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Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum) are Gram-negative anaerobic bacteria
possessing several virulence factors that make them potential pathogens associated with periodontal disease. Periodontal
diseases are chronic inflammatory diseases of the oral cavity, including gingivitis and periodontitis. Periodontitis can lead to
tooth loss and is considered one of the most prevalent diseases worldwide. P. gingivalis and F. nucleatum possess virulence
factors that allow them to survive in hostile environments by selectively modulating the host’s immune-inflammatory response,
thereby creating major challenges to host cell survival. Studies have demonstrated that bacterial infection and the host immune
responses are involved in the induction of periodontitis. The NLRP3 inflammasome and its effector molecules (IL-1β and
caspase-1) play roles in the development of periodontitis. We and others have reported that the purinergic P2X7 receptor
plays a role in the modulation of periodontal disease and intracellular pathogen control. Caspase-4/5 (in humans) and
caspase-11 (in mice) are important effectors for combating bacterial pathogens via mediation of cell death and IL-1β release.
The exact molecular events of the host’s response to these bacteria are not fully understood. Here, we review innate and
adaptive immune responses induced by P. gingivalis and F. nucleatum infections and discuss the possibility of manipulations of
the immune response as therapeutic strategies. Given the global burden of periodontitis, it is important to develop therapeutic
targets for the prophylaxis of periodontopathogen infections.

1. Introduction

Oral bacteria in dental biofilms contribute to the initiation
and progression of periodontal diseases (PD) via exacerbated
host inflammatory responses to these bacteria [1, 2]. PD
are chronic inflammatory diseases of the periodontium
(supporting structures around the teeth: gingiva, periodontal
ligaments, and alveolar bone [3]), including gingivitis and
periodontitis. Gingivitis is the initial reversible inflammatory
lesion in the soft tissues surrounding the teeth, and periodon-
titis results from a combination of factors that leads to
periodontium destruction, often causing irreversible bone
resorption and tooth loss [3]. It affects nearly half of the

United States population [4], and severe periodontitis is the
6th most prevalent disease worldwide [5]. Periodontitis has
a high impact on public health because of its long and expen-
sive treatment. Furthermore, periodontitis is associated with
several systemic diseases, including diabetes mellitus, cardio-
vascular diseases, and atherosclerosis, as we and others
reviewed elsewhere [6, 7].

In healthy individuals, there is an established homeosta-
sis between immunity and oral cavity microorganisms that
do not cause diseases [8]. Oral epithelial and immune cells
contribute directly and indirectly to maintain this equilib-
rium [9]. The loss of homeostasis due to dental plaque forma-
tion along with genetic, hormonal, and host behavioral
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factors make the individual susceptible to PD. Furthermore,
the absence or decrease of an effective innate immune
response by some cells stimulated by P. gingivalis LPS can
greatly increase the proliferation of various bacterial species
with the formation of biofilms at the root of the tooth, leading
to exacerbated inflammation in the tissues [10].

P. gingivalis, a nonmotile, non-spore-forming Gram-
negative bacterium, has the ability to induce dysbiosis in
the oral microbiota (an imbalance among microbial species)
[3, 11, 12]. F. nucleatum is one of the most common species
in the human gingival sulcus; its prevalence increases with
the severity of PD and the progression of inflammation
[13, 14]. F. nucleatum serves as a true bridge, connecting
initial and later bacterial colonizers, thereby favoring the
formation of dental plaques [15]. When F. nucleatum is
not present, the number of late colonizers is significantly
lower [15].

Conventional clinical treatment for periodontitis consists
initially of mechanical bacterial removal (scaling and root
planning), thereby reducing the contact of bacterial agents
with inflammatory and noninflammatory cells in the oral
cavity. However, this procedure may not be sufficient to
generate clinical improvement. In this context, several sig-
naling pathways are involved in the progression of PD;
therefore, therapies that modulate these pathways may
help prevent the development of PD and consequently
avoid bone loss [16].

The exact molecular host response events against P.
gingivalis and F. nucleatum are not fully understood; nev-
ertheless, understanding of these mechanisms is essential
for the identification of therapeutic targets aiming to prevent
and treat periodontitis. In this context, there are some immu-
nological pathways that have been demonstrated to be
involved in the development of periodontitis and in infec-
tions with periodontopathogens. In this respect, we and
others previously demonstrated the role of the NLRP3
inflammasome in the development of periodontitis [17, 18].
Furthermore, it is known that purinergic signaling via the
P2X7 receptor is one of the important pathways for the acti-
vation of the NLRP3 inflammasome and control of intracel-
lular infections, including P. gingivalis infections [19, 20].
The activation of this inflammasome leads to caspase-1 mat-
uration, in turn leading to cleavage of the inactive form of
interleukin- (IL-) 1β (pro-IL-1β) to its active form (IL-1β)
[21]. Cytokine production is central to the host inflammatory
response during PD and infection [20]. Other caspases
involved in inflammation, although less studied and consid-
ered involved in the noncanonical inflammasome, are cas-
pase-4, caspase-5, and caspase-11 that are important factors
for counteracting Gram-negative bacterial pathogens via
induction of cell death and IL-1 release [22, 23].

This review is aimed at illuminating advances in the
study of mechanisms of innate and adaptive immune
responses after P. gingivalis and F. nucleatum interactions
with the host. We discuss the role of TLRs, the inflamma-
some, purinergic signaling, cytokines, and chemokines, as
well as the innate and adaptive immune cells involved in host
resistance to infections by these bacteria. Our review high-
lights the importance of understanding signaling pathways

induced by P. gingivalis and F. nucleatum that could
potentially serve as effective strategies for treating patients
with PD.

2. Porphyromonas gingivalis and
Fusobacterium nucleatum:
Periodontopathogenic Pathogens

P. gingivalis is a well-adapted colonizing opportunistic path-
ogen with the ability to invade gingival epithelial cells [24],
periodontal ligament fibroblasts [1], osteoblasts [25], and
immune cells [26]. It requires anaerobic conditions for
growth in vitro, as well as hemin and vitamin K in its nutrient
medium. It appears as black-pigmented colonies in blood
agar medium attributed to agglomeration of heme groups
on its cell membranes [27, 28]. P. gingivalis obtains energy
through the fermentation of amino acids, thereby allowing
survival in periodontal pockets, where there are low sugar
levels [11]. P. gingivalis is considered an “inflammo-philic”
bacterium (from the Greek suffix -philic meaning “attracted
to” or “loving”) [29]; it is thought that infections with this
organism induce the production of proinflammatory cyto-
kines that damage the host tissue, promoting bacterial
survival [30, 31]. Therefore, the conditions of the inflamed
tissue favors the nutritional needs of the dysbiotic commu-
nity, caused by the release of products resulting from tissue
destruction, including peptides and components containing
heme groups [1, 19, 32]. P. gingivalis is normally found in
10%–25% of healthy subjects and 79%–90% of subjects with
periodontitis [33, 34]. There is a positive correlation between
the depth of the periodontal pocket and the presence of P.
gingivalis [11].

