–129/80–84 0 0
45–49 0 1 130–139/85–89 1 0
50–59 0 0 140–159/90–99 2 2
≥60 −2 −3 ≥160/100 3 3

Table 4. Conversion of Framingham risk score for diabetes and smoking with gender differences.

Framingham Risk Diabetes Smoking

Man Woman Man Woman

Yes 2 4 2 2
No 0 0 0 0

2.3. Classification Technology

This subsection uses advanced classification machine learning technology to highlight the purpose
of dealing with large amounts of medical data from clinical databases. This study applied five noted
classification technologies, namely, RST, DT, RF, MLP, and SVM, which were selected because they
were previously used in medical classification and prediction of healthcare problems and found to
have superior performance.

2.3.1. Rough Set Theory and Its Practical Applications

RST was developed initially by Pawlak [29]. It classifies by analyzing incomplete, unspecific,
or imprecise information and extracts decisional rule-sets. In the data analytics community, RST is used
for non-statistical techniques. Its essential conception is to use β-lower and β-upper approximations
for a given set, and the β-lower and β-upper approximations form formal classification information
in a specific domain. Objects shape a part of a subset, and objects that possibly shape a part of a
subset characterize the subset of the β-upper approximations and the subset generated by the β-lower
approximations. Each subset determined by β-lower and β-upper approximations is called a rough
set [30–32]. RST is widely used today in medical research, process control, and database attribute
analyses. Other fields include heart disease [33], medical data diagnosis [34], multiobjective attribute
reduction [35], the safe use of medical devices [36], short text data [37], textile applications [38], and the
supply chain of auto spare parts [39].

RST provides four benefits when processing classification problems: (1) It is unnecessary to use
external information; (2) it is appropriate for studying qualitative and quantitative data; (3) hidden
information from given data is discovered through decisional rule-sets and is thus easier to interpret;
and (4) extracted decisional rules eliminate redundant or useless information from the given dataset.
In further exploration, RST is implemented in six steps [40]:

(1) Defining the problem faced: The first stage in RST is to define the problem to be faced by
explaining and forming the decisional attributes by means of condition attributes and creating
decisional rule-set units for future use following the function of classification parts.

(2) Preprocessing the data collected: In this step, data values collected from the units of both
the condition attributes and decision attributes are preprocessed. RST allows these attributes
to represent types of categorical data; therefore, if there are continuous data in the condition
attributes of a given dataset, they can be first discretized into a meaningful form by applying
various transforming algorithms [41].
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(3) Forming the information and decision systems: The decisional information system (DIS) is framed
in accordance with the data collected. A DIS is a table that defines the units of condition attributes,
and this table is built with the decision attribute in the last column.

(4) Defining the indiscernibility relations and setting approximations: First, the data used to address
the decisional problems occur in a DIS by determining the relationships of indiscernibility.
However, the derived system may encounter larger scales of tables due to excessive attributes or
unnecessary attributes that repeat similar parts, which has a negative impact on the classification
performance of the model. Thus, this negative effect should be reduced as much as possible against
the given data of attributes. Second, defining the condition attributes and the decision attributes
with the current properties to a certain class after using the relationships of indiscernibility should
not be specific for determining these set approximations. In this case, the unit that completely
belongs to a given set or the unit that possibly belongs to that set is defined by the functions of
the β-upper and β-lower approximations of spaces.

(5) Defining the sets reduced: Attributes in a DIS are filtered from the table without losing their
fundamental properties. We assume that one attribute a belongs to the B set, where B ⊆ A. For the
B set, if I(B) = I(B − {a}), then attribute a is unnecessary; however, for a specific case in which
the above formula is unfulfilled, attribute a is necessary from the B set [42]. The unnecessary
attributes are removed from the subsets, and these are then called the reduced sets [43].

(6) Forming decisional rules: Decisional rules are formed and produced by accounting for the
attributes of reduced sets [44], and their propositions highly depend on the values of the condition
attributes against the decision attribute. Importantly, each decisional rule-set has an accuracy
percentage, and the total accuracy rate can then be acquired.

The literature suggests that RST is suitable for use in medical fields [45], and it was thus selected
for this study.

