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Brain-derived neurotrophic factor (BDNF) is a neurotrophin that is vital to the survival, growth, and maintenance of neurons in key
brain circuits involved in emotional and cognitive function. Convergent evidence indicates that neuroplastic mechanisms involving
BDNF are deleteriously altered in major depressive disorder (MDD) and animal models of stress. Herein, clinical and preclinical
evidence provided that stress-induced depressive pathology contributes to altered BDNF level and function in persons with
MDD and, thereby, disruptions in neuroplasticity at the regional and circuit level. Conversely, effective therapeutics that
mitigate depressive-related symptoms (e.g., antidepressants and physical activity) optimize BDNF in key brain regions, promote
neuronal health and recovery of function in MDD-related circuits, and enhance pharmacotherapeutic response. A greater
knowledge of the interrelationship between BDNF, depression, therapeutic mechanisms of action, and neuroplasticity is
important as it necessarily precedes the derivation and deployment of more efficacious treatments.

1. Introduction

Major depressive disorder (MDD) is a leading cause of global
disease burden that affects over 300 million persons world-
wide [1–3]. Pathognomonic features of this complex mental
illness include the persistence of one or more episodes of sad-
ness or anhedonia in a two-week period, along with the man-
ifestation of cognitive and somatic symptoms (e.g., changes
in appetite, sleep patterns, energy level, concentration, or
physical activity; feelings of worthlessness and guilt; and sui-
cidal thoughts or behaviors) [4]. The disorder can consist of a
single episode or several recurrent episodes. Direct and indi-
rect costs of treating MDD in the United States exceed $210
billion annually [5]. The high costs to individuals and society
demand efficacious treatments, yet 30% of patients fail to
respond to current pharmacotherapeutics and 70% do not
achieve complete remission [6]. Disenchantment with the
ability of extant drugs to mitigate symptoms in a significant
proportion of persons, the undesirable side effects, and the
high economic and social cost to society have prompted a
diversification of the search for effective treatment options.
Of the alternative therapeutics garnering attention, physical
activity (PA) has shown clear and consistent promise for

mitigating depressive neurobiology through mechanisms
that involve brain-derived neurotrophin factor (BDNF).

Because it is important that clinicians and scientists
understand the means by which PA can be used to optimize
BDNF levels and mitigate pathophysiological substrates of
depression, from both a self- and patient-education perspec-
tive, the aims of this review are to (1) explicate the putative
neurobiological mechanisms involved in MDD and how tro-
phic factors relate to those mechanisms, (2) review clinical
and preclinical evidence of altered BDNF in persons with
MDD, (3) discuss the relationship of BDNF to neuroplasti-
city, (4) discuss the effect of PA on BDNF, and (5) highlight
current and future implications for clinicians and scientists.

2. Neurobiology of Depression

Neuroimaging studies of depression and surgical lesion
studies that induce or mitigate depressive symptoms have
been used to elucidate mood circuits [7, 8]. Comprising these
circuits are several brain structures and regions, particularly
the dorsal prefrontal cortex, ventral prefrontal cortex, ante-
rior cingulate gyrus, amygdala, hippocampus, striatum, and
thalamus [9–11]. Several pathophysiological processes are
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implicated in mood circuit and structure dysfunction [7, 12],
including those related to genetic, epigenetic, and environ-
mental factors. Results from a twin study suggest that the
heritability of MDD is approximately 40% [13]. Preclinical
studies have implicated epigenetic mechanisms by demon-
strating that maternal behavior alters the function of stress-
related genes [14] just as the administration of antidepressant
drugs alters DNA regulation [15]. Other studies have shown
that the depletion of neurotransmitters (e.g., dopamine, sero-
tonin, and norepinephrine) contributes to depressive symp-
toms [16, 17] by altering glutamate and γ-aminobutyric
acid (GABA) signaling. Accordingly, therapeutic agents were
derived to either inhibit neuronal reuptake or inhibit degra-
dation of monoamines in the synaptic cleft, actions aimed
at increasing monoamine transmission. Yet monoamine
depletion failed to produce depressive symptoms in persons
who were healthy or worsen the severity of symptoms in
persons with MDD [18]. Moreover, recent preclinical and
clinical investigation demonstrated that ketamine, an NMDA
receptor antagonist, induced rapid antidepressant effects
through different mechanisms than monoamine reuptake
inhibitors [18]. Subsequent study of signaling mechanisms
that underlie the rapid antidepressant effects of ketamine
has implicated BDNF and its ability to induce neuronal
network alterations [18, 19].

