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ABSTRACT

Microbial communities in hadal sediments are least explored in hadal zone (>6,000 m),
especially in the Challenger Deep with high pressure (~110 M pa at the bottom).
In this study, we investigated the microbial communities in the sediments of the
slope and trench-axis bottom of the Challenger Deep in the Mariana Trench.
Classification of the reads of the 16S rRNA gene amplicons showed vertical
distribution of prokaryotic microbial inhabitants from the surface to up to 60
centimeter below surface floor (cmbsf). The most dominant phyla were Proteobacteria,
Chloroflexi, Actinobacteria, Planctomycetes and candidate phyla Patescibacteria and
Marinimicrobia. Distinct dominant groups in the microbial communities were
observed in trench-axis sediment (water depth >8,600 m), compared to the slopes of
the Challenger Deep. A sampling site at the northern slope was enriched with archaea
from mesophilic Euryarchaeota Marine Group II (MGII) as a biomarker of specific
geochemical setting. Among archaeal community, Thaumarchaeota represented by
Nitrosopumilus were dominant in the upper layers and diminished drastically in the
deeper layers. “Ca. Woesearchaeota”, however, became the dominant group in the
deeper layers. Overall, our study provides a better understanding on the pattern of the
microbial communities in the deepest hadal sediments on Earth, and highlights the
extraordinary diversity still waiting to be discovered.

Subjects Ecosystem Science, Genomics, Marine Biology, Microbiology
Keywords Challenger Deep, Trench-axis sediment, Microbial communities, Novel groups

INTRODUCTION

Hadal Trenches at >6,000-m depth are specific ocean ecosystems, and the Challenger
Deep isolated from other trenches in the Western Pacific is the deepest place on Earth
(Jamieson et al., 2010). Subduction plate (seamount tunneling) steepens the forearc,
causing the northern slope steeper than the southern slope. The bottom of the Challenger
Deep is 11 km long and 1.6 km wide, known as slot-shaped depression. As the slope
sediments reach the maximum attainment, sediments slip off the slope. Sediment
transport can also be triggered by debris flows and turbidity currents (Jamieson et al.,
2010). The oligotrophic hadal waters in the Challenger Deep harbored detrital matter
degrading microorganisms such as Chloroflexi and candidate phylum Marinimicrobia
(SAR406) (Nunoura et al., 2015). In contrast, benthic oxygen consumption rate has been
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in situ measured in sediment sites of three hadal trenches (Glud et al., 2013; Wenzhofer
et al., 2016), indicating that the seafloor microbial carbon turnover at the trench-axis
was higher than those adjacent abyssal sites probably due to the slot-shaped trench-axis
trapped more particulate organic matter than previously estimated (Glud et al., 2013;
Nunoura et al., 2015). Along plate collision, active hydrothermal submarine volcanoes
are distributed in the Mariana arc (Baker et al., 2008). Previous studies reported a
slightly elevated salinity at the water depth above 9,000 m, indicating that the microbial
communities could also be shaped by the bottom water mass density (Nunoura et al., 2015;
Taira, Yanagimoto & Kitagawa, 2005). Therefore, with these geochemical, geophysical
and geographical parameters, unique microbial communities might have been discovered
at the certain slope sites, providing opportunities to develop ecological and evolutionary
theories about speciation and community assembly.

It has been speculated that hadal adapted strains of microbes were distinguished from
their close relative strains dwelling in shallow marine major due to biological barriers
(Gallo et al., 2015; Kato et al., 1998; Nunoura et al., 2015; Wang et al., 2019b). Dominance
of hadal specific ammonia-oxidizing archaea (AOA) (Wang et al., 2019b) provides a
hint to the presence of various novel microbial groups in the Challenger Deep, especially
at water depth >10,000 m. Some eukaryotic microbial communities in waters from the
Challenger Deep were reported recently (Guo et al., 2018; Xu et al., 2018), suggesting
novelty of the eukaryotes in the Mariana Trench. Currently, most studies have focused
on the microbial communities in waters rather than those in sediments in the Mariana
Trench probably due to difficulties in sediment sampling in this area (Nunoura et al., 2015;
Tamburini et al., 2013; Tarn et al., 2016; Tian et al., 2018; Wang et al., 2019a). At present,
the prokaryotic microbial community in a trench-axis bottom site (10,300 m) of the
Challenger Deep had been briefly investigated, and revealed that the major phyla were
Chloroflexi, Bacteroidetes, Planctomycetes, “Ca. Marinimicrobia” (SAR406),
Thaumarchaeota and “Ca. Woesearchaeota” (Nunoura et al., 2018). With the vertical
distance of ~4,000 m in the Challenger Deep, there must be variants in the microbial
communities at different sediment sites of the slopes and trench-axis bottom and novel
groups could probably be uncovered. Therefore, the spatial distribution pattern of
prokaryotes microbial communities in sediments of the Challenger Deep across different
hadal depths and sites is still illusive to date.

