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Abstract 
Deep learning has revolutionized the automatic processing of images. 
While deep convolutional neural networks have demonstrated 
astonishing segmentation results for many biological objects acquired 
with microscopy, this technology's good performance relies on large 
training datasets. In this paper, we present a strategy to minimize the 
amount of time spent in manually annotating images for 
segmentation. It involves using an efficient and open source 
annotation tool, the artificial increase of the training dataset with data 
augmentation, the creation of an artificial dataset with a conditional 
generative adversarial network and the combination of semantic and 
instance segmentations. We evaluate the impact of each of these 
approaches for the segmentation of nuclei in 2D widefield images of 
human precancerous polyp biopsies in order to define an optimal 
strategy.
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Introduction
Over the last decade, deep learning approaches have 
outperformed all existing methods for image segmentation1–4. 
Semantic segmentation, the estimation of a label at each pixel, 
and instance segmentation, the identification of individual 
objects, were successfully applied to spatially characterize 
biological entities in microscopic images5–8. However, these 
powerful approaches rely on large annotated datasets. While 
more and more datasets become publicly available9,10, annotated 
data for every combination of modalities, tissues and biological 
objects is far from completion. If the number of images to be 
segmented is low, a fully manual workflow might be the most 
time efficient option. Otherwise, procedures to efficiently 
build training datasets are required to use the full potential of  
deep learning-based segmentation at a single biological lab scale.

In this paper, we propose a strategy to minimize the amount 
of time dedicated to manually annotate images and investigate 
several approaches to maximize accuracy when only using 
one annotated image. We apply this strategy to segment nuclei 
stained with DAPI in widefield images of human colorectal 
adenomas (i.e. precancerous polyps) as follows. First, we take 
advantage of existing training datasets11,12 and massive data 
augmentation to obtain a preliminary segmentation. We then use 
an open source annotation software12 to manually correct this 
segmentation and consequently define the training dataset. Next, 
we simulate synthetic images using a conditional generative 
adversarial network (GAN)13 to increase the size of the training  
dataset. Finally, we combine U-Net14,15, a semantic segmentation  
approach, and Mask R-CNN16, an instance segmentation 
approach, to improve the nuclear segmentation accuracy.

Methods
Sample preparation
In this study, we used the Medical University of South  
Carolina (MUSC) pathology laboratory information system 

CoPath (Cerner Corporation, Kansas City, MO), to identify a 
convenience sample of colorectal adenomas excised from  
patients who underwent a sigmoidoscopy or colonoscopy 
with polypectomy between October 2012 and May 2016. For 
each patient, we obtained a formalin-fixed, paraffin-embedded  
(FFPE) tissue block and prepared one H&E and 5, 5-micron  
sections for immunofluorescence (IF) on FFPE tissue. Prior to 
the start of the IF procedures, all antibodies were optimized and 
reviewed by the study immunologist, the pathologist, the epi-
demiologist, and laboratory personnel to ensure agreement and 
proper staining. The MUSC Institutional Review Board has  
approved the research study (IRB # PRO-00007139).

Image acquisition
DAPI was used for nuclear counterstaining. Stained slides 
were mounted with ProLong™ Gold Antifade Reagent (Cat. # 
P36934, ThermoFisher) and imaged using the Akoya Vectra® 
Polaris™ Automated Imaging system (Akoya Biosciences, 
Marlborough, MA). Whole slide scans were done at 20X 
magnification and regions of interest where chosen randomly.

Deep learning code
U-Net, Mask R-CNN and pix2pix were coded in Python using 
the Python libraries numpy17, tensorflow18, keras19, scipy20 
and scikit-image21.

Training dataset
The training dataset consisted of three 1868 × 1400 images 
manually annotated with Annotater12. Only one image was 
used to train U-Net and Mask R-CNN as well as pix2pix  
(conditional GAN) for most of the study, in addition to publicly 
available datasets (image set BBBC039v1 available from the 
Broad Bioimage Benchmark Collection9 and a mouse intesti-
nal epithelium dataset12). The two other images were added to 
the training dataset in the last section to be compared with the 
combination of results obtained with U-Net and Mask R-CNN  
(see Figure 3a).

