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Analysis of cardiac magnetic resonance imaging in
36,000 individuals yields genetic insights into
dilated cardiomyopathy
James P. Pirruccello 1,2,3, Alexander Bick2,3,4, Minxian Wang 3, Mark Chaffin 3, Samuel Friedman5,

Jie Yao6, Xiuqing Guo6, Bharath Ambale Venkatesh7, Kent D. Taylor6, Wendy S. Post8,9, Stephen Rich 10,

Joao A. C. Lima 11,7, Jerome I. Rotter6, Anthony Philippakis5,12, Steven A. Lubitz1,2,3,13, Patrick T. Ellinor1,2,3,13,

Amit V. Khera1,2,3,13, Sekar Kathiresan 1,2,3,13,14 & Krishna G. Aragam1,2,3,13✉

Dilated cardiomyopathy (DCM) is an important cause of heart failure and the leading indi-

cation for heart transplantation. Many rare genetic variants have been associated with DCM,

but common variant studies of the disease have yielded few associated loci. As structural

changes in the heart are a defining feature of DCM, we report a genome-wide association

study of cardiac magnetic resonance imaging (MRI)-derived left ventricular measurements in

36,041 UK Biobank participants, with replication in 2184 participants from the Multi-Ethnic

Study of Atherosclerosis. We identify 45 previously unreported loci associated with cardiac

structure and function, many near well-established genes for Mendelian cardiomyopathies. A

polygenic score of MRI-derived left ventricular end systolic volume strongly associates with

incident DCM in the general population. Even among carriers of TTN truncating mutations,

this polygenic score influences the size and function of the human heart. These results further

implicate common genetic polymorphisms in the pathogenesis of DCM.
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Affecting one in every 250 people, dilated cardiomyopathy
(DCM) is a disease of cardiac muscle that leads to heart
failure, and is the most common indication for cardiac

transplantation1. Rare variants in dozens of genes have been
associated with DCM2. The most commonly identified mutations
are truncating variants in TTN (TTNtv), which are found in
15–20% of DCM cases. However, rare variants in
cardiomyopathy-related genes yield a genetic diagnosis for DCM
in approximately 40% of cases2. Furthermore, sequencing efforts
in large populations are now identifying an increasing number of
individuals who harbor rare DCM-associated variants, but do not
manifest clinical disease3–6.

A putative explanation for the limited diagnostic yield and
incomplete penetrance of rare DCM-associated variants is that
common genetic variation plays a role in the genetic architecture
of DCM. To gain insight into the relationship between common
genetic variants and DCM, one exome-wide association study7

and two genome-wide association studies (GWAS)8,9 have been
conducted. These case–control studies identified nine loci sig-
nificantly associated with DCM, five of which contain genes that
also harbor rare DCM-causing mutations (TTN, ALPK3, BAG3,
FLNC, and PLEKHM2). These studies have successfully linked
common variants to DCM, though their yield has been limited by
modest sample sizes, as each study had fewer than 5,000 cases.

As structural changes to the left ventricle are a defining—and
frequently incipient—feature of DCM, genetic analyses of cardiac
imaging traits present another plausible method for genetic
discovery10,11. Several GWAS of cardiac imaging phenotypes
have probed the link between common genetic variants and
changes in cardiac structure and function. For example, a large-
scale genetic study of over 46,000 participants with transthoracic
echocardiography (TTE)-derived phenotypes identified five
genome-wide significant loci. Notably, one locus, near PLN, is
associated with Mendelian cardiomyopathies12,13. A subsequent
study using TTE in 19,000 participants from BioBank Japan
yielded five additional, previously unreported loci, including a
locus near VCL also associated with cardiomyopathies14–16.
Finally, a study of 6765 African-American participants with
cardiac imaging from the Candidate Gene Association Resource
(CARe) Study, which included 1210 individuals with cardiac
magnetic resonance imaging (MRI) from the Multi-Ethnic Study
of Atherosclerosis (MESA), yielded four suggestive loci that have
not been subsequently confirmed17. Together, these studies
highlight the potential value of population-based cardiac imaging
to gain clinical and biological insights into myocardial diseases.
Whether common genetic variants related to the heart’s structure
and function can identify as-yet unaffected individuals at risk for
DCM remains uncertain.

In this study, we investigate common variant associations with
cardiac structure and function in the UK Biobank, a population-
based cohort of over 500,000 participants18,19, including a large
imaging substudy with plans to perform cardiac MRI in 100,000
participants20,21. The phenotypic characteristics of the first 5000
participants have been described in detail22,23. Here, we analyze
automated measurements from 36,041 participants in order to study
the relationship between common genetic variants, cardiac imaging
phenotypes, and risk for the development of DCM. We identify 45
previously unreported loci associated with left ventricular structure
and function, demonstrate substantial overlap between the uncov-
ered genetic loci and known Mendelian cardiomyopathy genes, and
develop a robust polygenic predictor of incident DCM.

Results
Phenotype refinement and cardiac MRI results. We identified
36,041 UK Biobank participants with cardiac MRI readings

provided by the UK Biobank who did not have a diagnosis of
congestive heart failure (CHF), coronary artery disease (CAD), or
DCM at the time of enrollment (Supplementary Data File 1 and
Supplementary Fig. 1). For these individuals, seven cardiac MRI-
derived phenotypes were available: left ventricular end-diastolic
volume (LVEDV), left ventricular end-systolic volume (LVESV),
stroke volume (SV), the body-surface-area (BSA) indexed ver-
sions of each of these traits (LVEDVi, LVESVi, and SVi), and left
ventricular ejection fraction (LVEF). At the time of MRI, the
individuals had a mean age of 64 years and the majority were
female (52.9%). For women, the mean LVEDV, LVESV, and SV
were 120, 41, and 81 mL, respectively; for men, they were 150, 58,
and 95 mL (Supplementary Data File 2). The LVEF averaged 67%
for women and 63% for men (Supplementary Fig. 2).