Aiming to reveal the spatial variations of prokaryotic microbes and find potentially
unique groups in the hadal sediments, we investigated five sediment cores from the
trench-axis of the Challenger Deep and nine slope sediment cores ranging in depth from
5,480-7,850 m during three cruises in 2016-2017. As the first large-scale study of the
microbial communities in sediments of the Challenger Deep, our results deepen our
understanding on the formation of unique ecosystem in the hadal zone.

MATERIALS AND METHODS
Sample collection

Fourteen sediment samples were successfully collected from the Challenger Deep in
three cruises R/V Dayang 37-1I (DY3711), Tansuo01 (TS01) and Tansuo03 (TS03)
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Figure 1 Sampling sites in the Challenger Deep. (A) The map was created with Generic Mapping Tools (GMT) (Wessel ¢ Smith, 1998).
The sampling sites from Challenger Deep were within a red frame in the map. (B) The sediment (yellow diamond) samples were collected during
three cruises (R/V TS01, TS03 and DY371II). The sediment samples (water depth >5,000 m) were collected by manned submersible, hadal lander
and box-core sampler. Details for the samples were listed in Table SI. Full-size K&l DOT: 10.7717/peerj.6961/fig-1

during June-July of 2016, June-August of 2016 and January-March of 2017 (Fig. 1).
Our sediment sampling was carried out on the slopes and the trench-axis bottom sites of
the Challenger Deep from abyssal to hadal depths by “Jiaolong” manned submersible, a
box sampler and a hadal lander (Fig. 1; Table S1). All these sediment cores were sliced into
2 cm subsamples except for three cores (T1L10, T3L08 and T3L11 above 10,000 m)

that were sectioned into 3 cm subsamples. The ion concentrations of two sediment cores
were measured with an Ion chromatography system (Dionex Corporation, Sunnyvale, CA,
USA). All subsamples for community analysis were preserved at —80 °C until DNA
extraction. The research has been permitted and secured from the Federated States of
Micronesia.

DNA extraction and quantitative PCR (qPCR) analyses

Genomic DNA was extracted from 2 g of sediment subsamples using the PowerSoil
DNA TIsolation Kit (MO BIO Laboratories, Inc., Carlsbad, CA, USA). The quality and
quantity of the genomic DNA were checked with a NanoDrop spectrophotometer
(ND-1000, Nanodrop Technologies, Wilmington, DE, USA) and gel electrophoresis.
The abundance of 16S rRNA was quantified as an average of three replicate analyses.
The prokaryotic SSU rRNA gene was quantified using the primer Uni516F/Uni806R
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using the StepOnePlus™ Real-Time PCR System (Applied Biosystems, Foster City,
CA, USA). The primer sequences and qPCR conditions were as described previously
(Nunoura et al., 2018).

PCR ampilification of the 16S rRNA genes

The 16S rRNA genes were amplified with a pair of universal primers: 341F (5'-CCTAY
GGGRBGCASCAG-3') (Zakrzewski et al., 2012) with a tagged six-nucleotide(nt) barcode
and reverse primer 802R (5'-TACNVGGGTATCTAATCC-3') (Nossa et al., 2010) that
target V3-V4 variable regions. The PCR reaction was prepared according to the
PrimerSTAR® HS DNA Polymerase (TaKaRa, Dalian, China) with 2 pl of forward

and reverse primers (10 pM) and 2 ng of template DNA. The PCR was performed on a
thermal cycler (Bio-Rad, Hercules, CA, USA) in the following thermal cycles: 98 °C for
10's, 26 cycles of 98 °C for 10's, 50 °C for 15 s, 72 °C for 30 s and a final extension at 72 °C
for 5 min. PCR products were purified using the TaKaRa Agarose Gel DNA Purification
Kit (TaKaRa, Dalian, China) and Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA,
USA) for quantification.