2.3.2. Decision Tree and Its Real Applications

DT is a regression or classification approach for forming a tree-based rule structure from a
supervised algorithm. DT uses supervised learning technology and has a classification (or prediction)
function for well-known machine learning techniques in various application domains. Thus, DT results
in fast formations and produces an entropy-based decision rule of easy if–then–else interpretations in a
variety of fields; it has become a common application technique among classification approaches [46,47].
DT algorithms contain two stages: developing a tree and pruning a tree. For the first phase, DT selects
a better suitable attribute from a split training dataset. The final outcome only applies to that data,
and the common training splits of the sub-dataset target a specific class. The repetition or recursion
functions concerning the selection attribute and splitting-set construct internal nodes and a root node.
In the pruning-tree phase, some data from the trained sub-dataset may have an inappropriate branch
after the DT structure is built, i.e., overfitting, and these inappropriate branches must be eliminated to
improve the classification performance [48,49].

In the DT community field, a core algorithm for employing a top-down structure is called
iterative dichotomizer 3 (ID3) [50]. ID3 uses information theory to build an entropy-based tree rule for
information gain and entropy. The key concept of quantifying information is called entropy and is
mainly used for calculating the homogeneity of the given data by the ID3 algorithm. The entropy will
be zero if the data sample is homogeneous; conversely, it will be one if the data sample is completely
heterogeneous. Information gain is used for training a decisional tree and is based on the reduction in
entropy when a given dataset is converted. A calculation is made by comparing the entropy of this
dataset before and after conversation; thus, the highest information gain will be used to construct a
decisional tree in the process of finding attributes. The entropy is defined as the following Equation (1)
by using a frequency table of one variable:

Entropy (E) = − (p × log(p) + (1 − p) × log(1 − p)), (1)
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where p is the probability of one class.
A collection set S of outcomes is determined, and the entropy is formatted as:

E(S) =
∑n

i=1
(−pi log2 pi), (2)

where pi is the proportion of S, which belongs to class i?
Gain (S, A) is the information gain of a case set S on attribute A and is formatted as:

Gain(S, A) = E(S) −
∑
|Sv|

|S|
E(S), (3)

where v is a value of A, Sv is a subset of S, |Sv| is the number of elements on Sv, and |S| is the number of
elements on S.

In previous studies, the related DT algorithms have typically been applied to functions of the
relevant areas of specialization, such as churn prediction [51], forecasting corporate credit ratings [52],
object classification in autonomous driving [53], and the identification of a route selection strategy in
classification [49]. Thus, it is an effective method for the selection of medical research.

2.3.3. Random Forest and Its Practical Applications

RF is a novel and highly effective machine learning technique. It is a type of ensemble-learning
approach [54] that combines predictors of trees such that trees are highly dependent on random vector
values for independent samples with the same classification as those in decisional trees in a constructed
forest. The basic concept of RF is to assemble multiple DTs, bag, and bootstrap [7], and identify the
classification results with negative or positive information voted using individual decision trees. It is
capable of handling large datasets and process a large number of input variables without first deleting
variables. RF classifiers can provide two measurements of randomness for a comprehensive view of a
tree set: the first is for data, and the second is for features.

RF can be applied in diverse domains due to its features, and particularly in clinical diagnosis [55].
Thus, RF was used to processing the CVD problem in this study.

2.3.4. Multilayer Perceptron and Its Applications

MLP works on a supervised neural network model that uses a simple perceptron learning
algorithm and an original backpropagation for training. MLP is adopted in most series forecasting
approaches [56]. It usually has three types of layers of neurons: the input layer (i.e., for some source
nodes), hidden layers (i.e., for computational nodes), and the output layer, which highlights the
learning performance and the MLP classifier [57]. Some hidden nodes possess the ability of MLP
learning classifiers with a minimum of hidden nodes; hence, the network is the most recommended
and selected.

Regarding the layers for the MLP, each layer has a plurality of processing units, and each unit has
subsequent layers in unit-weighted links. An MLP with inputs from a plurality of nonlinear variables
to an output [58] is depicted in Figure 1.