Cardiac structure and function are heritable. We asked whether
the cardiac MRI phenotypes were influenced by participants’
genetic backgrounds. SNP-based heritability—the proportion of
variance explained by all SNPs on a genotyping array—was 43%
for LVEDV, 40% for LVESV, 31% for LVEF, and 34% for SV.
Genetic correlations between these cardiac MRI phenotypes were
similar in magnitude to their observational correlations, except
for the relationship between SV and LVEF, which had a near-zero
observational correlation but a weakly positive genetic correlation
(Supplementary Figs. 3 and 4).

Fifty-seven genetic loci associated with cardiac size and func-
tion. Having established a genetic basis for variability in cardiac
structure and function, we then performed a series of GWAS to
identify common genetic variants associated with the seven car-
diac MRI phenotypes. Fifty-seven distinct loci in the human
genome were associated with at least one cardiac MRI phenotype
at a widely used genome-wide significance threshold (BOLT-
LMM P < 5 × 10−8; Supplementary Data File 3). If a more strin-
gent threshold of P < 5 × 10−9 had been used, we would have
identified 36 distinct loci (Supplementary Table 1). Linkage dis-
equilibrium (LD) score regression revealed minimal test statistic
inflation, consistent with polygenicity rather than population
stratification (Supplementary Table 2). No lead SNP deviated
from Hardy–Weinberg equilibrium (HWE) beyond the threshold
of HWE P= 1 × 10−6.

Of the 57 genome-wide significant loci, 45 were previously
unreported and had not been described in prior common variant
analyses of DCM or cardiac imaging phenotypes. In total, 22 loci
associated with LVEDV, 14 with LVEDVi, 32 with LVESV, 28
with LVESVi, 22 with LVEF, 12 with SV, and eight with SVi
(Fig. 1).

Five of the ten loci previously discovered through genetic
analyses of echocardiographic measurements were among our
genome-wide significant loci, including SNPs in loci near PLN,
SH2B3/ATXN2, MTSS1, SMARCB1/DERL3, and CDKN1A13,14.
The comparison to the echocardiographic studies was performed
on a per-trait basis, considering fractional shortening on TTE to
be analogous to LVEF on MRI, left ventricular internal diameter
at end diastole to be analogous to LVEDV, and left ventricular
internal diameter at end systole to be analogous to LVESV. Of the
four loci previously identified in a GWAS of cardiac traits
measured with TTE in participants of European ancestry13, all
four were also significantly associated with an analogous trait in
our study (Supplementary Table 3). In comparison, two of six loci
identified in a GWAS of TTE-derived cardiac traits in
participants of Japanese ancestry were significantly associated in
our study14, a lower proportion that may reflect ancestry-specific
patterns of linkage disequilibrium.
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Fig. 1 Manhattan plots of genome-wide association discovery analyses of cardiac MRI phenotypes. For each cardiac MRI phenotype, the −log10(P
value) is graphed on the y axis at each chromosomal position on the x-axis. P is the BOLT-LMM P value. The nearest gene to each genome-wide significant
lead SNP is labeled at each locus, except when a cardiomyopathy-related gene is present within 500 kb of the lead SNP. SNPs are colored blue near loci
that have previously been observed in common genetic analyses using cardiac traits (TTE or cardiac MRI). SNPs are colored red near loci that were
previously unreported.
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Six of the nine SNPs previously identified at exome- or
genome-wide significance in common variant studies of cardio-
myopathy were also associated at genome-wide significance with
at least one cardiac MRI phenotype in our study, including SNPs
near ALPK3, BAG3, CLCNKA/HSPB7, FHOD3, FLNC, and
TTN7–9. Our data provide nominal supporting evidence
(BOLT-LMM P < 1 × 10−3) for SNPs at two of the remaining
three loci. The lead SNPs from these prior studies, as well as the
association P value from the most strongly associated cardiac
MRI phenotype from our study, are available in Supplementary
Table 3.

External validation. We pursued replication of our genome-wide
significant loci in two independent cohorts (MESA and BioBank
Japan) using two different cardiac imaging modalities (cardiac
MRI and TTE).

In MESA, we studied 2184 participants with whole-genome
sequencing and cardiac MRI data available, and who did not have
cardiovascular disease or late gadolinium enhancement consistent
with myocardial scar (Supplementary Table 4)24–26. Of the 138
genome-wide significant SNP-trait associations in our discovery
analysis (accounting for SNPs significantly associated with
multiple traits), 113 were available for comparison in the MESA
dataset. In total, 99 of 113 SNP-trait associations had effects in the
same direction for UK Biobank and MESA (87.6% concordance;
binomial test with two-tailed P= 6.1 × 10−17, given a chance
expectation of 50% at each of 113 sites). Of the 27 SNP-trait
associations with a P value < 0.05, 26 had an effect in the same
direction as in the UK Biobank (binomial test with two-tailed
P= 5.4 × 10−11, given a chance expectation of 5% at each of
113 sites). Validation results for each SNP are available in
Supplementary Data File 4.

