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Abstract
Parkinson’s disease (PD) is often associated with cognitive deficits, although their severity

varies considerably between patients. Recently, we used voxel-based morphometry (VBM)

to show that individual differences in gray matter (GM) volume relate to cognitive heteroge-

neity in PD. VBM does, however, not differentiate between cortical thickness (CTh) and sur-

face area (SA), which might be independently affected in PD. We therefore re-analyzed our

cohort using the surface-based method FreeSurfer, and investigated (i) CTh, SA, and (sub)

cortical GM volume differences between 93 PD patients and 45 matched controls, and (ii)

the relation between these structural measures and cognitive performance on six neuropsy-

chological tasks within the PD group. We found cortical thinning in PD patients in the left

pericalcarine gyrus, extending to cuneus, precuneus and lingual areas and left inferior pari-

etal cortex, bilateral rostral middle frontal cortex, and right cuneus, and increased cortical

surface area in the left pars triangularis. Within the PD group, we found negative correla-

tions between (i) CTh of occipital areas and performance on a verbal memory task, (ii) SA

and volume of the frontal cortex and visuospatial memory performance, and, (iii) volume of

the right thalamus and scores on two verbal fluency tasks. Our primary findings illustrate

that i) CTh and SA are differentially affected in PD, and ii) VBM and FreeSurfer yield non-

overlapping results in an identical dataset. We argue that this discrepancy is due to techni-

cal differences and the subtlety of the PD-related structural changes.
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Introduction
In addition to typical motor symptoms such as tremor, bradykinesia, rigidity, and postural
instability, patients with Parkinson’s disease (PD) often experience non-motor symptoms.
Among these non-motor symptoms are cognitive deficits, which predominantly exist in the
domain of executive functions, memory and visuospatial performance [1, 2]. Cognitive deficits
are common, even in early stage PD [2], and up to 80% of all patients suffer from dementia at
the end-stage of the disease [3]. The onset and rate of cognitive decline, however, differs con-
siderably between patients.

Recently, we showed that differences in brain structure may contribute to cognitive hetero-
geneity in PD [4]. In that VBM study patients had relatively small areas of decreased gray mat-
ter (GM) volume in cortical areas such as the parietal, temporal, and frontal cortex, and in the
cerebellum. Within the PD group, we found positive correlations between GM volume and
cognitive performance for (i) parahippocampal gyrus and occipital lobe and verbal memory,
(ii) medial temporal lobe and putamen and visuospatial memory, (iii) middle temporal gyrus
and frontal lobe and verbal fluency, and (iv) inferior parietal lobe and cognitive flexibility.
These VBM results suggest that in addition to the diffuse structural changes that affect the PD
population in general, between-patient differences in regional GM volume may play a role in
cognitive heterogeneity.

Despite the advantages of this voxel-based technique, VBM suffers from a major drawback:
it does not distinguish between different cortical morphological properties [5]. GM volume is
the product of cortical thickness (CTh) and surface area (SA) [6]. There is evidence to suggest
that CTh and SA are differentially affected in normal aging [7] and Alzheimer’s disease [8].
Similarly, recent studies suggest that a separate consideration of these two components of GM
volume may also be more informative in the context of PD [9–11]. We therefore employed
FreeSurfer, a surface-based technique, to measure CTh, SA, and (sub)cortical GM volume in
the PD and HC groups originally analyzed with VBM [4]. This approach provided the oppor-
tunity to i) investigate specific structural changes related to PD, ii) study the contribution of
different aspects of brain structure to cognitive heterogeneity in PD, and iii) compare the use of
two common neuroimaging techniques for structural analyses in an identical dataset. We
hypothesized to find structural decreases in PD patients when compared with controls, which
could be (partly) explained by differences in CTh and SA. Similarly, we expected to find corre-
lations between task performance and structural measures in brain areas that would (partly)
overlap with those found in our previous VBM study within the PD sample. Although VBM
and FreeSurfer are complementary (i.e. they do not measure the same (sub)cortical characteris-
tics) we expected to replicate the most robust cortical and subcortical effects we found in our
previous study.