The neurotrophic hypothesis of depression proposes that
stress-related alterations in BDNF levels occur in key limbic
structures to contribute to the pathogenic processes in
MDD [19]. This notion is prefaced on evidence that neuro-
trophins are growth factors that play pivotal roles in the
formation and plasticity of neuronal networks [20], and yet
persons with MDD exhibit region-specific alterations in the
level and function of BDNF. Upregulation of BDNF occurs
in the amygdala and nucleus accumbens of persons with
MDDwhereas downregulation of BDNF occurs in the hippo-
campus and medial prefrontal cortex (mPFC) [21]. BDNF
abnormalities also contribute to dysfunction of astrocytes

and microglia in depression circuits. It has been shown that
(1) persons with MDD exhibit decreased expression of glial
fibrillary acidic protein and mRNA in the frontolimbic
cortical region, (2) BDNF modulates glial function, and (3)
antidepressant administration and deep brain stimulation
mitigate glial deficits [22]. Finally, upregulation of BDNF
occurs following chronic administration of antidepressants
or voluntary participation in PA, consistent with the time
course for the therapeutic action of antidepressants and PA
[23]. Taken together, this evidence suggests that altered level
and function of neurotrophins contributes to the atrophy,
synaptic disconnection, and dysfunction of MD-related
circuits [24, 25]. Conversely, optimization of BDNF levels
facilitates synaptic plasticity and remodeling, induction of
long-term potentiation (LTP), modulation of gene expres-
sion for plasticity, resilience to neuronal insults [24–26],
and alleviation of depressive symptoms [27] (see Figure 1).
This evidence has led to concerted efforts to better under-
stand the actions of BDNF and how these actions can be
harnessed to maintain, repair, and reorganize damaged
emotional and cognitive circuits, a central goal for MDD
treatment and rehabilitation.

3. Brain-Derived Neurotrophic Factor:
Localization, Synthesis, Release, and Binding

Neurotrophins are a closely related family of proteins in the
brain that contributes to the survival, growth, and mainte-
nance of neurons [28] and participate in a variety of learning
and memory functions [29]. The mammalian neurotrophins
include BDNF, nerve growth factor, neurotrophin 3, and
neurotrophins 4-5. Undoubtedly, the majority of the litera-
ture linking neurotrophins with depression involves the
study of BDNF. BDNF has proven to be one of the most
highly inducible neurotrophins with PA, prompting the
focus on this neurotrophin herein.
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Figure 1: Endogenous and exogenous factors modulate BDNF levels to effectuate changes in the hippocampus and mood. Environmental
stress—along with biological, genetic, and pharmacological factors—modulates BDNF levels and synaptic plasticity in various regions of
the brain, including the hippocampus. Decrements in BDNF levels can confer vulnerability for hippocampal dysfunction and loss of
emotional regulation. Conversely, antidepressant administration and voluntary PA optimize BDNF levels in the hippocampus and
mitigate mood symptoms.
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The synthesis of BDNF occurs in both the central and
peripheral nervous system by target neurons under physio-
logic conditions and by astrocytes following injury, inflam-
mation, or administration of antidepressants [30–32]. In
the brain, neurons are considered a significant cellular source
of BDNF, and synthesis occurs in regions that participate in
emotional and cognitive function (e.g., hippocampus and
frontal, parietal, and entorhinal areas). Gene expression stud-
ies in humans have revealed that central BDNF is highest in
the cortex, hippocampus, amygdala, basal forebrain, dorsal
vagal complex, hindbrain, and midbrain [33, 34]. Several
brain regions retrogradely transport BDNF from their pro-
jection areas. Raphe nuclei in the brainstem of rodents do
not contain BDNF mRNA [35], but serotonergic neurons in
these nuclei retrogradely transport BDNF from the frontal
cortex, occipital cortex, entorhinal cortex, and amygdala
(their projection areas) to their cell bodies [36, 37]. Norad-
renergic neurons of the locus coeruleus retrogradely trans-
port BDNF from the frontal and entorhinal cortex. It
appears that nine different gene promoters induce the
tissue-specific expression of 24 different BDNF transcripts,
suggesting multilevel regulation of expression across brain
regions [38]. The use of different promoters can facilitate
the involvement of a myriad of transcription regulatory fac-
tors and mRNA-targeting signals, factors that shunt the
translation of BDNF towards activated synaptic sites [39–41].

BDNF is synthesized as a precursor (pre-pro-BDNF
protein) that results from cleavage of a 32 kDa pro-BDNF
protein. Pro-BDNF can be proteolytically cleaved intracellu-
larly by enzymes (e.g., PC7, furin, and proconvertases) and
secreted as the 14 kDa mature form [42, 43] or it can be
secreted as pro-BDNF and subsequently cleaved extracellu-
larly by proteases (e.g., metalloproteinases and plasmin)
[44]. Both forms of BDNF (pro-BDNF and mature) are
sorted and packaged into vesicles for activity-dependent
secretion [36, 45, 46]. Pro-BDNF can be internalized and
stored by astrocytes and later released as the immature
(pro-BDNF) or mature (BDNF) form [47].

Pro-BDNF mediates its biological actions through bind-
ing to low-affinity p75 neurotrophin receptors, whereas
mature BDNF binds with higher-affinity tropomyosin-
related kinase family (Trk) receptors [48]. Once bound to
its cognate receptors, BDNF is internalized along with its
receptor and transported via retrograde axonal transport
mechanisms to the soma wherein it can initiate a multiplicity
of effects within the nucleus [49]. The functional importance
of differential binding to either p75 or Trk receptors is
underscored by their opposing effects. Proneurotrophin
binding to p75 reduces spine complexity and density [50],
induces long-term depression (LTD) [51], promotes neuro-
nal cell death [52], and facilitates the resculpting of neuronal
circuits [48]. These biological actions are accomplished via
activation of a receptor complex that is composed of p75
and sortilin [52, 53]. In contrast, mature neurotrophin
binding to Trk receptors increases cell survival and differen-
tiation, dendritic spine complexity, long-term potentiation
(LTP) [54, 55], synaptic plasticity [56], and the resculpting
of networks [57]. Localization of TrkB receptors significantly
increases at synaptic sites following neuronal activity [58].