We then performed cross-modality validation using summary
statistics from a genome-wide association study in BioBank Japan
of 19,000 participants of Japanese ancestry with TTE data14,
including three traits analogous to LVEDV, LVESV, and LVEF.
We were able to identify data from BioBank Japan for 46 SNP-
trait associations (out of 76 in total across the three traits,
accounting for sites associated with multiple traits). Of these 46
SNP-trait associations, 39 had an effect in the same direction as in
the UK Biobank (84.8% agreement; binomial test with two-tailed
P= 1.8 × 10−6; Supplementary Data File 4).

Enrichment near genes expressed in cardiac and skeletal
muscle. In order to understand the tissue specificity of the dis-
covered loci, we applied MAGMA, which revealed an enrichment
of variants clustered near genes expressed in cardiac and skeletal
muscle tissue types, with results for LVESV, LVEDVi, and
LVESVi, achieving a Bonferroni-corrected significance threshold
(Supplementary Fig. 5).

GWAS loci enriched for Mendelian cardiomyopathy-linked
genes. We then asked whether the GWAS loci that we identified
for cardiac structure and function were more enriched for known
cardiomyopathy genes than expected by chance (Supplementary
Table 5). We compared the likelihood of an overlap between
known cardiomyopathy genes and our GWAS loci or matched
control loci (see Methods for details). In 10,000 simulations, we
found a significant enrichment in Mendelian cardiomyopathy-
linked genes at the cardiac MRI GWAS loci (one-tailed permu-
tation P= 1 × 10−4, Supplementary Fig. 6).

Transcriptome-wide association study. We performed a
transcriptome-wide association study (TWAS) to prioritize genes
within 500 kb of each locus based on expression in the left

ventricle and right atrial appendage27,28. TWAS-based prior-
itization is complementary to the approach of selecting the
nearest gene at a locus27,29. The most strongly associated gene at
each locus from the TWAS is annotated in Supplementary Data
File 3. Seven of the cardiomyopathy-linked genes from Supple-
mentary Table 6 (ACTN2, ALPK3, MYH6, NKX2–5, PLN,
PTPN11, and SHOC2) were the genes most strongly prioritized by
TWAS at their respective loci for at least one trait. Three
cardiomyopathy-linked genes (BAG3, CSRP3, and TTN) were not
candidates for inclusion in the TWAS, because they were below
the inclusion threshold based on the genotype-tissue expression
(GTEx) expression quantitative trait locus (eQTL) P value in both
the left ventricle and the right atrial appendage. Full TWAS
results are displayed in Supplementary Data File 5.

Polygenic score PheWAS yields a link to DCM. We also pro-
duced polygenic scores for each trait, weighting the genetic
dosage by the effect size of the lead SNPs from each GWAS in
Supplementary Data File 3. We performed a cross-sectional
phenome-wide association study (PheWAS) in 449,000 UK Bio-
bank participants to assess the relationship between each of the
seven polygenic scores and disease phenotypes. We first per-
formed a PheWAS using a broad set of PheCodes30, 1216 of
which were present in 200 or more participants. As anticipated,
this analysis showed an enrichment for cardiac diseases. We then
performed a PheWAS for 96 diseases using curated definitions (as
defined in Supplementary Data File 1). Among our curated dis-
ease traits, DCM emerged as the disease most strongly associated
with the polygenic scores for LVEF, LVESV, and LVESVi. Among
these, the LVESVi polygenic score had the single strongest rela-
tionship with DCM (OR 1.51 per standard deviation [SD]
increase in LVESVi polygenic score; P= 8.5 × 10–34 by logistic
regression, Fig. 2). The LVEDVi and SV polygenic scores had
strong inverse relationships with hypothyroidism, an observation
consistent with invasive studies that found reduced LVEDV and
SV in hypothyroid patients, attributed to hemodynamic loading
conditions31. The LVEDV and SV scores, both of which have
contributions from the major histocompatibility complex (MHC),
were most strongly inversely associated with psoriasis. Each of the
seven polygenic scores had several significant associations with
disease phenotypes, even after adjusting for multiple testing
(Bonferroni-adjusted significance threshold P= 5.9 × 10−6 in the
PheCode PheWAS, P= 7.4 × 10−5 in the manually curated dis-
ease phenotype PheWAS). The strongest relationships between
each of the seven polygenic scores and the disease phenotypes are
detailed in Supplementary Fig. 7. Manually curated disease phe-
notypes with Bonferroni-adjusted significant P values are dis-
played in Supplementary Table 7; the full table of PheWAS
results for PheCodes is available for download (Supplementary
Data File 5).

LVESVi polygenic score and incident DCM. Having established
a strong relationship between common variant-derived polygenic
scores and DCM in the cross-sectional PheWAS, we then asked
whether these polygenic scores also predicted incident disease.
The association between polygenic scores and incident DCM (388
cases) was assessed in the remaining 358,556 individuals in the
UK Biobank without cardiac MRI data, after excluding those with
cardiac disease at baseline, and those with third-degree or closer
relatedness to another participant (Supplementary Table 8). The
polygenic scores for LVEDV, LVESV, LVEF, LVEDVi, and
LVESVi were significantly associated with incident DCM after
adjusting for age, sex, genotyping batch, and the first five prin-
cipal components of ancestry in separate Cox proportional hazard
models for each phenotype.
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The 28-SNP LVESVi polygenic score had the strongest
relationship with incident DCM (hazard ratio [HR]= 1.58 per
SD increase in the score, P= 6.4 × 10−18 by Cox regression). The
direction was consistent with clinical expectations: a greater
genetically mediated LVESVi corresponded with a higher risk of
DCM, while a lower polygenic risk corresponded to a lower risk
of DCM. The cumulative incidence of DCM among those in the
top 10%, bottom 10%, and middle 80% for the polygenic score is
shown in Fig. 3. For each trait, the relationship between its

polygenic score and incident DCM is available in Supplementary
Table 9.