If an input vector of an input layer is acquired from an output value bnj of hidden nodes,
the following equation is defined:

bnj = ϕ(θM +
n∑

i=1

wi j·xi), (4)

where ϕ refers to an activation function from the hidden nodes, θM represents a threshold from the
hidden nodes, wi j refers to a connection weight between the hidden layers and the input layers, and xi
is used as the input vector from these input nodes. The only output from these output nodes is acquired
from the nodes of a hidden layer in a similar way:
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ynk = ϕ(θk +
m∑

i=1

v jk·bnj), (5)

The activation function used is sigmoid and defined as:

S(t) =
1

1 + e−t . (6)

The training of an MLP network is supervised. MLP can use the gradient descent algorithm [59]
for training or use the conjugated gradient algorithm with a nonlinear optimal algorithm. It is possible
to accelerate the convergence speed of the weights with respect to the gradient descent algorithm.

Due to its excellent prior performance in medical applications [60], MLP was also selected for
comparative analysis of the proposed study model.
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2.3.5. Support Vector Machine and Its Industrial Applications

SVM, invented initially by Vapnik, is one of the most common machine learning approaches used,
with excellent performance in various applications [61]. SVM is a supervised learning method [62] with
the main functions of regression and classification; it separates linearly separable input data into preset
classes using the hyperplanes from an n-dimensional space. Using an optimal separated hyperplane
maximizes the margins between data points that are nearest to each other within the different known
classes. SVM was used in many prior studies [63–65] and has a good professional reputation due to its
ability within a binary classification model.

Based on its strong positive reputation for medical research [66], SVM was thus selected and used
for one of the proposed models in this study.
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3. Proposed Method

To achieve the study goal, another key function of a classification technique is to classify an
unknown category of given data objects corresponding to the known category for prediction purposes.
The most challenging task of classification techniques is to learn how to select a suitable technique to
improve the accuracy in the medical field. Previous studies of Framingham risk attributes have used
statistical methods conducted with the SPSS software, in addition to the area under the curve (AUC) of
the receiver operating characteristic (ROC) curve, sensitivity, and specificity, to show the prediction
power for addressing CVD problems during the past 10 years [12]. However, they did not apply the
Framingham risk score to intelligent machine learning classification techniques for identifying CVD
and, in particular, for the extraction of knowledgeable rules. Thus, the above gaps should be bridged
using well-defined methods of techniques used in medical research applications, which is the focus of
this study. This study proposed using the Framingham risk score to filter attributes and then employing
five classification techniques to build a hybrid model for identifying CVD. Two CVD datasets were
compiled for the verification of the proposed model, and the performances of the Framingham risk
score, Framingham attributes, and the full attributes in five classifiers were compared.

The proposed method has five steps: compile the dataset→ preprocess the data→ select the
attributes→ build the model→ evaluate the results. Figure 2 shows a flow diagram of the algorithm
proposed in this method, and detailed information about the proposed algorithms is provided in
the following.

• Step 1: Collect dataset. An adequate dataset is key in the identification of CVD; thus, this study
compiled two datasets with CVD data. The first was compiled from a real prevention and treatment
plan of CVD in Taiwan’s regional teaching hospital and had 20 attributes with 1190 records
(including 551 men and 639 women). It is referred to as the CVD dataset in this study. The second
dataset is a Framingham public dataset collected with an original 18 attributes and extracted from
the University of Washington (http://courses.washington.edu/b513/datasets/datasets.php?class=
513) via a uniform resource locator. It is referred to as the Framingham dataset.

• Step 2: Preprocessing data. In general, real data may have inconsistencies, gaps, errors, inaccuracies,
impossible data combinations, and noise compared to the original dataset. Such data are not
suitable for use by machine learning to discover hidden information/knowledge from large datasets.
However, this step cannot remove these values. The average values of the data interpolation
method are filled with missing values, and the dataset is then reformatted appropriately.