4. BDNF Abnormalities in
Persons with Depression

There is a well-established body of clinical evidence implicat-
ing the involvement of BDNF in the pathobiology of depres-
sion [59]. Peripheral reductions in mature BDNF in serum
and plasma have been noted in persons with depression
[60, 61] and in cases of suicide [62, 63], and psychosocial
stress appears to exert a role in these decrements [64].
Findings from a recent meta-analysis and systematic review
showed significantly lower levels of serum mature and
pro-BDNF in antidepressant-free patients with MDD as
compared to healthy controls [65]. Notwithstanding, serum
levels of BDNF tend to normalize in response to several treat-
ments (e.g., antidepressants [66], electroconvulsive therapy
[67], and PA [68]).

Central reductions in BDNF in specific brain regions
have been reported also. A postmortem study of persons with
MDD reported decrements in BDNF protein in the hippo-
campus [19], along with smaller hippocampal volumes [69].
Dunham and colleagues reported a reduction of pro-BDNF
in all layers of the right hippocampus in persons with depres-
sion [70]. Postmortem hippocampal samples taken from
suicide completers exhibited increased mRNA for the p75
receptor [71], intimating that LTD and pruning may underlie
hippocampal pathology. Thompson and colleagues reported
a reduction of BDNF mRNA in layer II of the entorhinal
cortex relative to controls [72]. BDNF levels were reduced
in the hippocampus of postmortem samples taken from
suicide completers [71, 73]. The activity of MAP kinase
signaling, a major downstream signaling pathway associated
with TrkB, was reduced in persons with depression [74, 75].
Conversely, persons treated with antidepressant drugs exhib-
ited increased BDNF expression and CREB in certain regions
of the brain [76].

Further implicating BDNF with MDD are genetic
[73, 77] studies demonstrating that depressive behavior is
associated with altered BDNF functioning [78]. The Val66-
Met polymorphism in the BDNF gene is a common single-
nucleotide variant associated with MDD [79, 80]. It has an
allele frequency of 20 to 30% in Caucasian populations
[81]. The Val66Met polymorphism affects intracellular pack-
aging of the pro-BDNF polypeptide and activity-dependent
release [82, 83]. This polymorphism is associated with
decreased hippocampal volume in healthy persons [84–86],
persons with MDD [87], and persons suffering an adverse
response to stress [88]. Also, it has been shown that persons
who experience early-life stress and carry the Val66Met
polymorphism exhibit significantly less grey matter in the
subgenual anterior cingulate cortex [89] and are at increased
risk for depression [90]. The Val66Met polymorphism is also
a risk factor for geriatric depression [91] and has been
shown to modulate antidepressant drug efficacy in Asians
[92]. Thus, this naturally occurring genetic variant of the
BDNF gene may contribute to a genetic predisposition
for depressive disorder.

In addition to associations of the Met66 allele with
decreased hippocampal size, other studies have demon-
strated reduced hippocampal activation and poorer episodic
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memory [83, 93]. The contribution of BDNF to mechanisms
of learning and memory involves the modulation of synaptic
transmission and plasticity [94, 95] and refinement of synap-
tic architecture [94, 96, 97] as well as activity-dependent
transcription. It is generally held that activity-dependent
transcription provides a mechanism by which neurons
convert transient cellular changes to stable changes in
brain function, particularly in memory formation. Increased
calcium influx via voltage-gated Ca2+ channels and NMDA
receptors is vital for neuronal plasticity mechanisms [98, 99].
NMDA receptor activation is particularly important for
hippocampal synaptic plasticity [100] and modulation of
BDNF [101], given that the latter determines the strength
of existing synaptic connections and promotes the formation
of new synapses. Together, this evidence suggests that
alterations in BDNF function may affect activity-dependent
plasticity in the hippocampus and thereby learning in
memory and emotions in persons with MDD.

Knowledge of BDNF level and function is relevant for
MDD research and treatment purposes for the several
reasons listed.

(i) Altered BDNF function can contribute to an
increased risk of depression and suicidal behavior
[102].

(ii) With refinement of current knowledge, BDNF may
eventually serve as a biomarker of depression and
suicidal behavior in persons with depression and
enhance diagnostic and treatment efforts [103, 104].

(iii) Treatment-induced normalization of BDNF may
promote neural health and recovery of function
from illness [105]. Additionally, the administration
of BDNF-enhancing techniques (e.g., PA and trans-
cranial stimulation) may enhance pharmacothera-
peutic response [106].