Influence of polygenic score in TTN truncation carriers.
Finally, to assess whether common genetic variants might con-
tribute to the incomplete penetrance and variable expressivity of
DCM-associated rare variants, we asked whether the 28-SNP
LVESVi polygenic score affected the structure and function of the
heart among carriers of truncating variants in TTN exons that are
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Fig. 2 PheWAS highlights the connection between a polygenic score for LVESVi and dilated cardiomyopathy. The polygenic score derived from LVESVi
was applied to PheCodes (panel a) and curated disease phenotypes (panel b) in the UK Biobank. Each of the curated phenotypes is defined in
Supplementary Table 1. For both panels (a) and (b), the x-axis represents the identifying code for the disease phenotype. The y-axis represents the −log10
of the P value of the association between the polygenic score and the phenotype in a logistic model adjusted for age at enrollment, the genotyping array,
sex, and the first five principal components of ancestry. Triangles oriented upward represent betas that are concordant with the LVESVi PRS (e.g., a higher
LVESVi PRS corresponds with a higher risk of DCM), and the reverse is true for downward-oriented triangles. The three most strongly associated
phenotypes in each panel are labeled in the figure. The triangles in panel (a) are colored by three-digit PheCode. The triangles in panel (b) are colored red if
positively correlated with the LVESVi polygenic score, and blue if negatively correlated. The PheWAS plots for all seven cardiac MRI phenotypes are
available in Supplementary Fig. 7.
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highly expressed in the heart (TTNtv). Rare TTNtv were chosen
for analysis because of their established role in cardiomyopathy
and preclinical cardiac dysfunction, as well as their relatively high
population frequency (~0.5%). Among the 12,448 participants
who had undergone both cardiac MRI and exome sequencing, we
identified 59 carriers of TTNtv in exons previously shown to be
spliced into over 90% of transcripts in the heart (Supplementary
Table 10). Although we identified additional participants with
imputation data that indicated that they were carriers of TTNtv,
none of these were confirmed by sequencing (Supplementary
Table 11), so we proceeded to analyze only the 59 participants
with directly sequenced TTNtv. The polygenic background of
TTNtv carriers influenced left ventricular volume and function:
the LVESV of TTNtv carriers was influenced by the LVESVi
polygenic score (7.2-mL increase in LVESV per SD, P= 0.011 by
linear regression), and LVEF was also reduced by 2.6% per SD of
the LVESVi score (P= 0.006 by linear regression). The LVEDV
of TTNtv carriers was not significantly influenced by the LVESVi
polygenic score after Bonferroni adjustment (7.9-mL increase in
LVEDV per SD increase in the score, P= 0.046 by linear
regression).

Sensitivity analysis in European-ancestry participants. To
understand whether our results were confounded by residual
population stratification, the primary genetic analyses (herit-
ability assessment, GWAS, and polygenic score estimates) were
repeated in a subset consisting of samples that were within a tight
genetic inlier cluster among participants with self-reported Eur-
opean ancestry (N= 32,755). These sensitivity analyses yielded
similar heritability estimates, fewer genome-wide significant loci
(49 instead of 57), and similar polygenic score effect estimates
when compared with the main analyses using all 36,041 samples
(for details, see Supplementary Methods, Supplementary Notes 1,
Supplementary Fig. 8, and Supplementary Tables 12–20).

Discussion
In this study, we identified 45 previously unreported, common
genetic loci associated with the structure and function of the
heart in individuals without overt cardiovascular disease. We

then linked our identified genetic loci to DCM through multiple
lines of evidence, established that a polygenic score derived from
common variants predicts incident DCM, and demonstrated that
a common genetic background affects cardiac traits even among
carriers of cardiomyopathy-related rare variants.

These results permit several conclusions. First, common
genetic variants that are associated with left ventricular structure
and function contribute to DCM risk. In an incident disease
analysis, our best-performing polygenic score—comprising 28
SNPs associated with LVESVi—robustly predicted DCM (HR
1.58 per SD increase in the polygenic score, P= 6.4 × 10−18 by
Cox regression). That the common genetic variants in this
polygenic score were identified after excluding individuals with
known cardiac disease, and yet still predicted cardiomyopathy,
suggests an intrinsic connection between the common genetic
determinants of normal and pathologic variation in cardiac
structure and function. Specifically, these results raise the possi-
bility that, in some individuals, DCM may reflect the extreme of
phenotypic variation, with important contributions from a high
burden of common variants. This may, in part, explain the
incomplete yield of genetic testing for rare variants in DCM.
Future studies are required to determine the relative contribu-
tions of—and potential interplay between—common variants,
rare variants, and environmental factors in the pathogenesis
of DCM.