P. gingivalis is considered the keystone pathogen of PD
because of its ability to modify the normal oral microbiota
composition to one with greater pathogenicity that inten-
sively accelerates bone loss [3, 35]. This periodontopathogen
is considered a master of immune system subversion that
exploits several sabotage tactics allowing it to evade, weaken,
or deceive the host’s immune system [36]. P. gingivalis
possesses several virulence factors, including proteolytic
enzymes (e.g., gingipains), capsule, lipopolysaccharide
(LPS), fimbriae, nucleoside diphosphate kinase (NDK),
ceramide, and outer membrane vesicles (OMVs) [37] (sum-
marized in Table 1).

In a classic study, Socransky et al. analyzed over 13,000
periodontitis subgingival dental plaque samples and grouped
the species into bacterial “complexes,” according to the
relationship between the different species. The “red complex”
is constituted by P. gingivalis, Treponema denticola, and
Tannerella forsythia, presenting greater pathogenic poten-
tial, and being related to clinical measures of periodontal
disease such as pocket depth and bleeding on probing. F.
nucleatum is part of the “orange complex,” which is a core
group that supports colonization of the “red complex”
bacteria and is important for the progression of PD [38].

F. nucleatum is a human pathogen that is filamentous,
Gram-negative, non-spore-forming, nonmotile, and anaero-
bic [13]. It is a heterogeneous species that belongs to the
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family Fusobacteriaceae and includes five proposed subspe-
cies (ss): ss animalis, ss fusiforme, ss nucleatum, ss polymor-
phum, and ss vincentii [13, 39–41]. Despite the fact that F.
nucleatum has been found in various tissues, the most
common anatomical site in humans is the oral cavity
[13]. As for P. gingivalis, this bacterium also presents vir-
ulence factors that make it a potential opportunistic path-
ogen in periodontal infections. F. nucleatum possesses
several virulence factors, including adhesins (facilitating
adhesion and invasion to various cell types, leading to col-
onization, dissemination, and triggering host immune
responses) [13], endotoxins (e.g., LPS) [42, 43], and secre-

tion of serine proteases (responsible for suppressing the
nutritional needs of other oral microorganisms) (summa-
rized in Table 2) [44].

There is evidence that synergistic and antagonistic
interactions among various microorganisms influence the
pathogenesis of PD [45, 46]. P. gingivalis suppresses
apoptosis in gingival epithelial cells by activating the
phosphatidylinositol-3-kinase (PI3K) signaling pathway,
thereby favoring its own survival as well as intracellular
survival of F. nucleatum, as observed in a coinfection sub-
cutaneous chamber model (F. nucleatum and P. gingivalis)
[29]. The interaction between these bacterial species may

Table 1: Virulence factors of Porphyromonas gingivalis.

Periodontopathogenic
pathogen

Virulence factors Function Reference

Porphyromonas
gingivalis

Gingipains

(i) Activates host MMPs; degrades cell-cell components, complement
system proteins, cytokines, immunoglobulins, integrins, and
collagen; alters cell signal transduction and cellular function

(ii) Cleaves T-cell receptors, including CD2, CD4, and CD8 and
interferes with the cell-mediated immune response. Cleaves
CD14, an endotoxin receptor, resulting in hyporresponsiveness
to LPS

(iii) Stimulates the expression of protease-activated receptors on
neutrophils, gingival epithelial cells, gingival fibroblasts, and T
cells, releasing proinflammatory cytokines, to increase vascular
permeability and to cause bleeding at the periodontal site and
influx of polymorphonuclear leukocytes and degrade fibrinogen

[11, 56–61]

Capsule (CPS or K-antigen)

(i) Various serotypes of CPS differentially stimulate the release of
chemokines by macrophages as well as cytokines by dendritic cells

(ii) Encapsulated strains of P. gingivalis can also generate greater
resistance to phagocytosis by polymorphonuclear leukocytes and
differential capacity to adhere to the gingival epithelium

[62–64]

Fimbriae

(i) Favor adherence to saliva proteins, to the extracellular matrix,
to eukaryotic cells, and to other bacteria, contributing to the
biofilm generation

(ii) Type I fimbriae act on the capacity for invasion and colonization.
Type II fimbriae shows greater proinflammatory efficiency

[65–67]

Lipopolysaccharide (LPS) (i) Stimulates proinflammatory responses and bone resorption [68, 69]

Outer membrane
vesicles (OMVs)

(i) The purified OMVs of P. gingivalis activates the production of
proinflammatory cytokines, signaling of inflammasome, and
pyroptosis in macrophages

[70]

Nucleoside diphosphate
kinase (NDK)

(i) Responsible for modulating purinergic signaling and inhibiting
proapoptotic actions of primary oral epithelial cells

[71]

Phosphoethanolamine
dihydroceramide (PEDHC)

and phosphoglycerol
dihydroceramide (PGDHC)

(i) Promotes IL-1β-mediated release of prostaglandin E2 (PGE2) in
primary cultures of gingival fibroblasts; induces apoptosis in
chondrocytes and gingival fibroblasts; promotes osteoclastogenesis
mediated by receptor activator of nuclear factor kappa-Β ligand
(RANKL) via interaction with Myh9 (nonmuscle myosin II-A)
independently of Toll-like receptor 2/4 (TLR2/4)

[72]

Serine phosphatase

(i) Involved in neutrophil subversion by causing dephosphorylation
of the serine S536 of the p65 subunit of NF-κB and prevents
translocation of NF-κB to the nucleus, consequently inhibiting
IL-8 production

[73–75]

Arg-X: arginine-specific; CPS: capsule; IgG: immunoglobulin G; LPS: lipopolysaccharide; Lys-X: lysine-specific; MMPs: metalloproteinases; Myh9: nonmuscle
myosin II-A; NDK: nucleoside diphosphate kinase; NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells; OMVs: outer membrane vesicles;
PAMPs: molecular pattern associated with the pathogen; PEDHC: phosphoethanolamine dihydroceramide; PGDHC: phosphoglycerol dihydroceramide;
PGE2: prostaglandin E2; p65: also known as Rel A, nuclear factor NF-kappa-B p65 subunit; RANKL: receptor activator of nuclear factor kappa-Β ligand;
TLR2/4: Toll-like receptor 2/4.
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influence the mechanism of invasion and adhesion of
these and other periodontal bacteria in human gingival epi-
thelial cells [2]. F. nucleatum was shown to be capable of
increasing the invasion of P. gingivalis in gingival epithelial
cells [2, 47, 48]. In an animal model study, coinfection with
P. gingivalis and F. nucleatum synergistically increased bone
loss and exacerbated inflammatory responses when com-
pared to that of monoinfection in rat periodontal tissues
[49]. The consequences of these interactions may be caused
not only by local inflammation but also by systemic
manifestations.