5. BDNF in Animal Models of Depression

Stress is a well-known harbinger of depression in persons
with genetic vulnerability [13, 107]. Evidence of the link
between stress and depression has prompted investigators
to derive animal research models of stress (e.g., immobiliza-
tion, unpredictable chronic stress, foot shock, social isolation,
social defeat, restraint, forced swim, and maternal depriva-
tion) to determine a cause and effect relationship between
pathology, interventions, BDNF, and depressive symptoms
(for excellent reviews of depression metrics in animals,
see [108–114]).

Preclinical studies have demonstrated that chronic stress
and depressive-like symptoms are associated with reduced
BDNF synthesis and activity of TrkB in the hippocampus
and frontal cortex [19, 115, 116], making it seem plausible
that decreased levels of BDNF induce a state of increased
vulnerability to stress and depression. Conversely, direct
infusion of BDNF into the hippocampus or midbrain yields
antidepressant-like effects [117, 118]. Other studies have
shown that chronic administration of antidepressants

increases BDNF mRNA protein in the hippocampus and
cerebral cortex [19, 119–121], but these effects can be blocked
in mice with a conditional knockout that reduces levels of
BDNF in forebrain regions [122]. Similarly, chronic periph-
eral subcutaneous administration of BDNF to rats effectuated
increased levels and signaling of BDNF along with antide-
pressant effects, that is, increased mobility in the forced swim
test, increased sucrose consumption, decreased latency in the
novelty-induced hypophagia test, and increased time spent in
the open arms of an elevated plus maze [123]. Rodents over-
expressing BDNF or TrkB also exhibit increased resistance
and resilience to stress and depressive-related symptoms,
that is, decreased immobility in forced swim [124, 125].

The robust effects between stress and BDNF levels are
clearly apparent in the hippocampus in the subgranular zone
[126]. Neurogenesis in the adult brain is a form of
experience-dependent plasticity whereby stem cells within
distinct regions (the subgranular zone of the hippocampus
and subventricular zone) give rise to new neurons [127].
The 20,000,000 neurons generated over the course of a life-
time have different fates. Some newly born neurons migrate
to the granule cell layer, develop a dendritic tree, and send
their axon into the mossy fiber pathway [127, 128] to
enhance the functional capacity of neural circuitry that is
important for learning, memory, and emotional regulation
[129–131] in an environmentally dependent manner [132].
Neurons that fail to accomplish this experience a different
fate: death. Thus, the proliferation and survival of new
neurons in the hippocampus is vitally important for persons
with MDD [133], particularly given that the elevations in
glucocorticoid levels that cooccur with MDs reduce levels of
BDNF and rate of neurogenesis and induce the retraction
of dendrites [64].

Fortunately, antidepressant drugs increase levels of
BDNF in the hippocampus [19, 21], neurogenesis [134],
and hippocampal cell survival rates [135]. The temporal pro-
file of these effects is congruent with the temporal profile of
clinical effectiveness of antidepressant drugs, suggesting a
similarity between mechanisms [19, 35]. Other preclinical
studies suggest that the degree of dendritic branching and
the number of spines in hippocampal neurons increase fol-
lowing the restoration of BDNF levels [19, 35, 136–138].
Interestingly, selective deletion of the BDNF gene in the
rodent hippocampus attenuates antidepressant efficacy as
measured by the elevated plus maze, fear conditioning,
sucrose preference, and forced swim tests [139]. Together,
these findings suggest that altered expression of BDNF and
dysregulation of neurogenesis in the hippocampus may
effectuate maladaptive changes in neural networks that are
implicated in MDD pathophysiology and, by corollary, that
antidepressants may reverse these maladaptive changes.

Subsequent study has revealed that the relationship
between BDNF and depressive symptoms is more nuanced
in other brain regions. In contrast to the effects seen in the
hippocampus, infusion of BDNF to the ventral tegmental/
nucleus accumbens area increased depression-like behavior
(shorter latency to immobility in the forced swim test)
[140] through mechanisms that may involve maladaptive
learning. Berton and colleagues demonstrated that chronic
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stress increased BDNF levels within the nucleus accumbens
[141], whereas virally mediated knockdown of BDNF in this
region reduced social aversion following chronic social defeat
[141], suggesting that increased BDNF in the ventral tegmen-
tal area and nucleus accumbens is positively associated with
plasticity-induced aversive learning [142–144]. Finally,
rodents with a knockdown of the BDNF gene in the ventral
tegmental area consumed greater amounts of high-fat diet
foods [145], whereas Goto-Kakizaki rats administered intra-
cerebroventricular injections of BDNF exhibited suppressed
feeding [146], a finding that underscores the modulating
effects of BDNF on feeding behaviors and its interactions
with the mesolimbic dopaminergic reward system [147].

Admittedly, central reductions in BDNF are not sufficient
to produce depressive-like behaviors in all animals. Rather,
reductions of BDNF appear to increase susceptibility to the
deleterious effects of stress: exposure of BDNF heterozygous
knockout mice to stress induces depressive-like behavior, as
does the blockade of BDNF-TrkB signaling following stress
[148]. These studies suggest that the anti- or prodepressive
effects of BDNF depend upon the brain region affected and
offer evidence that selectively targeting BDNF levels in key
brain regions may benefit patients affected by MDs. These
studies also demonstrate that the effects of BDNF are region-
and circuit-specific and cannot be extended arbitrarily to
other brain regions.