Second, genetic analyses of quantitative cardiac imaging traits
may improve our understanding of the common genetic basis of
cardiomyopathies. In our prior genetic analysis of the UK Bio-
bank, we refined a heterogeneous heart failure phenotype to a
specific, nonischemic cardiomyopathy subset, enabling detection
of two DCM risk loci (near BAG3 and CLCNKA) that associated
with subclinical changes in LV structure and function32. Simi-
larly, seminal GWAS of DCM yielded nine risk loci, but were
limited by the recruitment of cardiomyopathy cases7–9. A colla-
borative effort to boost power by aggregating all heart failure
subtypes across a number of studies yielded several common
genetic loci for heart failure risk factors, i.e., coronary artery
disease and atrial fibrillation, but few loci for cardiomyopathies33.
By comparison, recent work analyzing the first 17,000 cardiac
MRI studies from the UK Biobank reidentified eight loci pre-
viously found to be associated with cardiomyopathy or cardiac
imaging traits34. Here, we pursued a genetic analysis, including a
larger set of cardiac MRI studies from the UK Biobank (total
sample size= 36,041). We reidentified all five loci harboring
Mendelian cardiomyopathy-linked genes found in prior common
variant analyses of DCM (ALPK3, BAG3, FLNC, PLEKHM2, and
TTN). In addition, we discovered common genetic variants in loci
near an additional 12 Mendelian cardiomyopathy-linked genes
(ACTN2, CSRP3, GATA4, MYH6, MYH7, NKX2–5, PLN,
PTPN11, RBM20, RYR2, SHOC2, and TMEM43, Supplementary
Fig. 6). Finally, our PheWAS confirmed in an unbiased fashion
that genetic loci linked to normal variation in cardiac MRI phe-
notypes were strongly associated with cardiomyopathies. Further
analyses of MRI-derived cardiac traits may permit efficient study
of the genetic determinants of cardiac structure and function in
both health and disease, complementing the growing case–control
genetic studies of cardiomyopathies.

Third, our results provide new insights into the role that
common genetic variants play in determining the structure and
function of the heart, even in the context of rare, high-impact
mutations in cardiomyopathy-related genes. In a prior analysis of
TTNtv, TTNtv carrier status associated with changes in LVEDV
(+11.8 mL), LVESV (+7.7 mL), and LVEF (−2.8%) in indivi-
duals without clinical DCM6. In the present study, among carriers
of cardiac-relevant TTNtv (those spliced into at least 90% of
transcripts in the heart), a 1-SD increase in the LVESVi polygenic
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Fig. 3 The LVESVi polygenic score influences the risk for incident dilated
cardiomyopathy. The cumulative DCM incidence (defined as 1 minus the
Kaplan–Meier survival estimate) is plotted for individuals in the bottom
tenth percentile (blue), middle 80% (gray), and top tenth percentile (red)
for the LVESVi polygenic score. The 95% confidence intervals (derived
from the standard error of the cumulative hazard) are represented with
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score associated with comparable changes in LVEDV (+7.9 mL),
LVESV (+7.2 mL), and LVEF (−2.6%). These findings emphasize
the potential scope and impact of common genetic variants
on cardiac structure and function, and suggest that the pene-
trance of high-impact rare variants may be influenced by
carriers’ polygenic backgrounds: for example, individuals with a
cardiomyopathy-linked rare variant—but a favorable background
of common genetic variants—may be less likely to develop a
reduced LVEF. Future studies will be required to confirm these
observations, and to ascertain whether these individuals might be
protected from cardiomyopathy.

Finally, our results suggest that the costamere may play an
important role in determining both normal and pathologic var-
iation in myocardial traits. Costameres are cytoskeletal assemblies
that connect the sarcomere—the basic structural unit of muscle—
to the cell membrane and the extracellular matrix. Costameres
include protein complexes such as the dystrophin glycoprotein
complex (DGC) and the vinculin–talin–integrin system35. Both
the DGC and the vinculin–talin–integrin system play roles in
mechanical anchoring, while the vinculin–talin–integrin system
also plays a role in mechanosensation and signal transduction36.
Notably, the genes closest to four lead SNPs (FLNC, PTK2, PXN,
and SSPN) play key roles in costamere biology, and two (SSPN
and PXN) are also the most strongly prioritized genes at their
respective loci by TWAS. Ɣ-filamin (produced by FLNC) links the
membrane-bound DGC with sarcomeric actin filaments37. PTK2
(also known as FAK) and PXN produce proteins (focal adhesion
kinase and paxillin, respectively) that bind to vinculin and
integrin to form part of the vinculin–talin–integrin system38.
Finally, sarcospan, the protein product of SSPN, is a part of the
DGC and is required for DGC–integrin interactions39,40. The
emergence of these loci from our unbiased genetic analysis of
cardiac MRI phenotypes points to the importance of the costa-
mere within the cardiomyocyte, and suggests that compromise of
its protein assemblies may contribute to the development of
cardiomyopathies.

There are several limitations to our findings. First, our analyses
were limited to older individuals of predominantly European
ancestry, which may limit their applicability to younger indivi-
duals and those of other ancestries. Second, the cardiac mea-
surements are derived from automated readings. Third, because
the UK Biobank relied on hospitalization or death to assign
disease status, unrecognized disease at baseline may have occur-
red for individuals without any pre-enrollment hospitalizations.
Fourth, the commonly used GWAS P value significance threshold
of 5 × 10−8 in European populations was derived from Encyclo-
pedia of DNA Elements (ENCODE) data in a small sample41;
while this threshold remains commonly used, there is no uni-
versally agreed-upon P value threshold that accounts for larger
sample sizes and rarer minor allele frequencies, although more
stringent thresholds have been proposed42,43.