In order to carry out studies with periodontopathogenic
bacteria, several bacterial strains are used. The use of bacte-
rial strains from a given type culture is more feasible due to
easy access to commercially available sources, as opposed to
the more difficult collection of bacteria from clinical subjects.
It is important to appreciate that strains of the same bacterial
species may have varying characteristics, and therefore, the
results generated by one strain are not always transferable
to another. It is advisable to use clinical microorganisms
as well as those from collections (type cultures) to conduct
these studies, in order to compare them with their stan-
dards. Notably, it was observed that there were no differ-
ences in LPS characteristics and cellular activation when
using clinical samples from patients with periodontitis
and ATCC strains [50].

P. gingivalis strains show genetic variations, and studies
have associated these variations with virulence potential, in
which certain strains present a greater virulence whereas
other strains of the same species display more commensal
behavior [51]. Examples of virulent strains of P. gingivalis
are W83, W50, ATCC 49417, and A7A1, while 381, 33277,
and 23A4 are characterized as less virulent strains [52–54].
Regarding F. nucleatum, it was shown that all strains signifi-
cantly increased the phagocytic capacity of neutrophils as
well as IL-8 and TNF-α production [55]. Interestingly,
phagocytosis of F. nucleatum ss polymorphum was signifi-
cantly greater than that of F. nucleatum ss vincentii and ss
nucleatum [55]. These studies highlight the importance of
choosing the correct strain to perform in vitro and in vivo
studies that mimic the bacterial effects on human oral
diseases.

3. Immunological Mechanisms Triggered by
P. gingivalis and F. nucleatum

Here, we reviewed pathways used by the host to control P.
gingivalis and F. nucleatum infection as well as how these
bacteria subvert these innate and adaptive immune responses.

3.1. Pattern Recognition Receptors (TLR2 and TLR4
pathways). Bacterial components induce innate immune
responses through host recognition to pathogen-associated
molecular patterns (PAMPs), which are evolutionarily
conserved molecules shared by microorganisms, but which
are absent in the host. These PAMPs alert the innate immune
system to the presence of pathogens. In the same context, in a
situation of tissue homeostasis alteration due to microbial
invasion, necrosis, cell injury, or stress, the release of intra-
cellular damage-associated molecular patterns (DAMPs)
occurs. DAMPs are considered danger signals that alarm
the innate immune system and are therefore alternatively
called “alarmins” [85].

PAMPs and DAMPs are identified by a wide variety of
pattern recognition receptors (PRRs), present in the plasma
membrane, cytoplasm, or vesicles (such as endosomes) in
inflammatory cells, as well as in resident cells. The recogni-
tion of PAMPs and DAMPs by the host results in the induc-
tion of signaling pathways such as activator protein 1 (AP-1)
and factor nuclear kappa B (NF-κB), leading to the expres-
sion of proinflammatory cytokines [86]. The family of PRRs
includes Toll-like receptors (TLRs), C-type lectin receptors
(CLRs), RIG-I-like receptors (retinoic acid-inducible gene-
I-like receptors, or (RLRs)), and nucleotide oligomerization
domain- (NOD-) like receptors (NLRs) [86].

TLRs are expressed in oral epithelial tissue, can be stimu-
lated by commensal microorganisms, and also serve to pro-
tect the host against microbial infections [9]. The TLR
signaling pathway involves the recruitment of the adapter
protein containing the TIR (Toll-IL-1 receptor) domain
and myeloid differentiation primary response 88 (MyD88)
to the cytoplasmic region of TLR, with subsequent activation
of NF-κB and induction of proinflammatory cytokines and
host defense genes [87].

Table 2: Virulence factors of Fusobacterium nucleatum.

Periodontopathogenic
pathogen

Virulence factors Function Reference

Fusobacterium
nucleatum

Adhesins FadA is required for binding and invasion of host cells [76–78]

LPS Stimulates inflammation and bone resorption [79, 80]

Serine proteases
Induces damage to host tissue and IgA degradation

while favoring acquisition of nutrients
[44]

Production of ammonium
and butyrate

Butyrate and ammonium inhibits the
proliferation of gingival fibroblasts

[81]

Outer membrane proteins
(Fap2 and RadD)

RadD and Fap2 function as adhesins, binding to a
variety of Gram-positive species and Porphyromonas gingivalis,

respectively. Both of them induces lymphocyte apoptosis
[82–84]

FadA: Fusobacterium adhesin A; Fap2: fatty-acid-binding protein.
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The interaction of LPS with TLRs is one of the mecha-
nisms of manipulation of the host response used by P. gingi-
valis to facilitate its adaptation and survival [88]. LPS is
composed of an antigen O of variable length, a polysaccha-
ride core, and a lipid A moiety. Lipid A is the effector LPS
portion that binds to TLR4/MD2/CD14 (TLR4 signaling
requires additional costimulation by cluster of differentiation
14 (CD14) and myeloid differentiation protein 2 (MD-2)).
The molecular structure of LPS varies depending on the bac-
terial species [89]. The level of acylation of PAMPs allows the
host to discriminate commensal from pathogenic bacteria
[90]. P. gingivalis LPS differentiates from LPS of other bacte-
rial species through modifications in the O-antigen structure
[91–93], as well as modifications in the acylation patterns
and in the receptor-activating capacities of the lipid A com-
ponent [11]. Lipid A from P. gingivalis has a penta-acylated
phosphorylated structure that activates TLR4 and a tetra-
acylated monophosphorylated structure that antagonizes
TLR4, thereby attenuating host immune responses. These
differences of lipid A structures depend on the microenviron-
ment and hemin concentrations [94]. At high hemin concen-
trations, conferring high degrees of inflammation, several
tetra- and penta-acylated lipid A structures were observed
in P. gingivalis as opposed to one major penta-acylated lipid
A structure at low hemin levels [94] (see Figure 1). Another
type of LPS was also identified in P. gingivalis, A-LPS, with
an anionic polysaccharide linked to lipid A, responsible for
serum resistance and cellular integrity; however, it was a

weak inducer of cytokine release by human monocytes [91].
The literature remains conflicted regarding signaling of P.
gingivalis LPS binding to TLR2/4 receptors; this conflict con-
cerns the distinct portions of P. gingivalis lipid A that exhibit
various receptor binding attributes [88].

F. nucleatum lipid A is a hexa-acylated fatty acid com-
posed of tetradecanoate (C14) and hexadecanoate (C16)
and is structurally similar to Escherichia coli lipid A [95]. This
structural similarity may explain the fact that F. nucleatum
has a strong activity via TLR4 [95] (see Figure 2). These
structural differences in bacterial LPS composition may
explain why F. nucleatum LPS stimulates IL-1β secretion
more strongly than does P. gingivalis LPS [96].