Analysis of the barcoded amplicons and taxonomic assignment

An equal amount of PCR products from different samples was mixed together and
subjected to sequencing on the Illumina Miseq platform (2 x 300 bp) in accordance with
the manufacturer’s recommendation. The sequencing data were processed and analyzed
using QIIME version 1.9.1 (Caporaso et al., 2010b). After qualification, the remaining
reads were assigned to operational taxonomic units (OTUs) at 97% similarity level by
UCLUST (Edgar, 2010). Chimeric reads were identified and excluded using ChimeraSlayer
(Haas et al., 2011) and singleton OTUs with one sequence were removed. For the
remaining OTUs, the most abundant read of each OTU was selected as a representative
for subsequent taxonomic classification. Taxonomic assignment was conducted using
the Ribosomal Database Project (RDP) classifier (version 2.2) (Wang et al., 2007) by
referring to the SILVA132 database with a confidence level of 80%. The remaining
representatives were aligned by PyNAST (Caporaso et al., 2010a) and a phylogenetic tree
was built using FastTree (Price, Dehal & Arkin, 2009). Subsequently, alpha diversity was
calculated with three parameters: observed OTUs, Chaol and Shannon Index. Using
percentages of the genera in the microbial communities, Bray—Curtis dissimilarity between
the layers was calculated and used for Principal coordinate analysis (PCoA) with the
OmicShare tools, a free online platform for data analysis (www.omicshare.com/tools).

Phylogenetic analysis of 16S rRNA genes

The representative reads of the most abundant OTUs (DatasetS1.fasta) were selected for
construction of phylogenetic trees with reference sequences from the Silva and NCBI
database. All the sequences were aligned using MAFFT 7.31 (Katoh ¢ Standley, 2013)
and the maximum-likelihood (ML) phylogenetic trees were constructed using RaxML
(Silvestro & Michalak, 2012) with GTRGAMMA model. The bootstrap values were
calculated based on 1,000 replications. The phylogenetic outputs were visualized and
edited in iTOL (Letunic ¢ Bork, 2016).
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RESULTS

Microbial abundance

In the qPCR analysis, the abundance of the entire prokaryotic SSU rRNA gene ranged
between 1.5 x 10° and 5.5 x 10° copies g”' sediment from sediment surface to 66 cmbsf.
The results showed that, with a few exceptions, microbial abundance generally
decreased with increasing depth of sediment layers. The SSU rRNA gene copy numbers
of the trench-axis at the surface layer (0-2 cmbsf) were observed at least an order of
magnitude higher than those of the slopes (Fig. S1). Moreover, the abundance of the
entire prokaryotic SSU rRNA at the trench-axis shown in this study was higher than
the result reported in a recent work (Nunoura et al., 2018).

Composition, diversity and species richness of microbial
communities
After quality control and filtration of chimeras and singletons, a total of 624,821 reads
of 16S rRNA gene amplicons for 95 sediment layers were obtained (Table S2). The
rarefaction of the qualified reads resulted in the minimum 1,143 sequences per sample
(Table S2). All the curves did not reach the plateau (Fig. 52), indicating that more species
might be discovered with more sequencing reads. The qualified reads were grouped into
123,955 OTUs and were then classified into 69 phyla. The 11 most dominant bacterial
phyla (>1%) were Proteobacteria, Chloroflexi, Actinobacteria, Planctomycetes, candidate
phylum Patescibacteria, candidate phylum Marinimicrobia, Gemmatimonadetes,
Bacteroidetes, Firmicutes, Acidobacteria and candidate phylum Zixibacteria (Fig. 2).
The most abundant Proteobacteria in hadal sediment samples was Gammaproteobacteria
composed of Pseudoalteromonas (similarity 100% to NR_152003), Halomonas (similarity
100% to NR_043299), Pseudomonas (similarity 100% to NR_159318) and Alteromonas
(similarity 100% to NR_148755). These taxa varied in their percentages spanning 0-63%
across all sediments layers. T1B08 was particularly enriched with Gammaproteobacteria
highly represented by Alteromonas. Planctomycetes and Thaumarchaeota were
significantly negatively correlated in their relative abundances (Correlation test with 95
samples; P < 0.00001). Two archaeal phyla were abundant in the samples: Thaumarchaeota
and Nanoarchaeaeota. Nitrosopumilus of Thaumarchaeota was the major group in the
Challenger Deep sediment layers, while the latter represented by “Ca. Woesearchaeota”
was abundantly detected in deep layers of the deepest sediments (>10,000 m). The high
abundance of Euryarchaeota archaea was exclusively shown in the layers of the T1B08
sample (Fig. S3).