The first CVD dataset is employed to illustrate the proposed method. Based on a literature
review, there are eight types of related CVDs, such as arrhythmia, cardiogenic shock, and diabetes
mellitus. Twenty original attributes are reduced to 13 according to the expert opinion of physicians.
Consequently, the 13 attributes include five physical exam attributes, seven blood test attributes,
and one decision-attribute of the class with the eight CVD names noted above. There are two categories
in the class, that is, Y (Yes): Have at least one CVD and N (No): None. These are listed in Table 5
below. Next, the second dataset has all of the attributes, including age, sex, serum cholesterol, DBP, SBP,
Metropolitan relative weight, smoke, and CVDs (class), which is based on the expert recommendation
of doctors. For further understanding of these datasets, their properties are shown in Table 6.

• Step 3: Select attributes. First, the eight attributes of the Framingham risk score are age, gender,
DBP, SBP, LDL-C, HDL-C, fasting glucose, and smoking, which are named the Framingham
attributes. Next, these factors are selected to calculate and transform their score values based on
the conversion method of the Framingham risk score discussed in Section 2.2 [28] and shown in
Tables 2–4 from the CVD dataset. Finally, all 13 attributes of the CVD dataset are selected and
called the full attributes, which additionally include body mass index, waistline, red blood cells,
and white blood cells.

http://courses.washington.edu/b513/datasets/datasets.php?class=513
http://courses.washington.edu/b513/datasets/datasets.php?class=513
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• Step 4: Build a model. This step designs a hybrid model of five classifiers (i.e., RST, DT, RF, MLP,
and SVM) with various attribute components, which include the Framingham score attributes,
the Framingham attributes, and the full attributes, to highlight and differentiate the performance
of the proposed method based on a commonly used 67–33% training–testing ratio. This step can
be divided into five sub-steps and is executed using different software packages. The procedure
of the five sub-steps is as follows: First, the selected attributes are used as input variables. Second,
for the percentage-split data method, the two training–testing sub-datasets are formed using
the common 2:1 ratio to achieve a good and reasonable result in practice. Thus, 67% of the
data is used as a training sub-dataset, and the remaining 33% of the data is used as the testing
sub-dataset. Third, all of the default parameters are defined to implement each of the above
classifiers. Fourth, RST is applied using the rough set exploration system (RSES) [29], and DT,
RF, MLP, and SVM are applied separately. Fifth, comprehensive knowledge-based rule sets are
created using DT. For further details, the pseudo-code of the construction of the hybrid model is
shown in Algorithm 1.Entropy 2020, 22, x 10 of 21 
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Figure 2. Research procedure of the proposed method.

Table 5. The coding information for cardiovascular disease (CVD) dataset attributes.

Physical Exam Blood Test Class

Attribute Code Attribute Code CVD Name Code

Age Age Cholesterol cho_1 Arrhythmia arr
Body mass index bmi_1 Diastolic pressure dp_1a Cardiogenic shock car

Gender sex High-density cholesterol hdl_1 Diabetes mellitus dm
Smoking habit smoke Fast glucose glu_c1a High uric acid uric

Waistline wai_1 Red blood cells rbc_1 Hyperlipidemia lip
Systolic pressure sp_1a Myocardial infarction mi
White blood cells wbc_1 Narrow heart disease hd

Peripheral vein disease pns
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Table 6. Properties of the two medical datasets used.

Characteristic CVD Dataset Framingham Dataset

No. of instances 1190 2019

Class Cardiovascular (Y: 358)
Non-cardiovascular (N: 832)

Cardiovascular (Y: 983)
Non-cardiovascular (N: 1036)

Total attributes 20 8
Full attributes 13 8

Framingham score attributes 8 6
Framingham attributes 8 7

Note: all the above attributes include one class attribute inside.

Algorithm 1: Pseudo Code of Building Hybrid Model

Input: SA = selected attributes list, CD = collected data, RSES = rough set exploration system
Use attributes from SA;
Create 67% of data for training from CD;
Create the other 33% of data for testing from CD;
Define all the default parameters;
Apply RST classifier by RSES;
Apply DT, RF, MLP, and SVM classifiers, respectively;
Create tree-based rules sets by DT;

Output: knowledge(tree)-based rules sets

• Step 5: Evaluate the results. To evaluate machine learning, most researchers use three common
metrics: accuracy, sensitivity, and specificity. These are defined in Table 7 of the confusion matrix
and Equations (7)–(9). In Table 7, a true positive (TP) means the truth is positive, and the prediction
is positive; a false positive (FP) means the truth is negative, but the prediction is positive; a false
negative (FN) means the truth is positive, but the prediction is negative, and a true negative (TN)
means the truth is negative, and the prediction is negative.

accuracy =
TP + TN

TP + TN + FP + FN
, (7)

sensitivity =
TP

TP + FN
, (8)

speci f icity =
TN

TN + FP
. (9)

Table 7. Confusion matrix for classification.