The observations cited above explain why TLR2 predom-
inates over TLR4 in terms of recognition by P. gingivalis [36].
Activation of TLR2 by P. gingivalis LPS induces two distinct
signaling pathways, one of which leads to the synthesis of
proinflammatory cytokines, and antimicrobial responses
and represents the pathway of CXC chemokine receptor 4
(CXCR4) modulated by P. gingivalis. The other cascade
involves the proadhesive capacity and pathway crosstalk
between TLR2 and the complement system [36]. It has been
demonstrated in vivo and in vitro in neutrophils that P.
gingivalis inhibits the TLR2/MyD88 signaling which is
considered a host-protective pathway, thus avoiding the
death of neutrophils infected with P. gingivalis. This inhi-
bition occurs through ubiquitination and degradation of
MyD88 via E3 ubiquitin ligase Smurf1 dependent of the

Environmental noninflammation Environmental inflammation

Hemin levels Hemin levels
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Figure 1: Two forms of P. gingivalis lipid A depending on the microenvironment and their interference in TLR4 receptor signaling
downstream activation. Legend: LPS: lipopolysaccharide; p65: nuclear factor NF-κB protein p65 subunit; p50: nuclear factor NF-κB
protein p50 subunit; Rel A: v-rel reticuloendotheliosis viral oncogene homolog A; TLR4: Toll-like receptor-4; TRAF 6: tumor necrosis
factor receptor-associated factor 6; TRIF: TIR-domain-containing adapter-inducing interferon-β; TRAM: TRIF-related adaptor molecule.
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crosstalk between TLR2 and the complement receptor
C5aR (C5aR/TLR2). On the other hand, P. gingivalis acti-
vates the TLR2/Mal/PI3K signaling pathway that blocks
phagocytosis and stimulates inflammation in neutrophils
[29, 97]. Because of the effects of P. gingivalis gingipains dur-
ing infection with this pathogen, there are high levels of C5a
[97, 98] that could induce alteration of the PI3K pathway
leading to inhibition of phagocytosis. The C5aR/TLR2 cross-
talk generated by P. gingivalis inhibits the activation of RhoA
(Ras homolog gene family, member A), cytoskeleton reorga-
nization, and actin polymerization, all of which contribute to
phagocytosis. All these effects result in a protective effect, not
only for P. gingivalis but also for other bacteria of the oral
cavity. These modulations by P. gingivalis contribute to the
persistence of periodontal dysbiosis and the chronicity of
inflammation in PD [29].

The crosstalk between the TLR2 and the CXCR4 in lipid
rafts of macrophages is another form of subversion of the
immune response by P. gingivalis, allowing their survival
in vivo and in vitro. The fimbriae of P. gingivalis bind to
CXCR4 and activate the cAMP-dependent protein kinase A
pathway, inhibiting NF-κB and nitric oxide (NO) synthesis
[67]. For this reason, fimbriae from P. gingivalis are con-
sidered molecules with antimicrobial properties [67].

P. gingivalis induces the release of IL-1, IL-6, IL-8, and
TNF-α, promoting inflammatory responses via TLR4/TLR2
in host cells [10, 99–101]. We demonstrated that the induc-
tion of IL-1β mRNA and protein depended on the activa-

tion of TLR2 and MyD88 in murine macrophages; the
absence of fimbriae did not affect this stimulus (Morandini
et al., 2014), although it is known that the fimbriae of P.
gingivalis activate TLR2, among others, including phos-
phoceramides and PG1828 lipoprotein [50]. This was
observed in the work of Asai et al., in which P. gingivalis
fimbriae stimulated the expression of IL-8 in gingival
epithelial cells via TLR2 [102].

P. gingivalis fimbriae induce the production of proin-
flammatory cytokines, including IL-6 and TNF-α, and they
mediate the expression of adhesion molecules, including
intercellular adhesion molecule 1 (ICAM-1) [103]. The fim-
briae exploit TLR2 signaling to interact with complement
3 (CR3), thereby allowing internalization of P. gingivalis
into macrophages [104]. This virulence factor reduces the
production of IL-12 that may inhibit bacterial clearance
and lead to an increase of adhesion of CR3-dependent
monocytes to vascular endothelium and transendothelial
migration [105].

Both TLR2 and TLR4 are associated with bone loss in
an animal model of periodontitis induced by P. gingivalis
[106–108]. The phosphoglycerol dihydroceramide (PGDHC)
from P. gingivalis also promotes receptor activator of nuclear
factor kappa-Β ligand- (RANKL-) mediated osteoclastogene-
sis, via interaction withMyh9 (nonmuscle myosin II-A) inde-
pendently of TLR2/4 [72].

During F. nucleatum infection in macrophages, both
TLR2 and TLR4 recognize this pathogen and are redundant

RelA
p65 p50

TLR4

Proinflammatory 
cy tokines

MyD88

Bisphosphorylated,
hexa-acylated lipid A of F.

nucleatum

Agonist Antagonist

Monophosphorylated,
 tetra-acylated lipid A of P.

gingivalis

Extracellular

Intracellular

Environmental inflammation

Figure 2: Structural chemical differences in lipid A of F. nucleatum and P. gingivalis and their interaction with TLR4. Legend: MyD88:
myeloid differentiation primary response 88. TLR4: Toll-like receptor-4; -: antagonize TLR4 activation; +++: strong TLR4 agonistic response.
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in terms of the production of IL-6 and TNF-α [109]. In
macrophages, MyD88 is required for cytokine secretion
induced by F. nucleatum infection [109]. Furthermore,
the same study showed that TLR2/TLR4 and MyD88 were
required for the optimal activation of NF-κB and mitogen-
activated protein kinases (MAPKs, including p38, extracel-
lular signal-regulated kinase (ERK), and Jun N-terminal
protein kinase (JNK)) in response to F. nucleatum [109].
Interestingly, using HEK293T cells, which lack endogenous
TLRs, it was demonstrated that F. nucleatum induced IL-8
secretion [110]. In that study, F. nucleatum invasion in the
host cell was needed to induce IL-8 secretion, as was p38
MAPK signaling, but not NF-κB or NOD-1 [110]. On the
other hand, TLR2-silenced Ca9-22 cells infected with F.
nucleatum resulted in the absence of IL-6 and IL-8
responses, whereas induction of IL-1β remained, suggesting
that this bacterium modulates the expression of these cyto-
kines via TLR2 [90].

Antimicrobial peptides, including human beta-defensins
(HBD), assist the barrier function of gingival tissue [111]. F.
nucleatum increased the expression of the HBD-2 and
HBD-3, and it is believed that this induction occurs via
TLR2, considering that there was suppression of F. nuclea-
tum-induced HBD when using TLR2 knockdown cells
[112]. Furthermore, FomA, a porin protein from F. nuclea-
tum, was shown to induce cytokine secretion through TLR2
signaling [112].

Therefore, it is important to understand the TLR2 and
TLR4 downstream signaling pathways induced by oral bacte-

ria in cells of the oral cavity and in animal models of PD,
because they can potentially be targets of pharmacological
treatments. Therapeutic drugs could be designed to target
the inhibition of the signaling pathways used by P. gingivalis
and F. nucleatum to survive, as suggested in Figure 3.