U-Net training
The annotated 1868 × 1400 image was divided into six 
622 × 700 images for training: five of these images were included 
in the training dataset while the last one defined the validation 
dataset. As U-Net is a semantic segmentation approach, three 
classes were defined to allow separating nuclei as proposed  
in 22: inner nuclei, nuclei contours and background. To facilitate 
nuclei separation, the nuclei contours between touching cells  
were dilated22. To limit over-fitting, the imaging field for  
images in the training dataset was set to 256 × 256 by randomly 
cropping the 622 × 700 input images. These cropped images  
were then normalized to obtain intensity values between 0 and 
1. A root mean square prop was used to estimate the param-
eters of the deep convolutional neural network by minimizing 
a weighted cross entropy loss to handle class imbalance for 100 
epochs without data augmentation and 25 epochs with data aug-
mentation. The weights associated with each class were defined 
from the training dataset as their inverse proportion. A data aug-
mentation to increase the training dataset by a factor of 100 was  
processed after normalization with the imgaug python library23 
and included flipping, rotation, pixel dropout, blurring, noise 
addition and contrast modifications. In Figure 2 and Figure 3,  
augmented simulated images were obtained by applying the same  

           Amendments from Version 1
In this new version, we have changed the first section by:

1.    Adding a comparison with a Stardist model trained on 
the 2018 Data Science Bowl, which is available on Fiji,

2.    Better explaining the way we trained U-Net and Mask 
R-CNN to obtain the results shown in Figure 1.

We also have toned down the benefit of using a conditional GAN 
to expand the size of the training dataset as it only improves 
marginally the segmentation accuracy.

Finally, we have completely rewritten the discussion to present 
observations made in the manuscript rather than a universal 
guideline. Mainly:

1.    The use of publicly available datasets and massive data 
augmentation are beneficial to build a training dataset 
and are now common practices in the field,

2.    The conditional GAN approach does not improve 
drastically the segmentation accuracy,

3.    Combining instance and semantic segmentations lead to 
a substantial increase in segmentation accuracy and has 
the potential to be widely adopted in the field.

Any further responses from the reviewers can be found at 
the end of the article

REVISED
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modifications with the imgaug python library to simulated 
images with pix2pix. When combining the annotated image 
for this study with simulated images and/or existing datasets, 
the number of augmented images was defined to be balanced  
between the different data.

U-Net post-processing
An ImageJ macro24,25 was used to convert the three classes 
obtained with U-Net to individual nuclei. More specifically, indi-
vidual nuclei were identified by thresholding the subtraction of 
the nuclei contours component from the inner nuclei compo-
nent with a threshold equal to 0.35. A 3D Voronoi tessellation26 
was then applied to assign each pixel to a nucleus. The object 
component was defined as all pixels whose background  
component was inferior to 0.95. This object component was then 
multiplied by the Voronoi tessellation to obtain individual 
nuclei. The Voronoi tessellation implies that a 1-pixel width area  
between nuclei is not assigned to any nucleus. To address this 
problem, the location of these pixels is obtained by subtract-
ing the binary thresholding of the individual nuclei from the 
object component. The individual nuclei are then dilated27 and 
multiplied to this subtraction to be added to the individual 
nuclei. Finally, nuclei with less than 35 pixels were removed.

Mask R-CNN
The annotated 1868 × 1400 image was divided into thirty-five 
266 × 280 images for training: thirty of these images were 
included in the training dataset while the last five images defined 
the validation dataset. Version 2.1 of Mask R-CNN16 was 
used in this study. The backbone network was defined as the 
Resnet-101 deep convolutional neural network28. We used 
the code in 5 to define the only class in this study, i.e. the 
nuclei. A data augmentation to increase the training dataset by 
a factor of 100 was processed before normalization with the 
imgaug python library23 and included resizing, cropping, flip-
ping, rotation, shearing, pixel dropout, blurring, sharpness and 
brightness modifications, noise addition and contrast modi-
fications. Transfer learning with fine-tuning from a network 
trained on the coco dataset29 was also applied. In the first epoch, 
only the region proposal network, the classifier and mask heads 
were trained. The whole network was then trained for the next 
three epochs. In Figure 2 and Figure 3, augmented simulated 
images were obtained by applying the same modifications with 
the imgaug python library to simulated images with pix2pix.  
When combining the annotated image for this study with  
simulated images and/or existing datasets, the number of 
augmented images was defined to be balanced between the  
different data. The maximum image size used for processing  
Mask R-CNN was larger than 256 as resizing and cropping 
were applied for data augmentation and set to 512. This param-
eter was defined as 1024 when other existing datasets were  
included for training as magnification in these images is higher.