Predicted Class

Positive Negative

Actual Class
Positive True-positive False-negative

Negative False-positive True-negative

4. Experiment Result and Comparisons

This section verifies the proposed method and its algorithms with two medical datasets and
compares the listing models to further evaluate the classification performance.
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4.1. Introduction and Preprocessing of the Two Medical Datasets

To further explore the experimental CVD dataset, Table 8 shows the descriptive statistics for the
first CVD dataset using the chi-squared test to summarize and compare the baseline characteristics of
the continuous attributes and the categorical attributes.

Table 8. Descriptive statistics of the CVD dataset.

Feature Value Number Ratio (%) p-Value Note

Sex
Man 551 46

0.0743 NominalWoman 639 54

Age

40–44 19 2

0.0021 ** Numeric

45–49 160 13
50–54 190 16
55–59 205 17
60–64 189 16
65–69 158 13
70–74 269 23

Cholesterol

<160 189 16

0.3806 Numeric
160–199 468 39
200–239 369 31
240–279 130 11
>=280 34 3

HDL-cholesterol

<35 84 7

0.0121 * Numeric
35–44 364 30
45–49 222 19
50–59 306 26
>=60 214 18

Systolic blood pressure

<120 330 28

0.0436 * Numeric
120–129 254 21
130–139 244 21
140–159 287 24
>=160 75 6

Diastolic blood pressure

<80 451 38

0.9508 Numeric
80–84 343 29
85–89 62 5
90–99 257 22
>=100 77 6

Diabetes mellitus
No 1056 89

<0.001 *** NominalYes 134 11

Smoking No 846 71
<0.001 *** NominalYes 344 29

Note: the “*”, “**”, and “***” refer to the significance threshold of p-value at 0.05, 0.01, and 0.001, respectively.

4.2. Experimental Results

The extracted entropy-based decision rules, core attributes, accuracy rate, sensitivity, and specificity
were calculated from the two medical datasets after the experiments.

4.2.1. The CVD Dataset

After data preprocessing and attribute selection, the Framingham attributes and full attributes were
identified, and the five different classifiers were used and compared with various evaluation standards
for the overall accuracy rate using a training–testing ratio of 67–33% to measure the performance of the
proposed method.
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Consequently, the visualized tree structure of if–then–else control statements in the DT model was
used to identify future CVD issues. Figure 3 lists the entropy-based rule results of the CVD dataset in a
visualized tree structure. As shown in Figure 3, one case is exemplified and highlighted in red and
green, and one key result of the core attributes is defined.

(1) First, it is indicated that, if the score measurement of glu_cla (i.e., diabetes) is higher than 116,
glu_cla is also higher than 155, else if glu_cla is less than 116, there is no CVD case; if the score
measurement of hdl_1-F (i.e., Framingham high-density cholesterol) is higher than −2, then there
is a CVD case; else if Age-F (score of Framingham age) is higher than 7, there is a CVD case, but if
it is less than or equal to 7, there is no CVD case.

(2) Second, the core attributes were obtained by dynamic reduction through discrete tables, and seven
core attributes for Framingham risks were identified, including sex (i.e., gender), age_F (i.e., age),
cho_1-F, hdl_1-F, BP_F, glu_cla, and smoke (i.e., smoking).
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Accordingly, Table 9 shows the comparative results of various evaluation standards on the
Framingham score attributes, the Framingham attributes, and the full attributes of the CVD dataset
with five classifiers. In Table 9, it is clear that SVM outperforms the other four classifiers in terms of
accuracy (99.67%), sensitivity (99.93%), and specificity (99.71%) for the three aspects of the Framingham
score attributes, the Framingham attributes, and the full attributes. This implies that SVM is more
suitable for identifying and addressing CVD than the other methods examined in this study.