The observed OTUs, Chaol and Shannon index were normalized based on the minimal
number of reads (Table S2). The sediments from <6,000-m depths were associated
with the highest Chaol and Shannon index such as in DMC02, DD114 and DD121.
The diversity indexes for the different layers in the T1B08 were the lowest among the
sediments. The communities in the bottom sediments >10,000 m depths were not more
diversified than those in the slopes except for the T1B08. Moreover, from the surface to
the bottom layers, the biodiversity indexes did not vary notably for all the samples.
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Figure 2 Relative abundance of prokaryotic phyla in the sediments from the Challenger Deep. The
microbial communities were revealed based on sequencing of 16S rRNA gene amplicons and classifcation
at the phylum level using the RDP classifier against the SILVA 132 database. The core lengths were
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Clustering relationships of microbial communities

A PCoA plot could separate the microbial communities into two groups (the surface
0-2 cmbsf layer samples were shown, simple IDs refer to Table S3), one composing of
the slope samples (5,400-7,800 m) and another containing only trench-axis bottom
samples (8,600-11,000 m). In the former group, the samples from the northern slope could
be further split from those from the southern slope. The T1B08 sample was far from
the two groups in the plot (Fig. 3A), reflecting its distinct composition of microbial
community. Principally, the microbial communities were clustered based on the
geographic locations and depths. The combination of PCO1 and PCO2 explained 53% of
the differences among the communities (Fig. 3A). Hierarchical clustering of the

samples using the percentages of genera in the corresponding communities also
demonstrated that the microbial communities in trench-axis sediments differed from
those in the slopes (Fig. 3B). The similarity of the microbial communities was determined
by sampling sites, rather than depths to the surface layers, since the communities from
the same cores tend to be grouped together (Fig. S4).

Phylogenetic analysis of 16S rRNA genes
The most abundant OTUs (DatasetS1.fasta) were used to determine their phylogenetic
positions. The representative reads for a total of 35 OTUs were selected for the
construction phylogenetic tree with their closest relatives in the NCBI. The most
abundant one was within the same group with a neighbor of Nitrosopumilus (Fig. 4A).
The Nitrosopumilus in the Challenger Deep sediments resembled those inhabiting other
abyssal and hadal waters and sediments from the Ogasawara Trench, the Japan Trench and
even the Puerto Rico Trench, with respect to their short phylogenetic distance. This has
been observed and discussed in a recent work on the high homogeneity of Nitrosopumilus
AOA in hadal zones (Wang et al., 2019b). The phylogenetic position of OTU100704
particularly enriched in T1B08 showed high affinity (100% identity) to mesophilic archaea
of Marine Group II (MGII) (estimated optimum growth temperature: To,.= 40.76
(Kimura et al., 2013)) isolated from the Juan de Fuca hydrothermal flume (Anderson et al.,
2013). The five OTUs affiliated with Nanoarchaeaeota are Ca. Woesearchaeota widely
distributed in the Challenger Deep sediments from 5,481 to 10,953 m. Similar sequences
were also obtained from saline water. The five OTUs in our results can split into two
groups, and thus there would be more potentially novel species in this phylum.
Actinobacteria, Cyanobacteria, Firmicutes and Chloroflexi as members of superphylum
Terrabacteria are almost ubiquitous in the sediments. The six OTUs of Chloroflexi in
ML phylogenetic tree were split into four major groups (Fig. 4B), in which OTU124775
seems to represent a novel taxon. Interestingly, OTU344095 was approximate to
Dehalococcoides spp., a known genus of strictly anaerobic bacteria with capacity of gaining
energy from the reduction of chlorinated compounds (Tas et al., 2010). Furthermore,
“Ca. Actinomarinales”, described as a new group of photoheterotrophic Actinobacteria
with ubiquitous presence in the pelagic layer of the oligotrophic ocean (Ghai et al., 2013),
was also found in sediment layers especially in surface layer of T1B08. Furthermore,
a proportion of 16S rRNA OTUs in the surface layer of T1B08 belonged to the
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Figure 4 Phylogenetic trees for representative reads of 16S rRNA OTUs. The bootstrap supports were
based on 1,000 replicates. The OTUs were most abundant in the microbial communities. Their repre-
sentative reads were collected to construct an ML tree ((A) for archaea; (B) and (C) for Terrabacteria and
FCB superphylum, respectively). Full-size K&] DOT: 10.7717/peerj.6961/fig-4
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picophytoplankton Synechococcus (3%) and Prochlorococcus (7%) in Cyanobacteria
phylum (Fig. 4B). The two Cyanobacteria genera and “Ca. Actinomarinales” originally
present in the euphotic layer were rarely detected in the other sediment samples. The
abundance of these euphotic bacteria in T1B08 surface layer was probably buried relicts
from depositional material (Kirkpatrick, Walsh ¢» D'Hondt, 2016) or might be derived
from contamination during the operation of the box-core sampler.