In conclusion, we uncover common variants at 45 genetic loci
not previously associated with left ventricular structure and
function as measured by cardiac MRI, and reveal a robust link
to DCM.

Methods
Study participants. The UK Biobank is a richly phenotyped, prospective,
population-based cohort19. In total, we analyzed 487,283 participants with genetic
data who had not withdrawn consent as of October 2018. Analysis of the UK
Biobank data was approved by the Partners Health Care institutional review
board (protocol 2013P001840). Phenotypic analysis and genome sequencing of
MESA participants in TOPMed was previously approved by the MESA field center
institutional review boards (Columbia University, Johns Hopkins University,
Northwestern University, University of Minnesota, University of California,
Los Angeles, and Wake Forest University); all participants provided written
consent25.

Phenotype refinement. Disease phenotypes in the UK Biobank were defined using
a combination of self-reported data (confirmed by a healthcare professional),
hospital admission data, and death registry data. We defined nonischemic DCM as
a billing code diagnosis of DCM (ICD-10 code I42.0) in the absence of coronary
artery disease. Algorithms for identifying individuals with DCM, heart failure from
any cause, and coronary artery disease in the UK Biobank are detailed in Sup-
plementary Data File 132.

Cardiac MRI measurements. Cardiac MRI was performed with 1.5-Tesla scanners
(MAGNETOM Aera, Syngo Platform vD13A, Siemens Healthcare) with electro-
cardiographic gating for cardiac synchronization21. Cardiac assessment was per-
formed from the combination of several cine series using balanced steady-state free
precession acquisitions, with post processing by cvi42 Version 5.1.122. All mea-
surements were provided by the UK Biobank. Because of known bias in the vD13A
automated measurements, a bias correction was applied for LVEDV and LVESV
measurements, using linear corrections derived from a UK cohort undergoing
imaging on the same MRI platform44.

Values for LVEF and SV were calculated from the LVEDV and LVESV using
Eqs. (1) and (2).

LVEF ¼ ðLVEDV� LVESVÞ � ðLVEDVÞ�1 ð1Þ

SV ¼ LVEDV� LVESV ð2Þ
BSA-indexed values were produced for LVEDVi, LVESVi, and SVi by,

respectively, dividing the values for LVEDV, LVESV, and SV by the individual’s
Mosteller BSA using Eq. (3)45.

ððHeight in centimetersÞ � ðweight in kilogramsÞ � 3600�1Þ1=2 ð3Þ

Cardiac MRI sample selection and quality control. We identified 39,298 indi-
viduals with cardiac MRI data. To account for errors in the automated volume
measurement system, two cardiologists (JPP and KGA) manually reviewed images
for samples having LVEDV or LVESV beyond 1.5 interquartile range below the
first quartile or above the third quartile46. In total, 415 samples identified as having
gross anatomic mistracings were rejected. In total, 1605 samples that did not pass
genotyping quality control, detailed below, were excluded. Data from 1237 indi-
viduals with incident or prevalent heart failure, DCM, hypertrophic cardiomyo-
pathy, or coronary artery disease prior to the date of cardiac MRI were excluded.
After these exclusions, 36,041 samples remained for analysis (flow diagram dis-
played in Supplementary Fig. 1).

Genotyping and quality control. UK Biobank samples were genotyped on either
the UK BiLEVE or UK Biobank Axiom arrays, then imputed into the Haplotype
Reference Consortium panel and the UK10K+ 1000 Genomes panel18.

We performed genotyping quality control by excluding genotyped variants with
call rate <0.95, imputed variants with INFO score <0.3, imputed or hard-called
variants with minor allele frequency less than 0.001 in the overall UK Biobank
population, or imputed or hard-called variants with an effective minor allele count
of less than 100 in the subset of individuals with cardiac MRI data. To calculate the
effective minor allele count, the minor allele frequency was multiplied by the
number of alleles in the analysis, and by the imputation INFO score provided by
the UK Biobank18. After exclusions, 13,660,711 autosomal variants were analyzed.
Variant positions were keyed to GRCh37/hg19.

We performed sample quality control by excluding samples that had no
imputed genetic data, a genotyping call rate < 0.98, a mismatch between submitted
and inferred sex, sex chromosome aneuploidy (neither XX nor XY), exclusion from
kinship inference, excessive third-degree relatives, or that were outliers in
heterozygosity or genotype missingness rates as defined centrally by the UK
Biobank18.

Heritability analysis. Heritability attributable to single-nucleotide polymorphisms
(SNPs) at the 784,256 directly genotyped sites that passed quality control was
computed with the --reml option from BOLT-LMM (version 2.3.2)47. Cross-trait
genetic correlations between LVESV, LVEDV, and LVEF were computed with the
same command.

Genome-wide association study. We performed GWAS using linear mixed
models with BOLT-LMM (version 2.3.2) to account for ancestral heterogeneity,
cryptic population structure, and sample relatedness47,48. As BOLT-LMM requires
a linkage disequilibrium panel, we used the European linkage disequilibrium panel
provided with BOLT. We conducted a GWAS for the rank-based inverse normal-
transformed values of each of seven cardiac MRI phenotypes: LVEDV, LVESV,
LVEF, SV, LVEDVi, LVESVi, and SVi. Each GWAS was adjusted for the first five
principal components of ancestry, sex, year of birth, age at the time of MRI, and the
MRI scanner’s unique identifier to account for batch effects. Variants with BOLT-
LMM P < 5 × 10−8 were considered to be genome-wide significant.