Table 9. The comparative results of various evaluation standards in the CVD dataset.

Evaluation Indicator RS (%) DT (%) RF (%) MLP (%) SVM (%)

Accuracy

F score 80.81
(2.25)

82.49
(1.32)

79.87
(1.53)

72.54
(1.48)

91.23
(0.92)

F attributes 75.75
(1.59)

83.00
(2.03)

81.95
(1.61)

72.54
(1.57)

99.67
(0.17)

Full attributes 74.04
(4.19)

79.07
(2.34)

81.74
(0.65)

70.12
(3.54)

99.14
(0.11)
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Table 9. Cont.

Evaluation Indicator RS (%) DT (%) RF (%) MLP (%) SVM (%)

Sensitivity

F score 15.93
(9.46)

91.26
(3.02)

85.40
(2.29)

90.57
(3.52)

94.47
(0.89)

F attributes 26.18
(6.92)

91.30
(2.57)

90.35
(1.96)

92.54
(3.51)

99.93
(0.20)

Full attributes 21.16
(5.40)

87.29
(3.97)

91.96
(1.73)

85.95
(7.62)

99.10
(0.21)

Specificity

F score 95.07
(4.19)

71.15
(5.62)

66.24
(2.72)

69.36
(5.64)

87.99
(2.89)

F attributes 91.31
(4.29)

72.85
(6.09)

70.81
(4.61)

73.93
(4.49)

99.71
(0.11)

Full attributes 91.92
(4.09)

69.97
(5.26)

71.91
(3.77)

66.67
(8.65)

99.01
(0.41)

Note: each value and standard deviation (in brackets) is the average value of 10 repetitions. F score denotes the
Framingham score attributes, and F attributes represents the Framingham attributes.

4.2.2. The Framingham Dataset

The second Framingham dataset with 18 original attributes was also considered. Similarly, after the
preprocessing and identification of the Framingham attributes and the full attributes, this dataset was
used with the five different classifiers to assess the evaluation performance of the proposed method in
terms of average accuracy rate for 10 repetitions, also using a training–testing ratio of 67–33%.

DT was also used to visualize the tree structure of if–then–else control statements for identifying
CVD. Figure 4 shows the entropy-based rule results of the Framingham dataset in a visualized tree
structure. In Figure 4, two key points can be determined. First, a case from the tree-like structure is
highlighted in red and green. Next, key attributes are accordingly identified and determined.

(1) In Figure 4, it is indicated that, if the score measurement of the Framingham attribute of age
(age_f) is higher than 1, else if age is less than 1, there is a CVD case; if the score measurement of
the Framingham attribute of blood pressure (bp_f) is higher than 2, and the sex (gender) score is
higher than 1, then the age (age_f) score is higher than 6, and there is a CVD case; else if the score
of Framingham age is less than or equal to 6, then there is no CVD case.

(2) Five key attributes were also obtained by dynamic reduction through discrete tables: sex, age_f
(i.e., age), cho_f, bp_f, and smoke (i.e., smoking).Entropy 2020, 22, x 15 of 21 
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Table 10 lists the analytical results for the Framingham attributes and the full attributes in the
Framingham dataset after the experiments. In Table 10, the five classifiers are compared with the
three evaluation standards in terms of accuracy, sensitivity, and specification. It is clear that the RS
method has the highest performance in terms of accuracy (85.11%), sensitivity (86.06%), and specificity
(85.19%) in all Framingham score attributes, the Framingham attributes, and the full attributes for the
Framingham dataset. This information implies that the rough set theory is more suitable for identifying
CVD in the Framingham dataset than the other four classifiers examined in this study.

Table 10. The analytical results of the Framingham attributes and the full attributes for the
Framingham dataset.