6. BDNF, Plasticity, and
Neuroprotection in MDD

It has been proposed that BDNF signaling is a prime media-
tor of activity-dependent neural plasticity and the resculpting
of MD-related circuits [149–151]. Neuroimaging studies
have revealed functional deficits in cognitive and affective
processing during the early phases of illness [152–155],
changes that become increasingly impaired with illness pro-
gression [156], and the emergence of structural impairments
in the frontal cortex and hippocampus [157–160]. Together,
the functional and structural deficits disrupt cognitive and
affective regulation that is dependent upon circuit-level
integrity of the prefrontal-thalamo-limbic and limbic-
striatal-pallidal-thalamic systems [161]. By corollary, circuit
level disruption can impede future learning [162]. Cortical
regions (e.g., dorsolateral prefrontal cortex [163, 164] and
anterior cingulate cortex [165]) comprise the cognitive
control network, whereas the subcortical regions (e.g., hippo-
campus [166], amygdala [167], parahippocampal gyrus
[168], caudate nucleus [169], posterior cingulate cortex
[168], and thalamus [170]) comprise the affective processing
network. Persons who are depressed exhibit impairments in
the cognitive control network as evidenced by their inability
to disengage from negative stimuli, a task that requires top-
down regulation by cortical regions [164, 171]. They may
also exhibit impairments in the affective control network as
evidenced by hyperactivity of the amygdala [156, 172] and
hippocampus [163] to negative stimuli and recall.

The impairments in structure and function in these areas
and circuits putatively arise from a myriad of contributing
factors, including altered trophic factor level and function,

neurotransmitter level and function, stress regulation, perox-
isome proliferator-activated receptor C coactivator alpha,
neurogenesis, immune function, antioxidant defense, circa-
dian rhythms, epigenetic modifications, and maintenance of
telomere length [173]. Within this context, decrements in
BDNF are not sufficient to effectuate depression in humans
per se. Rather, adequate levels of BDNF effectuate activity-
dependent neuronal plasticity that is requisite for the mainte-
nance of basal neuronal and circuit function [174] and for
making adaptive responses to endogenous and exogenous
stressor challenges [27, 175], particularly during chronic
stress [88] and depressive states [87].

Inherent to the depressive state is the inability to return
to normal circuit function following the abatement of
stressful situations (either psychological or physical in
nature), a phenomenon that likely reflects reduced plastic-
ity. Hippocampal atrophy and disconnected brain circuits
become increasingly resistant to change in the absence of
exogenous interventions that promote recovery. Part of this
resistance is the result of the disconnection and loss of
function that occurs [19, 24, 176, 177] secondary to synaptic
decrements [178, 179].

Synapses typically exhibit plasticity, a state where their
function and structure are modified in response to activity
and factors in the cellular milieu. LTP is one form of
functional synaptic plasticity, wherein connections between
synapses become strengthened with activity, a process that
is fundamental to learning and memory [180]. Yet, requisite
for the strengthening of LTP is the presence of mature BDNF
[181]. LTD is another form of functional plasticity, where a
set of synapses display a reduced capacity to elicit a response
in one another, a process that is vital to forgetting [182].
Requisite for LTD are adequate levels of pro-BDNF [181].
Working in concert, LTP and LTD regulate homeostatic
plasticity and the function of neuronal circuits [149, 183] in
emotional circuits. This regulation is accomplished by the
ability of high-frequency (but not low-frequency) stimula-
tion to induce the secretion of tissue plasminogen activator,
a protease that converts extracellular pro-BDNF to mature
BDNF [181]. Not surprisingly, the study of hippocampi in
persons with MDs has revealed that decreased volumes are
positively associated with symptom severity, duration, and
treatment outcomes [184–187].

Fortunately, antidepressant drug administration enhances
synaptic turnover [188–190], increases synaptic plasticity
gene activation [191], and promotes functional connectivity
in the hippocampus [192] following stress, processes that
are dependent upon TrkB signaling [188]. Also, antidepres-
sant administration increases phosphorylation of TrkB
receptors in the rodent hippocampus and cortex within
hours [193, 194] and increases the translocation of TrkB
receptors to synaptic sites [195]. Via phosphorylation of
BDNF and other mechanisms, antidepressant drugs appear
to reactivate neuroplasticity.

Maya Vetencourt and colleagues previously reported that
chronic administration of fluoxetine, at a dosage that pro-
duced serum fluoxetine levels within the therapeutic range
in humans, reinstated ocular dominance plasticity in adult-
hood and promoted visual recovery in amblyopic adult
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animals. These effects were accompanied by reduced intra-
cortical inhibition and increased BDNF expression in the
visual cortex [196]. Similarly, direct infusion of BDNF into
the visual cortex recapitulated the effects of fluoxetine
[196], suggesting that the antidepressant drug reinstated
critical period-like plasticity in the visual cortex [197].

Kobayashi and colleagues demonstrated that chronic
treatment of adult mice with fluoxetine greatly reduced
expression of calbindin, a marker for mature granule cells
in the hippocampus. Additionally, chronic administration
of fluoxetine induced active membrane properties that
resembled immature granule cells and concomitantly reduced
the synaptic facilitation that is characteristic of mature
dentate-to-CA3 signal transmission, suggesting that the drug
reversed the established state of neuronal maturation in the
adult hippocampus [198].