Evaluation
One 1868 × 1400 and one 934 × 1400 manually annotated 
images were used for evaluation. As proposed in 11, we used 
the F1 score with respect to the Intersection over Union (IoU) 
to evaluate the different nuclei segmentation approaches. 
More formally, let O
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With a threshold t = 0.05, this metric gives the accuracy of a 
method to identify the correct number of nuclei, while with 
thresholds in the range 0.05 − 0.9, it evaluates the localization  
accuracy of the identified nuclear contours.

Conditional GAN
The annotated 1868 × 1400 image was divided into thirty-
five 256 × 256 images for training. As defined in 13, U-Net14 
was used for the generator and a convolutional PatchGAN  
classifier was used for the discriminator. Once trained, nuclei 
masks had to be generated to simulate images. Distribu-
tions for the number of nuclei per image and the size of 
nuclei were defined from the training dataset. The number of  
nuclei per image was then modeled as a Gaussian distri-
bution while the size of nuclei was modeled by a Gumbel  

Page 4 of 18

F1000Research 2022, 10:256 Last updated: 24 JAN 2022



distribution to reflect the heavy tail distribution observed in the  
training dataset. Nuclei masks were then defined as ellipses 
randomly generated with these distributions with random ori-
entation and a ratio between the two axes defined according 
to a Gaussian distribution of average s/π and standard devia-
tion of 0.2s/π, where s is the area of the ellipse. 1000 256 × 256  
nuclei images were simulated by considering the generated  
ellipses as nuclei masks.

Combination of instance and semantic segmentations
The combination of results obtained with instance and seman-
tic segmentations was initialized as the nuclei segmented 
with Mask R-CNN. To prevent from hallucinations, nuclei 
identified with Mask R-CNN for which the area overlapping 
with nuclei obtained with U-Net was inferior to 20% were 
discarded. Then, nuclei identified with U-Net whose area 
overlapping with nuclei obtained with Mask R-CNN was infe-
rior to 33% were added as new nuclei to the final segmentation. 
Finally, nuclei with an area inferior to 35 pixels were 
discarded.

Results
Deep learning-based instance segmentation with 
existing datasets and massive data augmentation is 
used to initialize the training dataset
A training dataset is required to train a deep learning method 
for object segmentation. While new approaches emerge for this 
task such as interactive machine learning30, users most often 
start with manually annotating objects of interest with existing  
annotation tools31,32. As shown in Figure 1a, this task is  
particularly challenging in our case due to the wide range of 
morphologies and high density of nuclei in polyps. We use 
the ImageJ plugin Annotater12 to efficiently annotate nuclei, a 
task that takes approximately 30 hours for the image shown in  
Figure 1a. To avoid a fully manual annotation and save time, 
it is possible to use the same plugin to correct a nuclei seg-
mentation obtained with an existing method. The watershed  
method33, probably the most used method for nuclei segmen-
tation in fluorescence microscopy images, correctly identifies 
a high number of nuclei (high F1 score for a low IoU threshold 
in Figure 1). Unfortunately, under- and over-segmentations, a 
well-known limitation of this approach, lead to a poor segmen-
tation localization (rapidly decreasing F1 score with increasing  
IoU thresholds in Figure 1). Alternatively, pretrained deep learn-
ing models for nuclei segmentation are available. Stardist7, one 
of the most popular approaches in microscopy, can be proc-
essed as a Fiji plugin25 with a model trained on the 2018 Data  
Science Bowl10. While the number of nuclei correctly identi-
fied is lower than with the watershed method (lower F1 score 
for low IoU thresholds in Figure 1b–c), their localization accu-
racy is much higher (higher F1 score for high IoU thresholds in  
Figure 1b–c). Another possibility is to train deep learn-
ing approaches with existing training datasets. We propose to 
train a U-Net model and a Mask R-CNN model with a high  
throughput chemical screen on U2OS cells dataset (CC) (image 
set BBBC039v1 available from the Broad Bioimage Benchmark 
Collection9) and a widefield mouse intestinal epithelium dataset 
(MIE)12. These models are then used to segment the image shown 
in Figure 1a. While U-Net demonstrates a poor performance  
(Figure 1b), Mask RCNN clearly surpasses the watershed 