Evaluation Indicator RS (%) DT (%) RF (%) MLP (%) SVM (%)

Accuracy

F Score 75.63
(0.9)

74.34
(1.53)

72.23
(1.44)

74.91
(1.38)

74.19
(1.35)

F attributes 85.11
(2.27)

72.59
(1.21)

71.37
(1.06)

73.93
(2.93)

49.70
(0.88)

Full attributes 76.79
(1.12)

72.35
(1.37)

71.73
(1.29)

73.61
(1.75)

63.33
(1.54)

Sensitivity

F Score 64.87
(3.18)

83.77
(2.81)

80.18
(1.92)

84.53
(3.23)

80.32
(3.39)

F attributes 86.06
(3.07)

65.16
(5.29)

66.05
(2.23)

69.88
(7.07)

11.16
(1.79)

Full attributes 77.74
(4.58)

82.31
(3.08)

77.31
(2.55)

82.19
(8.22)

61.29
(2.88)

Specificity

F Score 85.19
(2.76)

35.59
(2.45)

36.15
(2.87)

35.23
(3.69)

32.26
(3.15)

F attributes 83.38
(4.61)

20.36
(5.07)

23.57
(1.27)

22.23
(10.25)

13.75
(2.21)

Full attributes 74.80
(5.25)

38.15
(4.00)

34.15
(2.69)

35.44
(7.96)

34.51
(1.35)

Note: all terms are defined in Table 9.

4.3. Findings

Three key findings and management implications follow from the experimental results:

(1) The advantage of Framingham attributes with classification techniques: Although previous studies
have used Framingham attributes and statistical methods to process CVD, they did not use a
hybrid model to integrate Framingham score attributes and the five noted classification techniques
for the identification of CVD or differentiation of various classifier performances. This study
closes these gaps, and the proposed method not only aids understanding of comprehensive CVD
tree-like entropy-based rules but also helps to prevent or even solve CVD problems. In addition,
the score use of Framingham attributes can be an effective clinical reference for doctors and
health care workers to improve the identification of CVD. Thus, a key specificity and novelty in
this study are that the Framingham risk attribute scores can be calculated and used to produce
entropy-based decision rules. This has not been undertaken in previous research based on our
limited literature review.

(2) The identification of key attributes for CVD: The key attributes of the original Framingham
risk data were identified by Dr. Rupert Payne, University of Edinburgh, and were uniformly
compared with those of the first and second medical datasets in the experiments of this study.
Table 11 shows their comparative results from the following three perspectives for the CVD issue:
(a) Table 11 shows that the key attributes of the Framingham risk, the CVD dataset, and the
Framingham dataset are in the order of 9, 7, and 5, respectively, for identifying CVD. It was found
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that the number of Framingham key attributes significantly and positively affects the overall
classification accuracy, which can be proven from the accuracy rates in Tables 9 and 10. (b) The
two datasets are missing key attributes, resulting in poor classification performance. If sufficient
key attributes are addressed in the future, overall accuracy can improve. (c) The importance
of the key attributes for identifying CVD is listed in a top-down order, which may provide
helpful information.

(3) The technical implications of the classifiers used: Based on the experimental results of the two
medical datasets, no classifier or model is suitable for all practical datasets used in different
applications. Thus, an appropriate classifier must be first found and defined to address specific
data in the machine learning community.

(4) The management implications of healthcare issues: Regarding management implications, a set
of standards was provided from the entropy-based decision rules of a tree-like structure
(e.g., Figures 3 and 4) to help prevent or solve CVD problems in advance. (a) First, this can
indirectly remind CVD patients how to self-manage. (b) Second, the experimental results
allow doctors to provide patients with managerial suggestions, such as changes in eating
habits, self-measurement and self-control of blood pressure, cessation of smoking, and increased
exercise. (c) Finally, the Framingham risk attributes used to identify CVD with the classification
techniques listed in this study can be regarded as an effective prediction model for processing
CVD. The analytical results can be stored for doctors and health personnel as clinical references.

Table 11. Key attributes of comparison for CVD issues.

Framingham Risk (9 1) CVD Dataset (7) Framingham Dataset (5)

Family history of premature Sex Age
Sex Diabetes Sex
Age Blood pressure Blood pressure

Blood pressure HDL-cholesterol Smoking
Smoking Smoking Cholesterol

HDL-cholesterol Age
Diabetes Cholesterol

Cholesterol
Left ventricular hypertrophy

Note: 1 the values in the brackets refer to the total number of key attributes in the corresponding dataset.