Karpova and colleagues investigated the effects of antide-
pressants on behavioral experience by using a fear-
conditioning and fear-extinction paradigm in rodents. They
combined extinction training with chronic fluoxetine and
induced an enduring loss of conditioned fear memory in
adult animals, an effect that could not be produced without
the drug. Strikingly, fluoxetine administration effectuated
synaptic plasticity and facilitated the conversion of the fear
memory circuitry to an immature state, effects that were
mediated by BDNF. The authors concluded that fluoxetine-
induced plasticity permits fear erasure by extinction-guided
remodeling of the memory circuitry, suggesting that antide-
pressant drugs may be used to prime plasticity in circuits
prior to psychological rehabilitation to facilitate the reorgani-
zation and proper function of MDD networks [199].

In another study, Chollet and colleagues administered
patients who suffered a stroke add-on fluoxetine to physical
therapy. The results of their double-blind, placebo-
controlled trial demonstrated that persons who received early
prescription of fluoxetine with physical therapy had enhanced
motor recovery after 3 months [200].

These findings support the notion that antidepressant
drug mechanisms involve the reactivation of neuroplasticity
and facilitation of functional reorganization of the neuronal
network when accompanied by environmental enrichment
[175, 201]. By corollary, they underscore the importance of
resolving stressful situations that initially induced functional
and structural impairment in mood-related circuits and of
deriving biomarkers that facilitate earlier detection and
rehabilitation before the illness gains a strong foothold
[202]. Also, this evidence highlights a critical unmet need
for new antidepressant therapeutics that exert faster onset
of action and greater efficacy. Accordingly, a multiplicity
of preclinical and clinical investigations has aimed to
understand how therapeutics can be used to harness
homeostatic mechanisms that regulate neurotrophin release
and function to mitigate MDD-related disease, particularly
aerobic PA [129, 173, 203].

7. Physical Activity, BDNF, and Neuroplasticity

Convergent evidence demonstrates the positive effects of PA
in persons with MDD. PA refers to activities that require

energy expenditure and involve bodily movements produced
by skeletal muscles [204]. Exercise is a subcategory of PA that
entails purposeful, planned, and structured endeavors under-
taken to improve physical fitness or skill level [204]. Evidence
suggests that PA reduces the risk for MDD [205, 206], miti-
gates symptoms [207], facilitates recovery [208, 209], lowers
the incidence of relapse [210, 211], and decreases overall
caregiver burden [212]. Undoubtedly, many of the positive
effects of PA on brain health and function derive from its
ability to optimize central levels of BDNF, particularly in
the hippocampus [130].

Preclinical work demonstrates that chronic PA upregu-
lates the expression of BDNF in the hippocampus of rodents
for days [116, 213]. Concomitantly, endurance exercise
induces elevations of muscle-derived proteins [proliferator-
activated receptors (PGC-1α) and FNDC5] that regulate
BDNF expression in the rodent hippocampus. The ability
of PA to modulate changes in BDNF and PGC-1α is relevant
for stress-induced depression given their interaction with
neuroinflammatory and neuroplasticity pathways [214]
via alterations in tryptophan degradation [204, 215] and
5-HT1A receptor activation [216].

A bevy of other work underscores the inextricable rela-
tionship between PA, BDNF level optimization, and down-
stream factors. PA optimizes neurotransmitter system level
and function (e.g., glutamate, GABA, serotonin, dopamine,
and noradrenaline) [173]. In turn, changes in neurotransmis-
sion mediate changes in BDNF gene expression in various
brain regions (e.g., hippocampus, nucleus accumbens, and
amygdala) [217]. Robust preclinical and clinical work dem-
onstrates that PA increases neurogenesis and plasticity via
BDNF-dependent mechanisms, particularly when paired
with environmental enrichment [173, 218]. Other work dem-
onstrates that PA attenuates the inflammatory process and
induces a more resilient stress response [173]. The ability of
PA to mitigate HPA dysregulation is especially important
for preventing hippocampal atrophy [219, 220] in persons
with affective disorders [221] because chronic exposure of
hippocampal neurons to elevated glucocorticoid levels
induces a retraction of dendrites and reduction of dendritic
spines [222].

Emerging preclinical evidence suggests that PA can mit-
igate the astrocytic dysfunction seen in MDD. Early work
in rodents demonstrated that ablation of astrocytes effectu-
ated a reduction of dentate granule cell density and glutamate
transporter expression, changes that negate the ability of
these cells to effectively remove glutamate excess from the
synaptic milieu [223]. Later work demonstrated that chronic
stress reduced the number of astrocytic projections in
rodents, whereas environmental enrichment increased the
number of astrocytic projections [224], a significant finding
given that the extent of astrocyte projections is a marker of
well-being in these cells. Bolstering the notion of a link
between astrocytic function and BDNF is a preclinical work
showing that BDNF infusion attenuates hippocampal glial
fibrillary acidic level reductions that were a consequence of
chronic unpredictable stress [225]. More recent work showed
that rodents exposed to long-term PA (5 days per week× 4
weeks) demonstrate increased BDNF synthesis and release
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in the dentate gyrus along with altered orientation and mor-
phology of astrocytes, effects that are TrkB-signaling depen-
dent [226]. The latter findings suggest that PA-induced
changes in astrocytic projection length and density might
enhance glutamate clearance from the synapse and mitigate
glutamate excitotoxicity in models of MDD, a notion that
awaits further study.