approach and the pretrained Stardist model (Figure 1c). When 
compared to the latter, the good performance of Mask R-CNN 
is explained by the fact that the MIE dataset includes epithelial  
nuclei, even though they come from mice. Correcting this seg-
mentation with Annotater takes about 15–20 hours, which is 
clearly faster than an annotation from scratch. Training the  
Mask R-CNN model with the CC and MIE datasets takes 
about 12 hours but has the great advantage that it does not 
require human interaction. For both UNet and Mask R-CNN, 
a massive data augmentation (100 times) clearly improves the  
performance.

Increasing the training dataset by using a conditional 
GAN improves nuclear segmentation accuracy
When only considering the annotated image in Figure 1a in 
the training dataset, U-Net leads to higher segmentation accu-
racy than Mask R-CNN (Figure 2a-b). To increase the training  
dataset, we use the same annotated image to train a conditional 
Generative Adversarial Network (GAN)13 and simulate images 
showing nuclei from masks defined as random ellipses gener-
ated with the distributions of nuclei size and nuclei number 
observed in the training dataset (see Figure 2c and Methods). 
Only using simulated images lead to a lower accuracy for both 
deep learning approaches, even though applying mathemati-
cal operations to these synthetic images (augmented simulated 
training dataset, see Methods) improves the segmentation accu-
racy. However, pooling together augmented simulated images 
and the annotated image from Figure 1a slightly improves U-Net  
performance and distinctly increases the number of accurately 
identified nuclei with Mask R-CNN while decreasing the seg-
mentation localization precision. Finally, adding existing  
datasets clearly leads to the optimal results for Mask R-CNN 
while degrading the accuracy for U-Net, which is consistent  
with the inability for this approach to generalize nuclear  
segmentation for different data as shown in Figure 1b. Overall,  
U-Net marginally benefits from using simulated images (red 
curve versus black curve in Figure 1a) while the main gain for  
Mask R-CNN comes from the use of CC/MIE datasets and  
data augmentation (orange curve versus red and black curves in  
Figure 1b).

Combining semantic and instance segmentations 
improves nuclear segmentation accuracy
Nuclei segmented with Mask R-CNN show a higher locali-
zation precision than those obtained with U-Net as shown in 
Figure 1a-b. However, nuclei that are harder to delineate are 
missed with Mask R-CNN while U-Net accurately identifies 
pixels that belong to nuclei, even though the separation between 
individual nuclei might not be precise. In order to get the best 
of both worlds, we propose to combine the results obtained 
with U-Net trained with one annotated image with data  
augmentation and augmented simulated images, and the results 
obtained with Mask R-CNN trained with one annotated image 
with data augmentation, augmented simulated images and exist-
ing datasets with data augmentation (see Methods). As shown 
in Figure 3, these results demonstrate a higher F1 score for 
any IoU threshold than obtained with U-Net or Mask R-CNN 
trained with 3 times more annotated images. The corresponding 
segmented nuclei are shown in Figure 4.
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Figure 1. Manual annotation and evaluation of deep learning-based segmentation with existing training datasets. a Widefield 
acquisition of a human polyp biopsy stained with DAPI. Manually annotated nuclei are overlaid as red circles. Zoomed-in regions are 
displayed on the right side with corresponding squared colors. Scale bar = 100µm. b–c F1 score for range of IoU thresholds obtained with 
the watershed method, with Stardist, with U-Net b and Mask R-CNN c approaches trained with a high-throughput chemical screen on U2OS 
cells dataset (CC) or/and a widefield mouse intestinal epithelium dataset (MIE), with and without data augmentation (DA). Lines correspond 
to average F1 score over the two tested images while the shaded areas represent the standard deviation.
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Figure  2.  Evaluation  of  deep  learning-based  segmentation  when  using  a  conditional  Generative  Adversarial  Network  to 
increase the size of the training dataset. a First row: masks generated as ellipses (see Methods) and represented with unique colors. 
Second row: images simulated from masks shown in first row with a conditional Generative Adversarial Network (GAN). b–c F1 score for 
range of IoU thresholds obtained with U-Net b and Mask R-CNN c  trained with 1 annotated image with data augmentation (DA), 1000 
simulated images, 1000 augmented simulated images, 1 annotated image with DA combined with 1000 augmented simulated images and 
1 annotated image with DA combined with 1000 augmented simulated images as well as a high-throughput chemical screen on U2OS cells 
dataset (CC) and a widefield mouse intestinal epithelium dataset (MIE). Lines correspond to average F1 score over the two tested images 
while the shaded areas represent the standard deviation.
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Figure  3.  Evaluation  of  nuclear  segmentation  when  combining  U-Net  and  Mask  R-CNN.  F1 score for range of IoU thresholds  
obtained with U-Net trained with 1 and 3 annotated images with data augmentation (DA), Mask R-CNN trained with 1 and 3 annotated  
images with DA, and the combination of results obtained with U-Net trained with 1 annotated image with DA and augmented  
simulated images, and the results obtained with Mask R-CNN trained with 1 annotated image with DA, augmented simulated images 
and existing datasets with DA. Lines correspond to average F1 score over the two tested images while the shaded areas represent the  
standard deviation.
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Data availability
The five annotated images are available at https://github.com/ 
tpecot/DeepLearningBasedSegmentationForBiologists/tree/main/
Data/AnnotatedNuclei. This project contains the following data:

•    Polyp12_[10837,39273]_component_data.tiff: image used 
for training U-Net and Mask R-CNN in all figures 
and for training pix2pix in Figure 2

•    Polyp40_[13694,34105]_component_data.tiff and Polyp42_
[12011,37598]_component_data.tiff: two images used for 
training U-Net and Mask R-CNN in Figure 3

•    Polyp12_[12699,39273]_component_data.tiff and Polyp42_
[12942,36900]_component_data.tiff: two images used for 
evaluation in all figures

The images generated with pix2pix and used for training U-Net 
and Mask R-CNN in Figure 2–Figure 3 are available at https:// 
github.com/tpecot/NucleiSimulationWithConditionalGAN/tree/ 
main/datasets/Nuclei_polyps_1image.

Software availability
The code with the parameters used to train and process all 
experiments presented in this manuscript with U-Net and  

Figure  4.  Nuclear  segmentation  example  when  combining  U-Net  and  Mask  R-CNN.  Segmented nuclei obtained by combining 
U-Net and Mask R-CNN overlaid as red circles over the processed image. Zoomed-in regions are displayed on the right side with  
corresponding squared colors. Scale bar = 100µm.

Discussion
This study explores several strategies to minimize the amount 
of manually annotated data required to successfully train a 
deep learning model for instance segmentation. As already  
established in the field, the use of existing training datasets, even 
though modalities and/or tissues differ, allows to train instance  
segmentation models and obtain results on targeted data that 
can be manually corrected to initialize a new training dataset. 
The use of massive data augmentation is another well known 
approach to drastically increase the segmentation accuracy.  
While the use of conditional GANs to expand the size of the 
training dataset seems promising, the gain in accuracy shown 
in this study is not very convincing. The simulation pipeline  
used to generate the masks might have been too simplistic. 
In particular, the variety of nuclei shapes could be enriched.  
Finally, combining semantic and instance segmentation results 
leads to a substantial increase in segmentation accuracy. While 
unusual in the field, we believe that this method has the poten-
tial to become more common in the community. Combining 
these strategies enables to remarkably reduce the amount of data 
to be manually annotated, waiting for methods that offer the 
promise to eliminate this time consuming task, such as self- and  
partially supervised methods, currently in development.
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Mask R-CNN is available at https://github.com/tpecot/ 
DeepLearningBasedSegmentationForBiologists/tree/main/Codes.

Archived code as at time of publication: https://doi.org/10.5281/
zenodo.460879534

License: GPL3

The code with the parameters used to train and generate 
images with pix2pix is available at https://github.com/tpecot/
NucleiSimulationWithConditionalGAN.

Archived code as at time of publication: https://doi.org/ 
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License: GPL3

The ImageJ macro used to convert the output classes obtained 
with U-Net to individual nuclei is available at https://github.com/
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License: GPL3
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I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Version 1
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© 2021 Laine R. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Romain F Laine   
MRC Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK 

Pecot et al present a nice set of ideas about how to improve the pipeline of nuclei segmentation. 
The premise of this work is that it is time consuming to generate good quality annotation for DL 
training. The authors are absolutely right here, it takes time and can be discouraging. 
 