5. Conclusions

This study proposes a hybrid method to integrate and model Framingham risk attributes and five
novel classification techniques—RST, DT, RF, MLP, and SVM—for the identification of key attributes that
influence CVD and to highlight preventive practices in healthcare services. The study’s contribution
consists of calculating the score of Framingham risk attributes and identifying CVD using a suitable
classifier for different datasets in hybrid medical applications. This contribution differs from those
of previous studies [67]. For verification using the three evaluation criteria (accuracy, sensitivity,
and specificity), 1190 instances in the CVD dataset available from Taiwan’s regional teaching hospital
and 2019 examples from the public Framingham dataset were used. SVM showed the best performance
in terms of accuracy (99.67%), sensitivity (99.93%), and specificity (99.71%) in all of the F-attributes in
the CVD dataset, and RS showed the best performance in the accuracy (85.11%), sensitivity (86.06%),
and specificity (85.19%) in most of the F-attributes for the Framingham dataset. Consequently, three main
points can be made regarding the contribution, specificity, and novelty of this study: (1) Regarding its
contribution, this study supports meaningful entropy-based knowledgeable rules for visualizing a
tree structure and differentiates the classifiers from the two datasets, resulting in three useful research
findings and three helpful management implications for subsequent medical research and other
interested parties. (2) Regarding its novelty, the study results provide novel evidence that indicates
no classifier or model is suitable for all practical datasets of medical applications. Thus, finding an
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appropriate classifier to address specific medical data is highly important. Furthermore, this study
is the first to calculate and identify the use of key Framingham risk attribute scores, integrated with
the five classification techniques noted above and with the DT technique, to produce entropy-based
decision rules of knowledge sets. This has not been achieved in previous studies. (3) Regarding the
specificity of the study, the knowledgeable rule sets created by DT provide reasonable solutions to
simplifying the processes of preventive medicine by standardizing the formats and codes used in
medical data to address CVD problems. The specificity of these rules is thus significant compared to
those of past research.

Five conclusive and important directions are indicated by the analytical results of the experiments
using the two medical datasets:

(1) According to the empirical results, the CVD and Framingham datasets were processed into useful
entropy-based tree information/knowledge by applying five classifiers to knowledge discovery
in the databases. Furthermore, machine learning tools were found to be useful in medical
applications with the integration of Framingham risk attributes. Regarding the experimental
results, the support vector machine method showed a better performance using Framingham
score attributes and five classifier techniques in terms of accuracy, sensitivity, and specificity
in the CVD dataset. However, the rough set method outperformed the other classifiers in the
Framingham dataset. In addition, through the entropy-based decision rule’s visualization of
trees, the if–then–else control statement provides an understanding of how all decision items
with a class status of “Y” or “N” (i.e., Yes or No) are identified in the two medical datasets to
address CVD problems.

(2) Based on the literature review, machine learning and knowledge discovery using medical databases
have attracted a significant amount of interest from academia and other fields. Given this interest
in CVD applications, this study provides insights into data-mining techniques of machine learning
and statistical methods with industry databases.

(3) This study concerns practical CVD applications and is a trial of machine learning techniques.
It involves the extraction of helpful entropy-based decision rules, the anticipation of
decision-making challenges for real-life applications of knowledge discovery, understanding of
current results and insights, and exploration of future research directions.

(4) In Taiwan, the number of CVD patients has increased during the past 10 years due to changes in
lifestyle and eating habits. Furthermore, CVD, cerebrovascular disease, diabetes, and hypertension
were ranked second, third, fifth, and tenth among the top causes of death. It is clear that CVD is a
serious issue; thus, early diagnosis and prevention strategies of CVD are important for healthcare
and to decrease the use of medical resources.

(5) Several issues can be examined in subsequent research: (a) to further evaluate the proposed
method, more attributes of Framingham risk can be collected to better predict CVD; (b) more
classification techniques can be used and measured to predict CVD; (c) an alternative to the
proposed method can be constructed with a variety of evaluation standards; and (d) more
knowledge-based decision rules, which are not based on a variation of DT entropy, such as RSES
of the rough set theory, can be provided for medical applications.
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