3.2. Inflammasomes. NLRs (nucleotide-binding oligomeri-
zation domain-like receptors) are part of the family of PRRs
and can be a part of “inflammasomes” [86, 113, 114]. Inflam-
masomes are multiprotein complexes assembled in the host
cell in response to infection and/or cellular stress that can
ultimately lead to a type of cell death called “pyroptosis”
and/or proinflammatory cytokine maturation and secretion
[19, 115]. Canonical inflammasomes activate procaspase-1
into the mature form caspase-1 while noncanonical inflam-
masomes involve caspase-11 (in mice) or caspase-4/5 (in
humans) [21]. Canonical inflammasomes can be activated
by various ligands, and they are named according to the
receptor involved in the stress recognition: NLPR3, NLRP1,
NLRC4, and AIM2. By contrast, noncanonical inflamma-
somes are only activated by cytosolic LPS [21]. In the case
of the NLRP3 and AIM2 inflammasomes, a PYD-CARD
adaptor protein ASC (apoptosis-associated protein with
caspase recruitment domain) is required for the assembly
and stabilization of these inflammasomes, as reviewed else-
where [21, 115].

NLRP3 is currently the best characterized inflammasome
and is associated with various chronic inflammatory diseases,
including type II diabetes, obesity, and intestinal diseases
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[116]. It is well accepted that two signals are needed to
activate the NLRP3 inflammasome: (1) the recognition of
a PAMP via PRRs such as TLRs induces NF-κB activation
and subsequent transcription of genes encoding NLRP3
and inactive forms of the proinflammatory cytokines,
including pro-IL-1β and pro-IL-18 [21, 115]; and (2) crystal-
s/particles (such as uric acid and silica), β-amyloid, bacteria,
viruses, fungi, protozoa, pore-forming toxins, and DAMPs
such as adenosine triphosphate (ATP) [23, 115, 117] are
recognized by the host cell and activate the inflammasome
[115]. Activation of the NLRP3 inflammasome results in
the activation of caspase-1 that is responsible for cleaving
pro-IL-1β and pro-IL-18 to their biologically active forms,
IL-1β and IL-18 and/or for inducing pyroptosis (to be
discussed later in this review [115]). Recent studies showed
that activated caspase-1 cleaves gasdermin D, inducing
pore formation in the plasma membrane and leading to
IL-1β/IL-18 release and/or pyroptosis [118, 119].

Studies have examined inflammasome components and
their byproducts during periodontitis and infection of cells
with periodontopathogens. Human monocytic cells (Mono-
Mac-6 cells) infected with P. gingivalis showed increased
levels of NLRP3 and IL-1β/IL-18 but decreased levels of
ASC [120]. In THP-1 cells, P. gingivalis activated the NLRP3
inflammasome through the TLR2 and TLR4 pathways [121].
This bacterium may downregulate ASC as a mechanism of
survival, because ASC is involved in cell death and conse-
quent clearance of intracellular bacteria [122].

We and others demonstrated that P. gingivalis infection
induced intracellular pro-IL-1β production but not IL-1β
secretion in human gingival epithelial cells [123] and murine
macrophages [20, 96, 124]. In fact, in human gingival epithe-
lial cells and murine macrophages, we and others showed
that purinergic P2X7 receptor activation by extracellular
ATP is necessary for IL-1β release after P. gingivalis infection
[20, 96, 123, 124]. Furthermore, we found that the intra-
cellular processing of pro-IL-1β was NLRP3-dependent in
murine macrophages [124]. Alternatively, some studies
have shown that caspase-8 can also be involved in NLRP3
inflammasome activation and cleaved pro-IL-1β in response
to TLR4 activation [125, 126].

Furthermore, we showed P. gingivalis infection in vivo
induced IL-1β production in order to restrain bacterial
infection in a manner that was dependent on caspase-
1/11, P2X7 receptor, and autocrine IL-1 receptor signaling
[20]. Interestingly, it was showed that P. gingivalis mediated
inflammasome repression when macrophages were coin-
fected with P. gingivalis and F. nucleatum through a mecha-
nism involving reduced endocytosis [96]. These studies
highlight the importance of studying infection models in
order to understand the pathogenesis and immune responses
during periodontitis.

In fact, the inflammasome is very important in the path-
ophysiology of periodontitis. It is already known that the
NLRP3 inflammasome [18] and secretion of IL-1β [68] are
crucial for the development of PD, because in the absence
of NRLP3 or IL-1β, there is no periodontitis induced by
P. gingivalis in mouse models. IL-1β also plays a promi-
nent role in promoting tissue pathology and inflammatory

responses in periodontal lesions and stimulating the loss of
connective tissue and bone [68]. Furthermore, various stud-
ies demonstrated increases in the expression of NLRP3,
AIM2, IL-1β, and IL-18, but not ASC or NLRP2, in gingival
tissue from periodontitis patients when compared to healthy
individuals [120, 121, 127].

Unlike P. gingivalis infections, in murine macrophages
and gingival epithelial cells, F. nucleatum infections activate
the NLRP3 inflammasome leading to pyroptosis and IL-
1β/IL-18 secretion even in the absence of extracellular ATP,
suggesting that F. nucleatum provides both PAMPs and a
danger signal [96, 128]. In gingival epithelial cells, F. nuclea-
tum leads to NF-κB activation, culminating in enhanced
expression of the proinflammatory cytokine IL-8 [129] and
IL-1β secretion [128]. In these cells, F. nucleatum infection
was sufficient to induce caspase-1 activation in a NLRP3-
dependent manner and the secretion of the danger signals
ASC and high-mobility group box 1 protein (HMGB1)
[128]. Interestingly, we showed that NLRX1 has a dual effect
on F. nucleatum-infected gingival epithelial cells by upregu-
lating NLRP3-dependent caspase-1 activation but downregu-
lating NF-κB activation and IL-8 production [129]. These
results show that inflammasome activation after F. nuclea-
tum infection is a robust but complex regulated process. In
oral infection in mice, we showed that F. nucleatum induced
the expression and secretion of several proinflammatory
cytokines, including the inflammasome-dependent IL-1β
[130]. In agreement with in vitro and mouse model studies,
the expression of the components of the NLRP3 inflamma-
some was also shown to be increased in periapical lesions
in human subjects with periapical periodontitis [131].
Despite the fact that F. nucleatum infection in vivo was
evaluated in some studies, the effects of this bacterial
infection in vivo with respect to inflammasome activation
and modulation still needs to be investigated, because it
may be an important therapeutic target.

Regarding inflammasomes other than the NLRP3, it was
demonstrated that NLRP6 was more highly expressed in
gingival tissues of patients with periodontitis than in healthy
controls [132]. The same study showed that pyroptosis of
gingival fibroblasts induced by P. gingivalis infection was
dependent on the NLRP6 inflammasome and caspase-1
activation. Moreover, P. gingivalis-infected gingival fibro-
blasts showed increased levels of IL-1β and IL-18 secretion
in an NLRP6 and caspase-1-dependent manner [132]. Fur-
thermore, the expression of the AIM2 inflammasome (that
recognizes double-stranded DNA) was also more highly
expressed in the gingival tissue of periodontitis patients
than in controls, as well as in human macrophages
infected with P. gingivalis [121]. In human macrophages,
P. gingivalis induced pyroptosis and IL-1β secretion in a
caspase-1/AIM2 inflammasome-dependent manner [121].
In agreement with these studies, the AIM2 inflammasome
was also found in high levels in periapical lesions and was
primarily distributed in inflammatory cells [131]. These
data suggest that the AIM2 and NLRP6 inflammasomes
are involved in the development of PD, highlighting the
need to study these immunological pathways during these
diseases and periodontopathogen infections, in order to
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develop therapeutic targets. Together, these data using cell
lines, mouse models, and clinical samples demonstrate that
inflammasomes play important roles in the pathophysiol-
ogy of periodontitis as well as during control of P. gingiva-
lis and F. nucleatum infections. This supports the concept
that inflammasome components and/or its byproducts
could be potential therapeutic targets for modulating the
development of periodontitis and/or controlling infection
by periodontopathogens.