Material and Methods

Participants
A detailed description of the selection procedure of our participants is provided in Gerrits et al
(2013). Briefly, we selected 93 idiopathic PD patients from a large, well-documented cohort of
the outpatient clinic for movement disorders at the VU University medical center (VUmc), as
well as 46 demographically age- and sex-matched HC. Magnetic resonance imaging (MRI)
scans and demographic information, such as age and sex, were collected for the entire sample.
Due to incorrect cortical reconstruction, we excluded one control participant, resulting in a
sample that is almost, but not entirely, identical to the sample used in the VBM study [4].
Within the PD group, we evaluated education level using a scaled Dutch classification system
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ranging from 1 (did not finish primary school) to 7 (university degree) [12]. We assessed sever-
ity of motor symptoms and stage of illness with the motor subscore of the Unified Parkinson’s
Disease Rating Scale (UPDRS-III) and Hoehn & Yahr scales [13], respectively. Disease dura-
tion was defined as the subjective time interval between the first reported classical motor symp-
toms and the moment of clinical assessment. We evaluated mood and anxiety symptoms with
the Beck Depression Inventory (BDI) [14] and the Beck Anxiety Inventory (BAI) [15], respec-
tively. The cognitive status of our PD cohort was assessed by trained neuropsychologists as
part of the standard diagnostic procedure. Of the 93 PD patients, 75 patients did not show evi-
dent cognitive impairments, eight patients fulfilled the criteria for mild cognitive impairment
and four patients were diagnosed with PD dementia. Six patients could not be classified. All
participants gave written informed consent according to the declaration of Helsinki to the pro-
tocol, which was approved by the local ethics committee of the VUmc. To summarize, we used
the structural scans of 93 patients and 46 healthy participants in our previous VBM study, and
used the same scans of all 93 patients, and 45 (out of 46) healthy participants in our current
study.

Neuropsychological assessment
Neuropsychological data were available only for the PD group, and not all patients participated
in each cognitive task (see table 1). To evaluate global cognitive status, we used the mini-mental
status examination (MMSE) [16, 17]. We assessed verbal memory with the Dutch version of
the Rey auditory verbal learning task (RAVLT) and measured both the total number of imme-
diately recalled items after five presentations and the number of items retrieved after a delay
[18]. The delayed recall condition of the Rey-Osterrieth complex figure test (ROCFT) was used
to evaluate visuospatial memory [19]. We administered the Category fluency task (naming as
many animals as possible in 60 seconds) to examine semantic fluency and the Letter fluency
task (naming as many words possible starting with D, A and T in 3 trials of 60 seconds each) to
assess phonemic verbal fluency. We examined executive functioning with the Stroop color
word test [20] and the Trail making test [21]. Interference susceptibility was measured as the
time needed for card III of the Stroop Color-Word Test minus the average completion time of
Card I (speed of word reading) and II (speed of color naming). We subtracted the completion
time on TMT-A from the completion time of TMT-B (TMTB-A) to obtain a measure of cogni-
tive flexibility. The procedures for neuropsychological assessment followed those described by
Lezak and colleagues [22].

MRI acquisition and preprocessing
High-resolution structural MRI scans were obtained at the VUmc, using a GE Signa HDxt
3.0-Tesla MRI-scanner (General Electric, Milwaukee, Wisconsin, USA) with an 8-channel
head coil. We acquired structural MRI data using a sagittal 3-dimensional gradient-echo
T1-weighted sequence (256 x 256 matrix; field of view = 25cm; slice thickness = 1mm; voxel
size = 1 x 0.98 x 0.98 mm; TR = 7.8 ms; TE = 3.0 ms; view angle = 12°). Image analysis was car-
ried out with the stable version (v.5.3.0) of the FreeSurfer software (http://surfer.nmr.mgh.
harvard.edu) [23–25]. In short, the procedure included: motion correction, intensity normali-
zation, Talairach registration, skull stripping, segmentation of subcortical white matter, tessel-
lation of the GM/white matter (WM) boundary, automated topology correction, and surface
deformation. We used a 10 mm (full-width at half-maximum) Gaussian kernel to smooth
maps. Finally, FreeSurfer created a surface 3D model of the cortex using intensity and continu-
ity information.
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Cortical analysis
We visually checked the cortical reconstruction of each subject for inaccuracies and manually
corrected major topological inaccuracies with vertex edits or control points and subsequently
repeated the processing. CTh was calculated as the shortest distance between the GM/WM
boundary and pial surface at each vertex across the cortical mantle, measured in millimeters
(mm). In addition to vertex-based reconstruction, FreeSurfer automatically parcellated the cor-
tex into 34 gyral-based regions-of-interest (ROIs) per hemisphere, according to the Desikan-
Killiany atlas. For each of the 68 cortical parcellations, FreeSurfer calculates i) the average CTh
(in mm), ii) total cortical SA of the pial (in mm2), and iii) the cortical GM volume (in mm3).