FCB (Fibrobacteres, Chlorobi, Bacteroidetes) is another superphylum mainly
containing Chlorobi, candidate phylum Marinimicrobia and Bacteroidetes (Bertagnolli
et al., 2017; Getz et al., 2018; Hug et al., 2016). Nowadays, more new taxa within the FCB
superphylum were recovered from sediment metagenomes (Castelle et al., 2013; Parks
et al., 2017; Rinke et al., 2013), indicating their prevalence in various environments on
Earth. In this study, OTU64116 was grouped with references of a newly defined phylum
Zixibacteria (Castelle et al., 2013). Some of the Marinimicrobia OTUs were grouped
with the sequences from previous studies, while the others represented novel groups that
might have evolved in the hadal sediments (Fig. 4C).

DISCUSSION

In this study, we revealed spatial variations of the microbial communities in the sediments
from the slopes and the trench-axis bottom of the Challenger Deep. Here, we also

figure out that hadal communities within the trench-axis are distinct from the hadal slopes
by their major taxa and the potentially unidentified OTUs, such as some groups in
Chloroflexi and candidate phylum Marinimicrobia. It is believed that the organic matter
accumulation rate in sub-sea floor sediment attenuated with the increase of water depth,
however, hadal trenches do not comply with this rule despite oligotrophic water
column above (Luo et al., 2017). Recently, benthic oxygen consumption rate has been
successfully in situ measured (Glud et al., 2013; Luo et al., 2018; Wenzhofer et al., 2016),
indicating that the seafloor oxygen consumption rates and the microbial carbon
turnover at the trench-axis were higher than those adjacent abyssal sites. Furthermore, the
funneling effect and erratic downslope sediment transport within the hadal trenches
lead to fresher and more labile organic matter concentrated at the trench-axis bottom
based on sedimentation rate that was higher than global average, together with total
organic carbon contents increasing with water depth (Glud et al., 2013; Turnewitsch et al.,
2014). Therefore, hadal trench-axis area is a natural vector to capture organic matter,
which ultimately contributes to the different microbial communities compared to those
in the slopes.

Recently, a bottom sediment core at depth of 10,300 m was investigated and geochemical
data were provided by Nunoura et al. (2018). Our measurements of nitrate and sulfate
in two cores (Table S4) from the trench-axis bottom were consistent with their results, but
the validity of the data was questioned majorly due to decreased hydrostatic pressure.
Therefore, the bottleneck of the geochemical work at such depths is to make sensors for
the in situ work (Glud et al., 2013; Luo et al., 2018). To date, only trench-axis bottom
oxygen consumption rate was in situ measurement at that hadal depth. In this study,
we did not conduct chemical and nutrient analyses on all the sediment samples, but the
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dominant species resembling currently known ones could provide some hints to the local
environments. Strikingly, the phylogenetic tree exhibited that most of the dominant
species were grouped with known species, suggesting that these species were widespread
in the trench sediments, and even in trench waters. The SAR202 bacteria as the most
abundant group in Chloroflexi were degraders of various detrital materials in the deep-sea
zones (Landry et al., 2017). We also revealed that potential novel group of Chloroflexi
dwelling in the Challenger Deep. The genomics analysis of the Chloroflexi in hadal
waters coincides with the previous studies on its recycling capacity (Landry et al., 2017;
Mehrshad et al., 2017). The groups from candidate phylum Marinimicrobia were also
abundant with their ability to recycle peptides and nitrogen compounds (Hawley et al.,
2017). Furthermore, trenches are the habitat to specific microbial communities with
specificities for pressure adaption such as the known piezophilic genera Colwellia,
Shewanella, Moritella and Psychromonas (Bartlett, 1992). In this study, these major
piezophilic groups of Gammaproteobacteria have already been found in our samples as
well as in other hadal surface sediments (DeLong, Franks ¢ Yayanos, 1997; Kato et al.,
1998; Nogi et al., 2004; Xu et al., 2003; Zhang et al., 2018), indicating its important
ecological role in hadal sediments for detrital carbon recycling. The dominant species