The authors test a couple of interesting approaches to help with that:

Use of large openly accessible dataset to create pretrained dataset, as is commonly done in 
the field. 
 

1. 

Use of data augmentation to improve generalization of the model, also commonly done in 
the field already. 
 

2. 

The use of a generator model (here pix2pix as a conditional GAN), to expand the size f the 
training dataset. 
 

3. 

Combine output of 2 common segmentation networks (U-Net and MaskRCNN) to improve 
accuracy.

4. 

The points 1 and 2 are already well established in the field and will be systematically done 
nowadays, with almost any DL networks when data is available. Segmentation dataset are 
available as the authors highlight. So these aspects are sanity checks here and not novel 
implementations. However, it is reassuring to see that augmentation and use of pretrained 
models are helpful here as well. 
 
The more interesting aspects of this work lie in the use of GAN for expanding the size of the 
training dataset from an annotated image and the combination of output. Although the use of 
GAN makes sense for this application, the gains from such approach are clearly quite marginal as 
can be seen on Figure 2a and 2b comparing the black and red lines, while the main gains are 
again from the use of additional dataset and augmentation as observed on Figure 1. It's an 
important observation but maybe not as essential to the pipeline as is described in the manuscript 
as it stands. I suggest toning down the importance of this and clearly highlighting that the gains 
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are in fact low here.  
Maybe the authors could further discuss why the gains are only small here: maybe the simulation 
pipeline from the masks to generate the training dataset of pix2pix is too simplistic for instance, 
wider range of shapes, background lights, heterogeneity of intensities or patterns on the nuclei 
etc. 
 
On the contrary it's quite clear that the combination of U-Net and MaskRCNN output are beneficial 
to the overall performance of the method and that's nicely shown here. I think that combining DL 
model outputs is currently underused and this is a nice additional demonstration of this here. 
 
As additional comments, I would highlight a couple of additional work that are missing from the 
context described in this paper:

Kaibu (Wei Ouyang et al F1000, https://f1000research.com/articles/10-142) is an interactive 
tool for simultaneous training of segmentation models and segmentation, this circumvents 
a range of issues mentioned here, it should be mentioned. 
 

○

StarDist (https://github.com/stardist/stardist) from Uwe Schmidt and Martin Weigert, is an 
excellent tool for nuclei segmentation and is not included here. I suggest that the authors 
compare their IoU curves to those obtained from the pre-trained models provided by the 
method (even as Fiji plugin). This will give the readers a baseline on which to compare the 
approaches described here, which still require an investment in time to train multiple 
models and annotations 
 

○

The cost/benefit analysis of manual annotation vs automated (DL based or not) should be 
mentioned, it's not always worth doing DL for that, it often depends on the size of the 
dataset to be segmented. 
 

○

Although having an annotator GUI and some tools to get some improvement on 
segmentation performance are important today, a large efforts is now put into approaches 
that are self-supervised or partially supervised, which would circumvent the issues of 
annotation time altogether. These are not currently available to the wide bioimaging 
community but should be mentioned in conclusion, looking at the future of segmentation 
pipelines.

○

Overall, I think that it is a nice piece of work describing the performance of a range of approaches 
in a systematic and clear manner, which are useful to the bioimaging community. However, they 
are presented as guidelines to building a segmentation pipeline and I would not think that as 
such, it describes the general thoughts about the matter in the community. I'd consider rewording 
the conclusions focusing on the observations of the tests the authors made rather than 
presenting it as a universal guideline. 
 
References 
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learning and ImJoy. F1000Research. 2021; 10. Publisher Full Text  
 
Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
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Yes

Are sufficient details provided to allow replication of the method development and its use 
by others?
Yes

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: I am a quantitative imaging specialist, focused on fluorescence microscopy, 
super-resolution, and quantitative analysis method development, including deep learning.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 17 Dec 2021
Thierry Pecot, Medical University of South Carolina, Charleston, USA 

We thank Romain Laine for his enlightening observations. 
To answer Dr Laine remarks, we changed the manuscript accordingly:

We added a sentence about the cost/benefit analysis of manual annotation vs 
automated in the introduction. 
 

○

We mentioned the use of interactive machine learning and cited Kaibu (Wei Ouyang 
et al F1000, https://f1000research.com/articles/10-142) at the beginning of the first 
section. 
 