Subcortical analysis
Subcortical volumes were calculated with FreeSurfer’s automated procedure for volumetric
measures. Each voxel in the normalized brain volume was assigned to one of 40 labels, using a
probabilistic atlas obtained from a manually labeled training set [26]. The labels we used for
further analysis were the putamen, caudate nucleus, globus pallidus, nucleus accumbens, brain-
stem, thalamus, amygdala, hippocampus, ventral diencephalon and the ventricular system. In

Table 1. Demographic and clinical features of the PD and HC group, and PD subgroups for each neuropsychological test.

PD total RAVLT ROCFT Stroop TMTB-A Category
Fluency

Letter
Fluency

HC p-value
(PD total
vs HC)

Number of
participants

93 88 83 86 79 85 80 45 -

tGM 648 ± 66 648 ± 67 651 ± 67 648 ± 66 649 ± 67 650 ± 68 650 ± 65 652 ± 59 -

Sex (male) (%) 61 (65.6) 56 (63.6) 53 (63.9) 54 (62.8) 48 (60.8) 56 (65.9) 52 (65.0) 27 (60.0) 0.52b

Age (years)
(range)

62.8 ± 10.3
(27–88)

62.5 ± 10.2
(27–88)

62.2 ± 10.4
(27–88)

62.5 ± 10.3
(27–88)

62.2 ± 9.9
(27–88)

62.5 ± 10.5
(27–88)

62.0 ± 10.1
(27–84)

60.6 ± 7.8
(47–77)

0.19a

Education
(Verhage)

5 (1–7) 5 (1–7) 5 (1–7) 5 (1–7) 5 (1–7) 5 (1–7) 5 (1–7) - -

UPDRS-III
score

25.5 ± 10.3 24.2 ± 9.6 23.4 ± 9.2 24.0 ± 9.6 24.1 ± 9.7 24.7 ± 9.9 23.9 ± 9.6 - -

Hoehn and
Yahrstage
(range)

2 (1–4) 2 (1–3) 2 (1–3) 2 (1–3) 2 (1–3) 2 (1–4) 2 (1–3) - -

Disease
duration (years)

3.0 ± 3.2 2.8 ± 2.7 2.8 ± 2.7 2.8 ± 2.7 2.7 ± 2.7 3.0 ± 3.2 2.7 ± 2.6 - -

DRT (n) (%) 32 (34.4) 30 (34.1) 27 (32.5) 29 (33.7) 28 (35.4) 27 (31.8) 26 (32.5) - -

LEDD (mg/day) 509 (100–
1590)

492 (100–
1590)

522 (150–
1590)

495 (100–
1590)

509 (150–
1590)

525 (100–
1590)

490 (100–
1590)

- -

MMSE 27.7 ± 3.0 27.8 ± 2.7 27.7 ± 3.0 28.0 ± 2.1 28.0 ± 2.1 28.0 ± 2.2 28.1 ± 2.1 - -

BDI 8 (0–32) 8 (0–28) 8 (0–28) 8 (0–28) 8 (0–28) 8 (0–26) 8 (0–28) - -

BAI 10 (0–45) 10 (0–45) 10 (0–45) 10 (0–45) 11 (1–45) 10 (0–45) 10 (0–45) - -

Data represent mean ± SD or median (range).

Abbreviations: PD Parkinson's disease patients; HC healthy controls; RAVLT Rey Auditory Verbal Learning Test immediate and delayed recall; ROCFT

Rey Osterrieth Complex Figure Test delayed recall; Stroop Stroop word color task; TMTB-A Trail Making Test B-A; tGM total grey matter volume;

UPDRS-III Unified Parkinson's Disease Rating Scale-III; DRT dopamine replacement therapy; LEDD Levodopa equivalent daily dose, computed in the

group of medicated patients only; MMSE Mini-Mental State Examination; BDI Beck Depression Inventory; BAI Beck Anxiety Inventory
a Student t test
b Chi squared test

doi:10.1371/journal.pone.0148852.t001
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contrast to our VBM study, the cerebellum was excluded and volumetric measures of the ven-
tricles were included. Last, a measure of total GM (tGM) (in mm3) was also computed, consist-
ing of both surface-based cortical GM volume calculations and subcortical voxel counts.