in Planctomycetes was “Ca. Scalindua”, which is capable to reduce nitrite with ammonia
in anoxic condition (Schmid et al., 2003; Woebken et al., 2008). Nitrosopumilus as an
alternative ammonia oxidizer is a typically aerobic since the ammonia oxidization
process in the archaea requires oxygen. A recent study showed a quick descent of O,
concentration in a surface sediment sample (10,817 m) (Glud et al., 2013). This explains
the negative correlation in relative abundance between Planctomycetes and
Thaumarchaeota in our samples.

In this study, a large number of the sediment OTUs were categorized as
Nanoarchaeaeota (Woesearchaeota) phylum. Previous researchers revealed that AR20
was one of the most widely distributed “Ca. Woesearchaeota” (Castelle et al., 2015).
With the first complete genome, AR20 genome was only 0.8 Mb with incomplete core
pathways, suggesting a potential symbiotic or parasitic lifestyle (Castelle et al., 2015).
Additionally, the “Ca. Woesearchaeota” found in the hadal sediments also preferred the
deeper layers (Nunoura et al., 2018), suggesting that oxygen was the determining factor
that affects its distribution. Moreover, Nanoarchaeaeota (Woesearchaeota) could split
into at least two groups, suggesting that there should be more unidentified groups in
the phylum and worthwhile to be further explored in the hadal zone. In some layers of
the T1B08, MGII was one of the dominant groups. As active hydrothermal submarine
volcanoes were widely distributed in the Mariana arc (Baker et al., 2008), it should not
be surprising to find mesophilic archaea of MGII in T1B08 as a result of hypothetical
hydrothermal process occurring in the sediments. Hence, there are more
microenvironments located on the northern slope for the formation of unique but sporadic
microbial communities.

For the potential unidentified groups detected in this study, their roles remain
unknown. Perhaps, future omics work may provide their taxonomic positions and
metabolic features. In addition, the hadal trenches have their own characteristics.
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For example, the Japan Trench situated in the Kuroshio Current province is relatively
eutrophic (Jamieson et al., 2009; Nakatsuka et al., 1997) and the South Sandwich Trench is
the only sub-zero hadal zone (Vanhove, Vermeeren ¢» Vanreusel, 2004). The hypothesis of
the microbial inhabitants as the markers to the sedimentary process and in situ
environments is perhaps not applicable to the other trenches.

The rarefaction curves and estimates of Chaol and Shannon were indicative of
insufficient sequencing depth for recovery of the microbial communities in our sediment
samples. To date, sequencing of 16S rRNA gene amplicons has been widely applied to study
microbial communities in various environmental conditions. Selection of proper primers is
one of the important factors for detection of a microbial community with high fidelity.

In this study, the 341F and 802R primers for V3-V4 region were evaluated to recover 86.4%
of Bacteria and 78.7% of Archaea in the Silva database although they have been considered
as the best universal primer pair (Lu ef al., 2015). However, it is worth noting that the
surveys based on amplification of 16S rRNA genes are always imperfect. Sampling time
and variable geographic differences may also affect the detection of certain taxa.

CONCLUSIONS

Our analysis first provides spatial distribution pattern of prokaryotes microbial
communities in sediment of the Challenger Deep. We also figure out the communities
within the trench-axis bottom are distinct from the hadal slopes, and special microbial
communities were presented at certain sites. Furthermore, some novel groups were
identified based on phylogenetic trees. Overall, our results deepen our understanding on
microbial ecosystem in the hadal zone.
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