3.3. Purinergic Signaling. ATP acts as a signaling molecule in
various physiological processes, including synaptic transmis-
sion, bone formation and resorption, blood pressure regula-
tion, and inflammation [133–135]. Extracellular nucleotides
bind to purinergic receptors [136], and these receptors and
their subtypes are found in virtually all cell types in mammals
[137]. As mentioned above, extracellular ATP is considered a
DAMP that can be released from stressed/damaged, infected,
or dying cells via various proposed mechanisms, including
pannexin-1 hemichannels, connexin hemichannels, or even
through the purinergic P2X7 receptors, with consequent
autocrine and paracrine cell signaling [138–142].

Purinergic receptors are classified as P1 and P2 receptors
[136]. P1 receptors are G-protein-coupled metabotropic
receptors that exclusively recognize extracellular adenosine
[143, 144]. Their role during periodontopathogen infections
will be discussed later in this review. There are two subfam-
ilies of purinergic P2 receptors: P2X receptors that are ionic
channels activated by ATP and P2Y receptors that are G-
protein-coupled receptors activated by ATP, ADP, UTP,
UDP, and UDP-glucose [143, 145]. Currently, seven P2X
receptors (P2X1–P2X7) and eight P2Y receptors (P2Y1,
P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14) are
known [136, 145]. Among these receptors, the P2X7 recep-
tor has been shown to regulate inflammatory processes
that mediate cell death and elimination of intracellular
infectious microorganisms; its expression is regulated by
inflammatory cytokines [146]. It has been associated with
immune responses and inflammation [139, 147, 148],
including immune responses against P. gingivalis, as we
reviewed elsewhere [19].

We showed that P. gingivalis infection induces higher
expression of the P2X7 receptor in infected murine macro-
phages [124] and in the maxilla of orally infected mice [17].
Corroborating our data in mice, we also demonstrated that
P2X7 receptor expression levels were lower in patients after
conventional periodontal treatment than prior to treatment
[17], suggesting that the P2X7 receptor may play a role
during PD and infection. Interestingly, P2X7 receptor distri-
bution in macrophages may be modulated by P. gingivalis
fimbriae, because we showed that receptor expression
had a distinct pattern of focus formation in the absence
of P. gingivalis fimbriae [124]. These data suggest that P.
gingivalis infection induces P2X7 receptor expression and
that P. gingivalis expresses virulence factors that allow this
pathogen to modulate receptor distribution in the host cell.

In a model of P. gingivalis infection in vivo, we showed
that the P2X7 receptor was required for IL-1β production,
leukocyte recruitment to the site of infection, and bacterial

clearance [20]. Interestingly, the P2X5 receptor was shown
to be required for efficient production of IL-1β and osteoclast
maturation in vitro, and that P2X5 receptor deficiency, but
not P2X7 receptor deficiency, led to decreased bone loss in
an animal model of PD [149]. These data suggest that the
P2X7 receptor might be dispensable for the development of
periodontitis but it is required for the induction of immune
responses and microbial clearance during periodontogenic
bacterial infection in murine models. Together, these results
suggest that the P2X5 and P2X7 receptors may be novel
therapeutic targets in this oral disease.

The ability of P. gingivalis to adapt to the gingival epithe-
lium has not yet been fully understood. Among several viru-
lence factors harbored by P. gingivalis, it seems that this
pathogen evolved to protect itself against extracellular ATP
through its nucleotide-diphosphate-kinase enzyme (NDK).
NDK is an important virulence factor of P. gingivalis that
has been shown to cleave extracellular ATP molecules
[150]. After P. gingivalis infection in gingival epithelial cells,
release of ATP occurs and the P2X7/pannexin 1 receptor is
activated by autocrine action of ATP; the NDK from P.
gingivalis accumulates in the cytoplasm [151]. NDK from
P. gingivalis is carried along myosin-9 filaments and actin
filaments to the host cell periphery. Upon translocation to
the extracellular environment through the formation of the
P2X7/pannexin 1 channel, NDK hydrolyzes ATP, thereby
reducing the activation signal of the P2X7 receptor and
its downstream signaling events [151]. During infection
in gingival epithelial cells, NDK from P. gingivalis inhibited
ATP-induced reactive oxygen species (ROS) generation,
thereby contributing to bacterial persistence [152]. NDK also
decreased ATP-induced IL-1β release [153] and inhibited
ATP-induced host cell death after infection with P. gingivalis
[150]. Inhibition of these pathways by P. gingivalis, by means
of its NDK, contributes to intracellular bacterial survival and
persistence [151].

P. gingivalis also modulates the transcription of forkhead
box protein 1 (FOXO-1) genes, leading to the synthesis of
antioxidant enzymes such as superoxide dismutase and cata-
lase, restoring the redox balance and preventing long-term
oxidative damage. With the inhibition of the toxic response,
P. gingivalis can survive, replicate, and translocate through
adjacent cells, notwithstanding its ability to adapt to the
oxidative stress environment [152, 154]. Intracellular P.
gingivalis inhibited NADPH oxidase (NOX) 2-ROS,
followed by suppression of hypochlorous acid production
in gingival epithelial cells; these bacteria were present in
ER-rich/LC3-positive autophagic vacuoles, considered a
new mechanism of bacterial survival [24].

P1 receptors recognize extracellular adenosine; they are
subdivided into A1, A2a, A2b, and A3, exhibiting varying
degrees of sensitivity to adenosine [155]. During gingival epi-
thelial cell infection with P. gingivalis, treatment with the spe-
cific A2a receptor agonist (CGS-21680) led to bacterial
proliferation and increased cAMP levels. However, when a
broad-spectrum adenosine agonist (NECA) was used, mini-
mal effects on intracellular P. gingivalis levels were observed
[156]. These data suggest that adenosine signaling may
attenuate inflammatory processes associated with bacterial
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infection [156], a mechanism of bacterial survival in the buc-
cal mucosa. These results demonstrate the need for further
studies aimed at the participation of P1 and P2 receptors in
the context of infection by periodontopathogenic bacteria,
as well as PD. Furthermore, even though there are no studies
of purinergic signaling and F. nucleatum to date, the results
from our group and others on P. gingivalis infection suggest
that F. nucleatum infection can also be modulated by puri-
nergic signaling infection. In this context, future studies are
needed regarding F. nucleatum infection and purinergic sig-
naling. Figure 4 suggests therapeutic targets in the pathways
of the activation of purinergic P2X7 receptor and inflamma-
some by the bacteria F. nucleatum and P. gingivalis.