LD score regression was performed with ldsc (version 1.0.0) to partition the
genomic control factor lambda into polygenic and inflation components using the
software’s default settings49, which include removing SNPs with MAF < 0.01,
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indels, strand-ambiguous SNPs, and SNPs within the MHC region50. Allelic
heterogeneity was assessed by clumping at each genome-wide significant locus to
identify additional variants having trait association P < 5 × 10−8 and r2 < 0.2 with
other independent genome-wide significant variants within 500 kbs of the top
variant at each locus using FUMA51. The most strongly associated SNP at each
locus is referred to as the lead SNP. Lead SNPs were tested for deviation from HWE
using the exact test with a HWE P threshold <1 × 10−6 52.

External validation using cardiac MRI traits in MESA. We identified 2338
participants from MESA with whole-genome sequencing and cardiac MRI data
available from MESA Exam 524–26. We excluded 67 with a history of coronary
artery disease or heart failure, and 87 whose cardiac MRI revealed evidence of
myocardial scar with late gadolinium uptake, leaving 2184 for replication analysis;
details of the cardiac MRI and whole- genome sequencing methods used in
TOPMed/MESA are available in the Supplementary Methods. Of the 138 trait-SNP
pairs (accounting for SNPs associated with multiple traits), 119 were identified
within MESA via whole-genome sequencing. Using the lme4 package in R, we
performed regression with linear mixed models to test the additive genetic dosage
of the SNP on each trait, adjusting for covariates, including sex, the age and age2 at
baseline visit, age and age2 at the time of MRI, duration between the first and
current visit, the first five principal components of ancestry, and the visit site. We
performed a joint analysis on all 2184 participants, treating ancestry as a random
effect. Six SNPs were removed from analysis because the linear mixed model did
not converge due to boundary conditions.

We then aligned the effect alleles between the UK Biobank and the MESA
results, and determined whether the effect direction was the same (both signs
positive or both signs negative). We performed binomial tests comparing the
number of SNPs in agreement to the total number of SNPs tested. Two null
hypotheses were tested: (1) that each site had a 50% chance of having effects in the
same direction, regardless of the P value, and (2) that each site had a 5% chance of
having agreement in effect direction with nominal significance at one-tailed
binomial P < 0.05.

External validation using TTE traits in BioBank Japan. Summary statistics made
available by BioBank Japan from GWAS of three traits derived from TTE, which
were similar to traits in our study: fractional shortening (similar to LVEF), left
ventricular end-diastolic diameter (similar to LVEDV), and left ventricular end-
systolic diameter (similar to LVESV)14.

For those three paired traits, we aligned the effect alleles between the UK
Biobank results and the BioBank Japan results, and determined whether the effect
direction was the same (both signs positive or both signs negative). We determined
the significance of the agreement between the two studies compared with chance
with a two-tailed binomial test, testing against a null probability of agreement of
50% at each variant.

Transcriptome-wide gene mapping. TWAS identify genes whose expression is
linked to phenotypes, integrating information about genetic associations with
transcriptional variation and complex traits. This provides a complementary gene
mapping and prioritization strategy in addition to the strategy of identifying the
nearest gene to each GWAS lead SNP. For each of the seven cardiac MRI phe-
notypes, we performed a TWAS to identify the most strongly associated gene at
each locus based on imputed cis-regulated gene expression27,53–55. We used the
software package FUSION with eQTL data sourced from the GTEx Portal v7.
Precomputed transcript expression reference weights for the left ventricle (N=
5081 genes) and the right atrial appendage (N= 5670 genes) were downloaded
from the FUSION authors’ website (see Data availability)27,28. Because the FUSION
authors recommend applying the ldsc data preprocessing steps to GWAS summary
statistics, we used the same input as was used for ldsc, described above, with the
default settings applied. We ranked the genes within 500 kb of each lead SNP,
consistent with the FUSION authors’ approach27.

Tissue enrichment. From the associated SNPs for each genotype, we evaluated the
associations of 10,678 gene sets from MSigDB v6.2 and gene expression sets from
GTEx using MAGMA28,56,57. Tissue enrichment tests were executed on the FUMA
platform v1.3.4b51. A Bonferroni-corrected threshold of 0:05

53 tissue types ¼ 9:4 ´ 10�4

was considered statistically significant enrichment of a tissue type.

Mendelian cardiomyopathy gene set enrichment. To create an unbiased list of
genes associated with Mendelian cardiomyopathies and congenital heart
abnormalities, we assembled genes from three commercially available cardio-
myopathy gene panels (GeneDx Cardiomyopathy Panel, 207 Perry Parkway,
Gaithersburg, MD, USA; Invitae Cardiomyopathy Comprehensive Panel, 1400 16th
Street, San Francisco, CA, USA; Partners Laboratory for Molecular Medicine Pan
Cardiomyopathy Panel, 77 Avenue Louis Pasteur Suite 250, Boston, MA, USA).
Together, these panels contained 129 genes (Supplementary Table 8), all of which
mapped to transcripts with HG19 coordinates. SNPsnap was used to generate
10,000 sets of SNPs that match the lead SNPs from the GWAS based on minor
allele frequency, number of SNPs in linkage disequilibrium, distance to the nearest

gene, and gene density at the locus58. A SNP was considered to be near a Men-
delian locus if it was within a radius of 500 kb upstream or downstream of any gene
on the panel, a radius chosen to be the same as that used in the TWAS. Significance
was assessed by permutation testing across the 10,000 SNP sets to determine the
neutral expectation for the number of overlapping genes in loci with characteristics
similar to ours, yielding a one-tailed P value.