Statistical analyses
To assess differences in demographic variables between the PD and HC group and PD sub-
groups for each task, we performed t-tests (for continuous data) and chi-square tests (for cate-
gorical data). We checked assumptions of normality and homogeneity of variance with the
Shapiro-Wilk test and Levene’s test, respectively. To correct for non-normal distribution, all
values of ventricle volume, the TMTB-A score, and Stroop color word interference test scores
were log-transformed. We used t-tests and Pearson correlations since parametric assumptions
were met for 74% of the data.

Group differences
A number of statistical tests was performed to assess between-group differences in structural
measures. First, we performed a vertex-wise analysis of differences in CTh in FreeSurfer’s sta-
tistical program QDEC 1.5, using Monte Carlo-simulations with 10.000 iterations to correct
for multiple comparisons and a cluster-wise p-value of .05 to display results. Second, surface
(i.e. SA per parcellation) and volumetric analyses (i.e. sub-cortical volume estimates calculated
by FreeSurfer, and the manually calculated volume estimate per cortical parcellation) were per-
formed in SPSS 20.0 (SPSS, Chicago, IL, USA). For SA and cortical volume, we performed
independent t-tests using the 68 parcellations (34 per hemisphere) as dependent variables,
group as between-subject factor, and tGM volume as a nuisance variable [8]. Between-group
differences in subcortical volume were investigated with the volume of the 23 automatically
segmented subcortical regions as dependent variable, group as between-subject factor, and
tGM as a nuisance variable. We applied a Bonferroni correction by dividing our p-value by the
number of cortical areas per hemisphere (p< (.05/34) = ~.001) and by the number of sub-cor-
tical structures per hemisphere (p< (.05/13) = ~.004) in order to correct for multiple
comparisons.

Correlations with cognitive performance
Since neuropsychological data were only available for the PD patients, correlations between
cognitive performance and structural measurements were restricted to this group. We used a
GLMmodel in QDEC 1.5 to correlate CTh at each vertex with scores on the six neuropsycho-
logical tasks, while including age, sex, and education as covariates, and applying Monte Carlo-
simulations to correct for multiple comparisons. We used a ‘different-onset-same-slope’
model, which assumes that no sex�age interaction exists. For SA, cortical GM, and sub-cortical
volume, we computed partial correlations in SPSS 20.0 using each segmentation/parcellation as
criterion, neuropsychological test score as predictor, and age, sex, education, and tGM level as
covariates. Again, Monte Carlo-simulations (in QDEC) and Bonferroni corrections (in SPSS)
were applied to correct for the multiple comparisons.

Results
The PD and HC group were matched for age (p = .19) and sex (p = .52). In addition, the PD
subgroups for each task were similar regarding education, disease-related variables (i.e. UPDRS
III score, Hoehn and Yahr stage, disease duration, dopamine replacement therapy), global cog-
nitive functioning and measures of mood (i.e. depression and anxiety level) (see table 1). On
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average, patients had a UPDRS III score of 24, a Hoehn and Yahr stage of 2 and a median dis-
ease duration of 3 years. The majority of the PD group was still unmedicated at the time of
scanning (i.e. only 34% received dopamine replacement therapy).

Group differences
The vertex-wise CTh analysis showed cortical thinning in PD patients compared with HC in
the left pericalcarine gyrus, extending to the cuneus, precuneus and lingual areas, in the left
inferior parietal cortex, bilateral rostral middle frontal cortex, and right cuneus (see table 2 and
Fig 1a–1d). In addition, PD patients showed enlargement of the third, and bilateral lateral ven-
tricles and left inferior lateral ventricle when compared with HC. For SA, we found that the PD
patients had increased cortical SA of the pars triangularis in the right hemisphere (see table 3).
No group differences in cortical GM volume were found.

Correlations with cognitive performance
Vertex-wise analysis revealed a negative correlation between CTh in left lateral occipital and
lingual areas and performance on the RAVLT immediate recall condition (see Fig 1e and 1f).
The volume of the right thalamus showed a negative correlation with performance on the Let-
ter and Category fluency task. The volume and SA of the left pars opercularis correlated nega-
tively with performance on the ROCFT (see table 4).