3.4. Regulation of Caspases Involved in Apoptosis and
Pyroptosis by P. gingivalis and F. nucleatum. Caspases are
endoproteases that cleave peptide bonds in a cysteine-
dependent and aspartate-directed manner [157]. Caspases
can mediate substrate activation and inactivation, and they
may also generate active signaling molecules that participate
in immune responses, including cell death and inflammation
[157]. To date, 11 caspases have been found in humans
(caspase-1 to caspase-10 and caspase-14), whereas 10 have
been found in mice (caspase-1, 2, 3, 6, 7, 8, 9, 11, 12, and
14) [157]. Caspases are categorized according to their roles
in physiology: apoptosis (caspase-3, 6, 7, 8, and 9 in mam-
mals) and inflammation/pyroptosis (caspase-1, 4, and 5 in
humans and caspase-1 and 11 in mice).

Caspase-11 has a protective effect during infections in
which the bacterium invades the cytosol [158]. This caspase

directly binds the hexa-acylated lipid portion of LPS from
Gram-negative bacteria, the same component structure that
activates TLR4, through its CARD domain [22]. However,
species with four acyl groups, although capable of binding,
have not been shown to activate caspase-11 [159]. There
are some pathogenic bacteria that alter the acylation status
of its lipid A, thereby avoiding recognition by cells of the
immune system, minimizing the inflammatory process [22].
In this context, it is important to carry out studies that eval-
uate the possibility of caspase-11 controlling the intracellular
proliferation of P. gingivalis and F. nucleatum.

Apoptosis is a programmed cell death that involves the
controlled dismantling of intracellular components while
avoiding inflammation and damage to surrounding cells
[157]. By contrast, pyroptosis is a nonapoptotic type of cell
death that involves plasma membrane rupture and release
of proinflammatory intracellular contents [160]. For this rea-
son, pyroptosis usually occurs via noncanonical inflamma-
some activation by Gram-negative bacteria and is mediated
by inflammatory caspase-1 and caspase-4/5 in humans, or
by caspase-1 and caspase-11 in mice [118, 119]. Pyroptosis
is characterized by the formation of membrane pores, cell
edema, and osmotic lysis and release of the cytosolic contents
into the extracellular medium [22]. This pathway contributes
to intracellular bacterial clearance and destroys any niche
formed by intracellular bacterial replication because it causes
intracellular bacterial exposure to the extracellular compart-
ment, making bacteria more susceptible to antibodies and
attacks by phagocytes such as neutrophils [159]. In this sense,
it is advantageous to prevent or delay host cell death in order
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to preserve their intracellular environment, thereby favoring
microbial persistence [19].

Induction or inhibition of apoptosis by bacteria varies
according to cell type, bacterial species and strains, duration
of infection, and presence of bacterial components (e.g.,
LPS, proteinases). Cell death by P. gingivalis was observed
in B cells and human gingival fibroblasts, and inhibition of
apoptosis provoked by this bacterium was demonstrated in
human monocytes, macrophages, neutrophils, and primary
gingival epithelial cells [161–168]. One of the pathways in
which P. gingivalis prevents the death of gingival epithelial
cells either by necrosis or by apoptosis is through the activa-
tion of the JAK1/Akt transducer and transcriptional activator
3 (STAT3) pathway, causing upregulation of miR-203 that
leads to inhibition of the suppressor of cytokine signaling 3
(SOCS3) negative regulator and subsequent suppression of
apoptosis [168–170]. Furthermore, at the mitochondrial
membrane, proapoptotic Bad is inhibited and the ratio of
Bcl2 : Bax increases, decreasing cytochrome c levels and cas-
pase-3/9 activation, thereby reducing the effect of apoptosis
[171].

During infection in murine macrophages, we and others
showed that P. gingivalis itself did not induce the expression
of the activated form of caspase-1, pyroptosis [70], and IL-1β
[17, 20, 70, 96, 124], requiring a second signal for the activa-
tion of these molecules ([17, 20, 96, 124]). However, OMVs
isolated from P. gingivalis induced the activation of
caspase-1 (including pyroptosis) and IL-1β in murine and
human macrophages [70], suggesting that live P. gingivalis
negatively modulates inflammasome and caspase-1 activa-
tion in favor of its own survival. By contrast, studies using
PMA-primed THP-1 cells demonstrated that P. gingivalis
infection per se induced the activation of the NLRP3 and
AIM2 inflammasomes, promoting caspase-1 [121] and
caspase-4 activation, leading to pyroptosis in a MOI-
dependent manner [172]. Interestingly, high levels of P.
gingivalis infection did not induce caspase-1 activation or
cell death due to a mechanism believed to involve gingi-
pains [70, 173]. Therefore, P. gingivalis can modulate acti-
vation of caspases involved in apoptosis and pyroptosis
depending on the cell line and model of infection. These
data agree with those of a study showing enhanced levels
of NLRP3 and pyroptosis along with the active forms of
caspase-1 and IL-1β in the gingival stroma of periodontitis
specimens compared to those of healthy samples [174].

In vitro studies showed that while P. gingivalis can persist
intracellularly in macrophages for up to 63 h [175], this
bacterium was able to survive intracellularly for up to 8 days
in gingival epithelial cells [73]. Indeed, P. gingivalis possesses
several virulence factors that inhibit host cell death induced
by various proapoptotic agents [168, 169]. P. gingivalis
triggered rapid and reversible surface phosphatidylserine
exposure (an apoptosis marker) through a mechanism
requiring caspase activation [168]. This opportunistic patho-
gen can manipulate the host machinery to facilitate its long-
term survival by inhibiting the intrinsic apoptotic pathway
(cytochrome c release and caspase-3/9 activation) [168,
171]. In fact, it was demonstrated that P. gingivalis inhibited
chemically induced apoptosis in primary cultures of gingival

epithelial cells by blocking the activation of the effector
caspase-3 via manipulation of the JAK/STAT pathway that
controls intrinsic mitochondrial cell death pathways [169].

Even though P. gingivalis does not induce pyroptosis in
murine macrophages, F. nucleatum infection induces
caspase-1 and pyroptosis that is inhibited if P. gingivalis is
added to the culture [96]. Together, these studies show
that P. gingivalis is well adapted to survive in various cell
types by avoiding the induction of host cell death. These
data suggest the need for studies to verify how these bac-
teria modulate caspases in favor of their own survival, to
develop therapeutic targets, and to generate effective treat-
ments for PD.

3.5. Adaptive Immunity. The adaptive immune system acts in
the context of the chronicity of PD, reinforcing the protec-
tion of the host through cellular and noncellular mechanisms
[176]. During the development of periodontitis, various T
helper subsets predominate in several stages [177]. B cells
were observed to predominate in the progression of peri-
odontal lesions, together with Th2 cell profiles [178, 179]. B
cells and their antibodies act by preventing bacterial adhe-
sion, by inactivating bacterial toxins, and by acting as opso-
nins for neutrophil phagocytosis [180].