Some evidence suggests a synergistic effect of PA and
restricted dietary intake on BDNF upregulation. Alomari
and colleagues examined the effects of aerobic PA (voluntary
wheel running or forced swimming) plus caloric restriction
versus dietary restriction alone on BDNF and learning and
memory in rodents. Their results demonstrated that the
combination of voluntary PA and caloric restriction effec-
tuated greater increases in BDNF levels in the hippocam-
pus, even though improvements in spatial learning and
memory occurred in both the combination and dietary
restriction groups [227]. Thus, it seems plausible that mul-
tidomain treatments such as PA and dietary modification
may be particularly beneficial in persons with MDD who
exhibit stress-induced decrements in central and peripheral
BDNF levels and carry gene-copy-number variants in the
BDNF gene.

Carriers of the BDNF Val66Met polymorphism exhibit
decreased activity-dependent secretion in comparison to
Val/Val carriers, although the level of constitutive secretion
of BDNF protein in hippocampal neurons remains the same
[83]. Decreased activity-dependent secretion from the neu-
rons of BDNFMet carriers is functionally significant because
most BDNF protein is released from the activity-dependent
pathway [83, 228]. The fact that PA modulates BDNF levels
and symptoms of depression [229, 230] suggests that BDNF
gene interactions with PA may influence depressive symp-
toms [231]. Bolstering this notion is recent work showing
that the BDNF polymorphism moderates the association
between PA and depressive symptoms. Higher levels of
PA were protective against depressive symptoms for girls

with the BDNF Met allele, but not for girls with the
Val/Val polymorphism [232].

Further elucidating the association between PA and
BDNF are clinical investigations of brain structure and func-
tion (see Table 1). These studies reaffirm that chronic aerobic
exercise increases peripheral levels of BDNF [233–236],
blood volume in the dentate gyrus [237], grey matter in the
prefrontal and cingulate cortex [235], size of the right and left
hippocampus [238], and memory performance [235, 236] in
humans. Encouragingly, increases in hippocampal size are
correlated with increased spatial memory performance in
persons who are healthy and experiencing neurodegenerative
changes [238], suggesting that PA might mitigate the cogni-
tive deficits experienced in MDD. Moderate to high train-
ing intensity PA appears requisite for maximal PA effects
[239, 240]. Clinical studies have demonstrated that acute
aerobic PA at 85% of maximal capacity increased plasma
BDNF levels, which is important because plasma BDNF
levels are linked to alterations in BDNF levels [241, 242], syn-
aptic plasticity, and learning ability [243], whereas blockade
of BDNF on TrkB receptors reduced the effects of PA on syn-
aptic plasticity [244].

Parallel studies have investigated the relationship of PA,
BDNF, and depressive symptoms. It has been shown that
PA increases BDNF in unmedicated patients with MDD
[245] and elderly persons with remitted depression [246].
Examining the effects of exercise augmentation (16 kcal/kg/
week× 12 weeks) in persons who experienced a partial
response to antidepressants, Toups and colleagues found that
persons with higher BDNF levels experienced more rapid
symptom relief, suggesting that pretreatments with exercise
might improve antidepressant efficacy [247]. Schuch and col-
leagues investigated the effects of add-on PA (16.5 kcal/kg/
week of aerobic exercise 3× per week for approximately 3
weeks) with treatment as usual. They found no additional
increase of BDNF in the exercise plus medication group rel-
ative to the medication-only group, suggesting a plateau

Table 1: Effects of physical activity on brain-derived neurotrophic factor (BDNF).

Reference Sample Treatment Assessment outcome

[233] 13 young, healthy men
Moderate-intensity aerobic PA 4 d/wk

for 5 wks
↑ plasma BDNF

[234] 7 healthy, sedentary males Aerobic PA 7 d/wk for 12wks ↑ plasma BDNF

[238] 60 older adults Aerobic PA 3 d/wk for 60wks ↑ BDNF and ↑ hippocampal volume

[236] 47 healthy, sedentary males Aerobic PA 3 d/wk for 5wks
↑ serum BDNF following PA and ↑ memory

on face name matching

[235] 62 healthy, sedentary males Moderate-intensity aerobic PA for 2wks
↑ serum BDNF following PA and ↑ memory

on face name matching

[247]
104 persons with partial

response to antidepressants

Add-on high (16 kcal/kg/week) or low
(4KKW)

PA for 12wks to standard depression
care

Persons entering with ↑ BDNF levels exhibited ↑
rate of response to antidepressants

[248] 15 severely depressed adults

Add-on aerobic PA 16 kcal/kg/week for
3 d/wk

for 3wks to standard care for depression
or medication-only group

Similar ↑ in BDNF in aerobic PA and
medication-only group, but ↓ in oxidative
stress markers seen only in PA group
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effect of antidepressant drugs on BDNF levels in persons with
depression [248]. What remains to be determined is whether
this plateau effect exists in carriers of the Met allele.