Discussion
In this study, we used a surface-based analysis method to investigate structural brain changes
in PD and the role of distinct morphological properties on cognitive heterogeneity among
patients. Compared with controls, PD patients showed cortical thinning in the right cuneus,
left lateral occipital areas, left inferior parietal cortex and the bilateral rostral middle frontal
cortex, ventricular enlargement, and increased cortical surface area in the right pars triangu-
laris. Within-group variance in volume of the thalamus, CTh of the left lateral occipital and lin-
gual areas, and cortical volume and SA of the left pars opercularis related to heterogeneity
fluency, verbal memory, and visuospatial memory, respectively. As in our VBM study, brain
areas showing group differences in morphological properties did not overlap with brain areas
in which structural changes were related to cognitive performance. Thus, while PD patients as
a group showed atrophy in various regions compared with the HC, cognitive heterogeneity
among patients was associated with between-patient structural differences in other regions.
These differences may reflect subtle PD-related structural changes that affect only a subgroup

Table 2. Vertex-wise cortical thickness group analysis.

Region Cluster size (mm2) PD HC CWP

X Y Z

L pericalcarine gyrus 1802 1.87 ± 0.13 2.00 ± 0.13 -5 -75 12 < .001

R rostral middle frontal 633 2.24 ± 0.12 2.36 ± 0.14 -40 -49 4 .001

R cuneus 597 1.92 ± 0.13 2.03 ± 0.12 -7 -86 27 .002

L rostral middle frontal 588 2.16 ± 0.13 2.28 ± 0.15 -38 -43 3 .002

L inferior parietal 419 2.37 ± 0.16 2.51 ± 0.15 -38 -62 27 .02

Data represent mean thickness in mm ± SD. Only effects with significant clusterwise-values after Monte Carlo simulations are presented. Coordinates are

depicted as peak-coordinates within the MNI305 reference frame

Abbreviations: PD Parkinson’s disease patients; HC healthy controls; CWP clusterwise corecte p-value

doi:10.1371/journal.pone.0148852.t002
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Fig 1. Between-group differences in cortical thickness and thickness and correlation with task performance. HC had increased cortical thickness in
the left pericalcarine gyrus, extending to cuneus, precuneus and lingual areas left inferior parietal cortex, bilateral rostral middle frontal cortex, and right
cuneus, when compared with PD patients (a-d). Within the PD sample, we found a negative correlation between the left lateral occipital and lingual gyrus and
performance on the RAVLT (e-f). Clusters were significant after multiple comparison correction with Monte Carlo simulations.

doi:10.1371/journal.pone.0148852.g001
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of patients. Alternatively, they represent premorbid differences that may have caused some
patients to be less vulnerable than others to cognitive impairment as a consequence of the PD-
related structural changes observed at a group level.

Various structural imaging studies have consistently shown a negative correlation between
structural brain measures (i.e. cortical thickness and / or GM volume), and cognition in PD
[27–31]. PD patients with MCI, for example, have faster rates of cortical thinning when com-
pared with patients without MCI [32]. Furthermore, non-demented PD patients who devel-
oped PDD within two years after baseline assessment showed a faster rate of cortical thinning
than those who did not develop PDD [33]. These two studies further corroborate the relation
between brain structure and cognition in a longitudinal design. Within groups of PD patients,
correlations have been found between task performance on neuropsychological tests and GM
structure, thereby also strengthening the relation between brain structure and cognition [34].
Our study also found associations between cortical thickness / cortical surface area / GM vol-
ume and task performance on several neuropsychological tests. Furthermore, we found rela-
tively small areas of reduced cortical thickness in our cohort of patients, which corresponds
with findings from other investigations in groups of cognitively preserved PD patients [35–37],
although it is important to emphasize that our cohort was not selected to represent a unitary
cognitive status (e.g. not cognitively impaired / cognitively impaired).

Table 3. (Sub)cortical volume + cortical pial surface area group analysis.

Measurement Region PD HC t p

Subcortical volume (mm3) a 3rd ventricle 3.20 ± 0.17 3.09 ± 0.17 14.64 < .001

L lateral ventricle 4.15 ± 0.23 4.00 ± 0.22 14.35 < .001

R lateral ventricle 4.11 ± 0.23 3.97 ± 0.23 11.12 .001

L inferior lateral ventricle 2.71 ± 0.31 2.54 ± 0.27 9.43 .003

Cortical surface area (mm2) R pars triangularis 1875 ± 336 1726 ± 298 10.57 .001

Data represent mean ± SD. Only effects with significant p-values after Bonferroni correction are presented.