CD4+ T cells are involved directly and indirectly in oste-
oclastic reabsorption during PD. Various subsets of CD4+ T
cells promote or suppress immune responses of the host dur-
ing the progression of periodontitis [181, 182]. Baker et al.
demonstrated that animals without MHC-II-restricted
CD4+ T cells but not MHC-I-restricted CD8+ T cells were
resistant to oral alveolar bone loss induced by P. gingivalis
infection, suggesting that CD4+ T cells contribute to bone
demineralization [183]. Throughout the development of
periodontitis, Th1 and Th2 responses characterize disease
progression [184], acting as essential immunoregulators
and mediators of the initial lesion. Th17 cells may directly
or indirectly exacerbate inflammation by modulating Th1
cells or by increasing the synthesis of inflammatory mole-
cules from gingival fibroblasts [185]. By contrast, Treg cells
act on the balance of periodontal lesions and become a ther-
apeutic target, allowing the modulation of host immune
response, thereby attenuating the tissue damage associated
with periodontitis [186]. P. gingivalis stimulates increased
production of the proinflammatory cytokine IL-17 produced
by Th17 cells [187] that act by stimulating the production of
inflammatory molecules such as cytokines, chemokines, and
other effector compounds, inducing RANKL by osteoblasts,
thereby influencing reabsorption of bone [188].

P. gingivalis and F. nucleatum also induce and evade
various adaptive immune responses generated in the infected
host. P. gingivalis was shown to suppress IFN-γ-stimulated
release of CXCL9, CXCL10, and CXCL11 from epithelial
cells. The inhibition of chemokine expression occurred at
the level of gene transcription and was associated with
downregulation of interferon regulatory factor 1 (IRF1) and
decreased STAT1 expression [189]. In accordance with
this idea, P. gingivalis-stimulated antigen-presenting cells
enhanced Th17 but not Th1 polarization because the bac-
teria favored the generation of Th17-related cytokines such
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as IL-1β, IL-6, and IL-23, but not the Th1-related IL-12
[190]. Furthermore, when mice were subcutaneously vacci-
nated with formalin-killed P. gingivalis and then were orally
challenged with P. gingivalis, the vaccination protected the
mice from alveolar bone resorption and inflammation. This
was due to the downregulation of Th17 immune responses
and upregulation of Treg, IL-10, and TGF-β production
[182]. Regarding the production of the T cell growth factor
IL-2, P. gingivalis targets its expression at the protein level
by inhibiting AP-1 and NF-κB activity, impeding the ability
of T cells to sustain stable IL-2 accumulation by means of
the bacterial gingipain Rgp [191]. Interestingly, P. gingivalis
gingipain Kgp was also demonstrated to hydrolyze IgG1
and IgG3 heavy chains in vitro [192]. Moreover, cleavage
of IgG1 was identified in gingival crevicular fluid from
patients with aggressive periodontitis and chronic peri-
odontitis, while no cleavage was detected in healthy controls
[193]. In a study involving individuals with untreated and
successfully treated chronic periodontitis, both individuals
expressed sIgA, IgA, IgG1, and IgG4 against F. nucleatum
at the same levels but untreated individuals presented sIgA
and Th1- (IFN-γ- and IgG1-) dominant immune responses
[194].

Further studies are needed, primarily in vivo, to evaluate
the role of P. gingivalis and F. nucleatum in the profiles of
immunoinflammatory cells, correlating them with the
chronicity of PD such that effective treatments may be
developed to prevent the exacerbation of the tissue injury
and bone loss. Figure 5 demonstrates the results discussed
in this review.

4. Challenges and Perspectives

The role of P. gingivalis and F. nucleatum in the pathogenesis
of PDs is well-documented in the literature; nevertheless, the
exact molecular mechanisms induced by these bacteria are
not yet fully understood. Studies on TLR2/4 activation by
P. gingivalis LPS remain to be clarified, because of controver-
sies in the literature. Additional studies in human cells are
necessary because the inflammatory potential is higher in
these cells than in animal cells. Further studies are also
needed to investigate how F. nucleatum manipulates down-
stream TLR2/TLR4 pathways in order to survive and repli-
cate intracellularly. It is known that inflammasomes are
involved in the pathogenesis of periodontitis; however, it
remains necessary to determine which inflammasomes, in
addition to NLRP3, actually contribute to the pathogenesis
of PD induced by P. gingivalis and F. nucleatum. Even though
we know that P2X7 receptor is involved in the immune
responses against P. gingivalis, the role of the purinergic
signaling in the context of F. nucleatum infection remains
unknown. Further research needs to address the role of
caspases, especially caspase-11, in the context of inflamma-
tion and cell death in in vivo and in vitro models of PD.
More studies that clarify the differences in the immune
response of various cells of the oral cavity involved in
infections by P. gingivalis and F. nucleatum are also
needed, considering time of infection, MOI, and types of
strains to be representative in PD in humans. Because
models of coinfections and cocultures are more represen-
tative of human periodontitis, it is important that future
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studies investigate models of in vivo coinfection with P. gin-
givalis and F. nucleatum in order to better understand the
host immune response. Therefore, with more solid literature
on these signaling pathways and immune responses during
infection with these bacteria, effective treatments for PD
may emerge.
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MyD88: Myeloid differentiation primary response 88
Myh9: Nonmuscle myosin II-A
NDK: Nucleoside diphosphate kinase
NF-kB: Nuclear factor kappa-light-chain-enhancer of

activated B cells
NLRs: Nucleotide-binding oligomerization domain-like

receptors
NOD: Nucleotide oligomerization domain
NLRBs: NOD-like receptors or baculovirus inhibitor

(BIR) repeats
NO: Nitric oxide
OS: Oxidative stress
OMVs: Outer membrane vesicles
PAMPs: Molecular pattern associated with the pathogen
PBMCs: Peripheral blood mononuclear cells
PGDHC: Phosphoglycerol dihydroceramide
PEDHC: Phosphoethanolamine dihydroceramide

PRRs: Pattern recognition receptors
PYD: Pyridine domain
PGE2: Prostaglandin E2
PI3K: Phosphatidylinositol-3-kinase
PD: Periodontal disease
P2X: The ATP-gated P2X receptor cation channel

family
P2Y: Family of purinergic G protein-coupled receptors
p65: Also known as Rel A, nuclear factor NF-kappa-B

p65 subunit
Rabs: Ras superfamily of monomeric G protein
RANKL: Receptor activator of nuclear factor kappa-Β

ligand
Rel A: v-rel reticuloendotheliosis viral oncogene homo-

log A
RLRs: RIG-I-like receptors (retinoic acid-inducible

gene-I-like receptors)
RhoA: Ras homolog gene family, member A
ROS: Reactive oxygen species
STAT3: Signal transducer and activator of transcription 3
SOCS3: Suppressor of cytokine signaling 3
TRAF 6: Tumor necrosis factor receptor-associated

factor 6
TRIF: TIR-domain-containing adapter-inducing inter-

feron-β
TRAM: TRIF-related adaptor molecule
TIR: Toll/interleukin-1 receptor
TLRs: Toll-like receptors
TNF-α: Tumor necrosis factor-α.
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