While it is known that PA increases circulating BDNF
levels in healthy humans [249] and that BDNF is vitally
important for maintaining affective and cognitive circuit
function during health and disease, the source of these
increases remains unclear. Some have proposed that platelets
are the origin of serum BDNF following exercise [250], but
BDNF is also increased in plasma samples, a finding that
implicates other sources. Krabbe and colleagues demon-
strated cerebral output of BDNF in healthy humans at rest
[251], suggesting that exercise-induced alterations in plasma
BDNF levels reflect altered release of BDNF from the brain
[252]. Exploring the latter notion further, Rasmussen and
colleagues used arterial-to-internal jugular venous measure-
ment differences to analyze the contribution of the human
brain to plasma BDNF levels at rest and during prolonged
whole-body exercise. Their results show that the brain is
a significant source of BDNF production at rest and dur-
ing prolonged exercise, contributing approximately three-
quarters of the BDNF to venous circulation [253]. Part
of the increase in central BDNF may be a consequence
of activated platelets in the cerebral circulation [254] or
activity-dependent function in other brain structures (e.g.,
hippocampus and cortex) [253].

These results suggest that PA effectuates central neuro-
plastic adaptations via optimization of BDNF levels. The abil-
ity of PA to enhance BDNF release and function in the
synapse, promote dendritic spine integrity, and activate other
cellular pathways that contribute to plasticity [19, 24, 255] is
vital for homeostatic processes that are necessary for the
maintenance, repair, and reorganization of circuits damaged
during depression, effects that recapitulate those of antide-
pressant drugs. While it remains to be determined whether
PA can reactivate neuroplasticity, preliminary work by Eadie
and colleagues has demonstrated that long-term PA signifi-
cantly increased total length and complexity of dendrites,
increased the spine density on dendrites, and induced a more
immature state of dentate granule cells [137].

8. Conclusions and Future Directions

The derivation of an effective treatment for MDD represents
an unmet goal. Notwithstanding, considerable progress has
been made in better understanding the pathobiological fea-
tures and processes that contribute to the structural, func-
tional, and circuit disruptions that are endemic to MDD.
Herein, biomedical evidence demonstrated that stress-
induced depressive pathology contributes to altered BDNF
level and function in persons with MDD and, thereby, dis-
ruptions in neuroplasticity at the regional and circuit level.
By corollary, effective therapeutics that mitigate depressive-
related symptoms (e.g., antidepressants and physical activity)
will optimize BDNF in key brain regions to promote
neuronal health and recovery of function in MDD-related
circuits. A better ability to deploy therapeutics that optimize
BDNF is needed given evidence that intervention in neuro-
degenerative processes is more likely to achieve disease

modification, while ones deployed later demonstrate a sig-
nificant but more limited effect after the emergence of neu-
ronal degeneration [256].

Clearly, there is an urgent need to identify how PA can
best be translated operationally to influence the health and
wellness of brain structure and function [173], particularly
by optimizing neuroplasticity mechanisms. This challenge
will necessarily entail a better understanding of how the opti-
mum mode, intensity, and duration of PA might alter MDD-
related symptoms and pathology. Several studies suggest that
exercise interventions that combine multiple modalities (e.g.,
aerobic and strength-training activities) are more effective at
enhancing emotional and cognitive health in humans in
comparison to those that emphasize aerobic activities alone.
Colcombe and Kramer reported that persons who partici-
pated in aerobic and strength-training activities exhibited
higher gains in cognition in comparison to those who partic-
ipated in aerobic activities alone [257]. Smith and colleagues
reported that interventions that consisted of aerobic and
strength-training activities improved attention, processing
speed, and working memory to a greater extent than aerobic
exercise alone in both healthy individuals and those with
neurodegeneration [258], an effect putatively linked to alter-
ations in hippocampal volume [238, 259]. Supporting the
latter notion is evidence that decrements in hippocampal size
are linked to neurodegenerative progression, whereas the
reversal of neurodegenerative progression has been linked
to improvements in hippocampal volume [219, 220]. Indeed,
aerobic exercise of moderate intensity for 12 months
improved memory and hippocampal size in healthy older
adults, effectively reversing age-related loss of volume by one
to two years [238]. Directly applying the aforementioned,
Makizako and colleagues demonstrated that hippocampal
volume was directly linked to improved memory in humans
and that greater durations of moderate PA could effectuate
greater increases in hippocampal volume and memory [259].

Altogether, the data presented here suggests that moder-
ate PA—a target that is practical, well tolerated, and likely to
optimize exercise adherence—optimizes BDNF and plastic-
ity, particularly in persons with depression. PA’s relative
low-risk profile, ease of implementation, and absence of side
effects [260] have led to the incorporation of PA into basic
clinical management protocols for MDs [261, 262].
Undoubtedly, future efforts to improve population health
should consider the ability of lifestyle factors to prevent and
treat mental disorders [263] by optimization of neuroplasti-
city substrates, particularly when coupled with rehabilitation.
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