Polygenic score creation. For each individual, we calculated a polygenic score by
taking the beta for each lead SNP multiplied by the genetic dosage of the effect
allele, and summing this value for each lead SNP for that trait from Supplementary
Data File 3. We repeated this procedure for each of the seven traits, producing
seven polygenic scores.

PheWAS. We performed a PheWAS in the 449,027 individuals with genetic data
who had not undergone cardiac MRI. In total, 1591 ICD-10-derived PheCode
phenotypes were available30. We tested the polygenic scores for association with
the 1216 PheCode phenotypes that were present in 200 or more individuals in the
UK Biobank, a case threshold that has previously been applied to single-variant
PheWAS studies59. In addition, we tested the polygenic scores produced from each
of the 7 cardiac traits for association with 96 manually curated disease phenotypes.
Associations between the polygenic score and each phenotype were modeled with
logistic regression, accounting for age at enrollment, sex, the genotyping array,
and the first five principal components of ancestry as covariates. Among the
manually curated disease phenotypes, Bonferroni correction for multiple testing
(7 scores, 96 phenotypes) yielded a threshold for significance of logistic regression
P < 7.4 × 10−5.

Testing polygenic score association with incident DCM. We assessed the
relationship between the polygenic scores and DCM in the 362,922 participants
who had not undergone cardiac MRI, were free from CHF, DCM, and CAD at
baseline, and who were not identified by the UK Biobank as having third-degree or
closer relatedness to another participant18. This sample included 380 individuals
with incident DCM. We tested each score separately for association with incident
DCM using a Cox proportional hazard model. This model was adjusted for sex,
genotyping array, the first five principal components of ancestry, and the cubic
basis spline of age at enrollment. Cox modeling was performed with the survival
package in R 3.6.1 (R Foundation for Statistical Computing, Vienna, Austria). We
defined statistical significance as a two-tailed Cox regression P < (0.05/7 pheno-
types)= 0.007.

For plotting, the samples were divided into deciles by LVESVi polygenic score.
DCM incidence over time was plotted for the individuals in the lowest 10% of the
LVESVi polygenic score, those in the highest 10%, and those in the middle 80%
using the survminer package in R.

Testing the polygenic score within TTNtv carriers. Samples from the UK
Biobank were prioritized for exome sequencing based on the presence of MRI data
and linked hospital records4. Exomes were generated by the Regeneron Genetics
Center, and reprocessed centrally by the UK Biobank according to Functional
Equivalent standards60. Exomes were captured with the IDT xGen Exome Research
Panel v1.0, targeting 39 million basepairs of the human genome. Sequencing was
performed with 75 basepair paired-end reads on the Illumina NovaSeq 6000
platform using S2 flowcells. Alignment to GRCh38 was performed centrally with
BWA-mem to generate a CRAM file for each sample. Variant calling was per-
formed with GATK 3.0. Variants were hard-filtered if the inbreeding coefficient
was <−0.03, or if none of the following were true: the read depth was greater than
or equal to 10, the genotype quality was greater than or equal to 20, or the allele
balance was greater than or equal to 0.2. In total, 49,997 exomes were available.
Variants in TTN were annotated with the Ensembl Variant Effect Predictor version
95 with the --pick-allele flag61. LOFTEE was used to identify high-confidence loss-
of-function variants in TTN (TTNtv): namely, stop-gained, splice-site disrupting,
and frameshift variants62.

Of the samples with cardiac MRI that passed all of the disease exclusion and
quality control measures described above, 12,448 also had exome sequencing. Of
these, 59 samples had TTNtv in exons spliced into more than 90% of transcripts in
the heart (hig PSI), which are likely to be relevant to cardiac phenotypes5. An
additional 692 participants were identified as putative carriers of high-PSI TTNtv
based on their imputed genotypes; however, 66 of these participants had exome-
sequencing data, and zero of the 66 were confirmed to have TTNtv by sequencing
(Supplementary Table 14). Therefore, we limited our analysis to the 59 participants
with high-PSI TTNtv that were identified by exome sequencing.

We applied the polygenic score most predictive of DCM (derived from the
LVESVi) to the TTNtv carriers, and assessed whether that score was associated
with LVESV, LVEDV, and LVEF in those individuals in a linear regression model
after adjustment for the first five principal components of ancestry, genotyping
array, sex, and the cubic basis spline of age at enrollment.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.
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Data availability
The raw UK Biobank data are made available to researchers from universities and other
research institutions with genuine research inquiries, following IRB and UK Biobank
approval. Individual-level sequence data for TOPMed: MESA whole genomes are
available through restricted access via the TOPMed dbGaP Exchange Area (accession
number phs001416.v1.p1 [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?
study_id=phs001416.v1.p1]). The full GWAS summary statistics from the main analysis
for each of the seven traits are available for download from the Broad Institute
Cardiovascular Disease Knowledge Portal under the ‘Downloads’ tab at http://www.
broadcvdi.org/. The PheCode PheWAS and the TWAS results are available in
Supplementary Data Table 5. Precomputed GTEx v7 expression reference weights used
for TWAS are available at http://gusevlab.org/projects/fusion/. All other data are
contained within the article and its supplementary information, or are available upon
reasonable request to the corresponding author.
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