○

We added a comparison to Stardist trained with the 2018 Science Bowl (Fiji plugin) in 
Fig.1. We then compared its performance to the watershed approach, to U-Net and to 
Mask R-CNN trained with the CC/MIE datasets in the first section. 
 

○

We completely changed the discussion, focusing on the observations made in the 
manuscript. More particularly, we acknowledge that the use of publicly available 
datasets and massive data augmentation are beneficial to build a training dataset 
and are now common practices in the field. We also underline the disappointing 
accuracy obtained when using pix2pix (we also changed the end of section 2 
accordingly). We emphasize the interest of combining instance and semantic 
segmentations. We finally introduce self- and partially supervised methods that offer 

○
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the promise to eliminate manual annotation.
 

Competing Interests: No competing interests were disclosed.

Reviewer Report 03 August 2021
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© 2021 Lucas A. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Alice Lucas   
Broad Institute, Cambridge, MA, USA 

The authors propose multiple strategies to improve segmentation results given a new dataset. 
 
Instead of manually annotating a training image from scratch, the authors recommend to 
leverage knowledge learned by networks pre-trained on other larger datasets. Therefore, they 
propose to first train a model on large existing datasets (that differ from the final dataset of 
interest). The trained model is then used to annotate the desired training image, and these 
predictions are then manually corrected using Annotater. This allows the authors to manually 
annotate for 15-20 hours, compared with 30 hours when annotating the image from scratch. 
 
A second solution that they implement in order to improve their final segmentation results is to (1) 
train a conditional GAN on their annotated image and (2) use the cGAN to predict additional 
synthesized segmentation masks. The UNet and Mask-RCNN can then use this additional data for 
training. 
 
Finally, to further improve their results, they combine results obtained from their trained UNet 
and their trained Mask-RCNN to obtain a final instance segmentation map. More specifically, the 
semantic segmentations from UNet are post-processed to obtain instance segmentation masks, 
and merged (following a specific protocol) with those predicted by the trained Mask-RCNN. 
 
A few comments: 

Clarity regarding the purposes of the different training sets used could be improved. At first 
it was not clear to me how the CC/MIE datasets related to the final training dataset of 
interest (the 1868 x 1400 image). It could be made a bit more explicit that (1) the CC / MIE 
data is used to pre-train a neural network, (2) this neural network is then applied on the 
image of interest to provide the annotations, and (3) final training data is obtained by 
correcting these predictions. (4) On this final training data will be trained UNet and Mask-
RCNN. 
 

○

The text “Only one image was used to train […]” is a bit of a misleading statement. In the ○
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end, when looking at the whole pipeline, a very large dataset of annotated images was used 
to get to these results. 
 
It would be interesting to know how many hours it took to pre-train Mask-RCNN and UNet 
on the large datasets, as well as for training the conditional GAN. This is helpful especially 
for better comparing the 30 hours of manual annotation from scratch vs. the 15-20 hours 
when using these strategies.

○

 
Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use 
by others?
Yes

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Deep Learning, Computer Vision, Image and Video Processing

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 17 Dec 2021
Thierry Pecot, Medical University of South Carolina, Charleston, USA 

We thank Alice Lucas for her insightful remarks and apologize for the delay between her 
review and our response, we were waiting for a second reviewer. 
 
To answer Dr Lucas comments, we changed the manuscript accordingly:

We rephrased the first section to better explain what was done. More specifically, U-
Net and Mask R-CNN are trained with CC/MIE datasets along with a massive data 
augmentation. The trained models are then used to segment the image shown in 
Fig.1 a. The accuracy obtained with these models is compared to the watershed 
approach and to a Stardist model trained with the 2018 Data Science Bowl. As Mask 

○
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R-CNN demonstrates the most accurate results, the segmented nuclei obtained with 
this approach are then manually corrected to initialize a training dataset. 
 
To clarify the misleading text “Only one image was used to train […]” , we changed the 
Training dataset section in Methods and added that publicly available datasets were 
used in addition to the manually annotated image of human precancerous polyp 
biopsy. 
 

○

We added a sentence about the time taken to train a Mask R-CNN model on the 
CC/MIE datasets at the end of the first section to better compare the 30 hours of 
manual annotation from scratch vs. the 15-20 hours when using this strategy.

○
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