Abbreviations: PD Parkinson’s disease patients; HC healthy controls
a All measurements of ventricle volume are log transformed.

doi:10.1371/journal.pone.0148852.t003

Table 4. Partial correlations of (sub)cortical volume and surface area with neuropsychological task performance, corrected for age, sex, educa-
tion, and tGM volume.

Measurement Region Task r CWP

X Y Z

Cortical thickness (mm) a L lateral occipital and lingual gyrus RAVLT immediate recall -.420 -19 -96 -15 .006

Subcortical volume (mm3)b R thalamus Letter Fluency -.338 - - - .003

R thalamus Category Fluency -.322 - - - .003

Cortical volume (mm3)b L pars opercularis ROCFT -.374 - - - .001

Surface area (mm2) b L pars opercularis ROCFT -.415 - - - < .001

Coordinates are depicted as peak-coordinates within the MNI305 reference frame

Abbreviations: RAVLT Rey Auditory Verbal Learning Task; ROCFT Rey Osterrieth Complex Figure Test; Stroop Stroop word color test; r Pearson’s

correlation coefficient; CWP clusterwise corrected p-vale;
a Based on vertex-wise analysis
b Based on parcellation-wise analysis

doi:10.1371/journal.pone.0148852.t004
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Despite a lack of overall consensus, neuro-pathological studies have suggested that differ-
ences in cortical thickness and GM volume primarily represent differences in neuronal struc-
tural complexity (i.e. synapses and dendritic arborisation) and not neurons per se, although the
influence of (mircro)glia, blood vessels and, neuronal size cannot be fully excluded [38]. This
hypothesis concurs with other longitudinal observations in which GM volume [39, 40] and
cortical thickness [41] increased after training in task-related areas and further supports the
relation between structure and function [42]. Relating this hypothesis to our current findings
suggests that an optimal structural complexity (i.e. synaptic efficiency) in certain areas leads to
an increased task performance on some neuropsychological tasks.

Although we used the same dataset in the current study as in our previous VBM analysis
[4], there was surprisingly little overlap between the studies in the areas in which we found sig-
nificant effects. Since our study was not designed to specifically investigate between-technique
differences, we will only shortly discuss a number of possible explanations why the current
findings deviate from our previous results. i) In our VBM study, we applied an uncorrected p-
value of .001 with an extent threshold of 50 voxels, whereas the present study employs Monte
Carlo simulations and Bonferroni corrections, which are statistically more stringent [43]. To
exclude the effects of potential false-positive findings, we reanalyzed our data using both tech-
niques while employing an FDR correction. For the VBM analysis, no effects survived the sta-
tistical threshold, whereas in the FreeSurfer analyses we found clusters of decreased cortical
thickness in the left parietal, occipital and frontal areas when comparing patients with controls.
So also when employing a similar statistical threshold, the results between our two studies still
differ. ii) Whereas FreeSurfer calculates the total volume of a cortical parcellation or subcortical
segmentation, VBM assesses GM volume on a voxel-by-voxel basis. VBMmight, therefore, be
more sensitive to detect small local effects that may be ‘averaged out’ when measured over a
larger area. However, volume-based techniques, such as VBM, are prone to partial volume
effects, which might lead to erroneous segmentation and registration, and thereby to an overes-
timation of GM differences [44, 45]. Also minor methodological variations, such as different
spatial transformations or smoothing procedures can alter results in a way similar to the bio-
logic differences under investigation [46]. Since FreeSurfer is a surface-based technique, and
thereby differentially affected by these important preprocessing steps, this further hinders the
between-technique comparison. iii) Cortical GM volume as a measure of brain structure is dif-
ferent from CTh and SA. Our FreeSurfer results show, in accordance with earlier studies [9–
11], that CTh and SA are differentially affected in PD. Since the product of their combined
influence is not uniform across the cortex, cortical GM volume may not show overlap with
either measure, or effects (e.g. increased SA / decreased CTh) in opposite directions may cancel
each other out. iv) This cohort of patients was, overall, still in an early disease stage, and cogni-
tively relatively well-preserved. Several other studies have investigated structural changes in
early stage PD, and found little or no atrophy in cognitively preserved cohorts, comparable to
ours [35, 37]. The areas in which atrophy was described varied considerably between studies,
thus suggesting that the atrophy is subtle and topographically non-specific, in contrast with,
for example, hippocampal atrophy in Alzheimer’s disease. We argue that if the structural dif-
ferences had been more pronounced, both techniques would have detected them. Our results
confirm previous studies by showing that there is indeed atrophy in relatively early stage PD,
but that it is, if anything, subtle and spread over various brain areas. Also the enlargement of
the third and lateral ventricles indicates a diffuse and non-specific degenerative process.

Several results are consistent with previous data obtained using FreeSurfer in PD, mainly
concerning CTh reductions in the bilateral rostral middle frontal cortex, bilateral cuneus and
left inferior parietal areas [47–49], as well as the enlargement of the third and lateral ventricles
[50, 51]. Also the positive correlation between SA of the left medial orbitofrontal cortex and
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Stroop task performance is in accordance with the involvement of this area in response inhibi-
tion [52]. In contrast, the negative correlation between verbal memory performance and CTh
of the lateral occipital and lingual cortex is not in line with earlier findings. Pellicano et al. [53]
reported a positive correlation between verbal memory performance and thickness in occipital
areas (i.e. the fusiform area) in PD. Also the negative correlations between the left pars opercu-
laris and the right thalamus with visuospatial memory and verbal fluency, respectively, are dif-
ficult to interpret, although numerous cognitive processes have been associated with these
areas [54] [55–57]. Future studies should replicate these findings before any definite statements
can be made. In addition, since both VBM [58] and FreeSurfer [59] have problems segmenting
the thalamus from the surrounding WM, we advise caution when interpreting the correlation
between the thalamus and verbal fluency we found in the current, but not the previous, (VBM)
study, since these conflicting results could indicate a spurious finding. Replication in future
research is therefore warranted.

One could speculate that the negative correlations can be interpreted as a form of pruning
to get a more efficient organisation, and thus less thickness equals more efficiency, thereby
leading to a better task performance. This, however, is not in line with findings in which an
increase in thickness is found after (cognitive) training in task-related areas (see e.g. [41].
Future studies should therefore replicate these negative correlations findings before any defi-
nite statements can be made.

To our knowledge, this is the first study that compared VBM and FreeSurfer data in the
same cohort of PD patients to study the relation between brain structure and cognitive perfor-
mance. Strengths of our study include our relatively large and well-powered [60] sample and
the fact that we controlled for various confounding factors such as age, sex and education. An
important limitation, however, is the absence of neuropsychological test scores from HC. Con-
clusions based on the correlations between brain structure and cognitive performance should
therefore be interpreted with caution, as they may not be specific to PD. Furthermore, FreeSur-
fer, by default, calculates cortical thickness as the shortest (Euclidian) distance between two
nearest vertices; once from the pial surface to the GM/WM boundary, and once from the GM/
WM boundary to the pial surface. These two values are then averaged to produce a thickness
value at that node. Although there is no golden standard or general consensus as to which mea-
sure is best [61, 62], it is important to keep in mind that shortest distance is not the only way to
calculate cortical thickness. Some have argued that other measures, such as linked-distance,
might be more sensitive to differences in thickness (see e.g. [63]).

Future research should include a longitudinal approach to gain more insight into how struc-
tural changes relate to cognitive status over time. It would also be insightful to include patients
with a more diverse cognitive profile to make the sample more heterogeneous, or subdivide the
sample into subgroups based on cognitive status (e.g. cognitively not impaired; cognitively
impaired; demented).

Conclusions
The results of the current study suggest that PD is associated with cortical thinning and ven-
tricular enlargement, and that cognitive heterogeneity within the PD population is associated
with subtle differences in CTh, SA, and (sub)cortical GM volume. Our results obtained with
FreeSurfer support the hypothesis that CTh and SA are differentially affected by the disease,
and have diverse associations with cognition. This underlines the necessity to take distinct
morphological properties of brain areas into account in the context of PD. By comparing GM
volume effects obtained with FreeSurfer and VBM, we have provided evidence that their meth-
odological and technical differences can yield non-overlapping results in the same cohort of
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participants. We think researchers should be aware of the consequences of the choice of tech-
nique on their results, and we recommend that future research should further investigate why
two structure-based analysis techniques yield different findings.
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