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Abstract: Intrinsically disordered proteins (IDPs) are a newly recognized class of 

functional proteins that rely on a lack of stable structure for function. They are highly 

prevalent in biology, play fundamental roles, and are extensively involved in human 

diseases. For signaling and regulation, IDPs often fold into stable structures upon binding 

to specific targets. The mechanisms of these coupled binding and folding processes are of 

significant importance because they underlie the organization of regulatory networks that 

dictate various aspects of cellular decision-making. This review first discusses the 

challenge in detailed experimental characterization of these heterogeneous and dynamics 

proteins and the unique and exciting opportunity for physics-based modeling to make 

crucial contributions, and then summarizes key lessons from recent de novo simulations of 

the structure and interactions of several regulatory IDPs. 
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1. Introduction 

The prevalence and fundamental roles of intrinsically disordered proteins (IDPs) in biology were 

not recognized until the late 1990s. Observations accumulated that many functional proteins, 

particularly those involved in transcription and translation regulation, appeared to be intrinsically 

unstructured [1]. This prompted Wright and Dyson to publish their seminal review in 1999 [2], calling 
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for a reassessment of the protein structure-function paradigm. Since then, study of IDPs has rapidly 

evolved into a field of “growing prominence” and “one of the most exciting undertakings of structural 

biology” as predicted [3,4]. It is now established that IDPs are: 1. highly abundant in biology, with 

about one-third of eukaryotic proteins predicted to be IDPs [5,6]; 2. frequently involved in crucial 

areas such as signaling and regulation [7–9]; and 3. extensively associated with human diseases 

including cancer, diabetes, neurodegenerative diseases and amyloidoses [10,11]. Many IDPs undergo 

folding transitions upon binding to specific targets [12], even though some IDPs remain unstructured 

in the bound states [13,14]. The mechanisms of these coupled binding-folding interactions are of 

significant importance because they underlie the organization of important regulatory networks that 

inform various aspects of cellular decision-making, cellular fate, and cellular signaling. Diseases and 

disorders can result from IDP mis-folding as well as mis-signaling and mis-regulation [11]. While the 

prevalence of IDPs as functional proteins was not fully recognized until the 1990s as stated above, one 

reviewer pointed out several pieces of work that were early hargingers. To illustrate this, three 

examples have been chosen here from a much larger collection. As early as 1953, optical rotation 

suggested that the milk protein casein is similar to globular proteins unfolded by 5 M guanidinium 

hydrochloride [15]. By the mid-1960s, optical rotation was used to develop a conformational 

classification of proteins, which included proteins that were characterized as disordered [16]. By the 

early 1970s, studies on fibrinogen strongly indicated that this protein contained large regions that lack 

structure [17], and more recently, this early history was reviewed in a very interesting fashion [18]. 

For signaling and regulation, the disordered nature of IDPs is believed to offer several unique 

advantages [2,3], including high specificity/low affinity binding, inducibility by posttranslational 

modifications, and structural plasticity for binding multiple targets. The last property appears to be a 

hallmark of IDPs that allows one-to-many and many-to-one signaling [19,20]. Intrinsic  

thermo-instability can also offer a robust mechanism for allosteric coupling [21]. However, the 

molecular mechanism of the coupled binding and folding interaction of IDPs has remained largely 

elusive except in a very small number of cases [22–24]. In particular, while it is recognized that 

residual structures often persist in unbound IDPs [7], their functional implications are under much 

debate [25]. Clearly, the extent of residual structure modulates the entropic cost of folding, and thus 

affects the binding affinity. It has been further proposed that preformed structural elements might serve 

as initial contact points and facilitate IDP folding on the substrate surface [26,27]. On the other hand, 

increasing the amount of local structures in the unbound state actually reduces the binding rate for 

several IDPs [28,29], emphasizing the importance of intrinsic flexibility in facile recognition of IDPs.  

Important progresses have been made over the last ten years or so in prediction, identification and 

general characterization of IDPs [30–34]. In particular, sequence analysis can be quite reliable applied 

to predict disordered protein segments with averaged sensitivity and specificity scores greater than 

0.8 [35]. The Database of Protein Disorder (DisProt, version 5.3, 09/21/2010) currently contains 1,284 

experimentally verified disordered regions within 594 proteins, and over forty atomistic structures of 

IDP complexes are now available [36]. One of the key challenges in IDP research at present is to 

understand mechanistically how intrinsic flexibility is exploited together with nascent structures and 

other biophysical signatures of IDPs for biological functions such as efficient and versatile binding. 

Such understanding is necessary for deciphering the elaborate physiological control of IDP function 

and how such control might fail in human diseases. This review will discuss the key challenges in 
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experimental characterization of unbound IDPs, how physics-based de novo simulations might help to 

provide important missing details of IDP structure and interaction, and important lessons that have 

been derived from a limited number of recent de novo simulations of regulatory IDPs. We note that a 

significant amount of computational work exists on studies of disordered proteins involved in protein 

aggregation and amyloidogenesis [37]. This review focuses on signaling and regulatory IDPs that often 

undergo coupled binding and folding during function. Studies of amyloidogenic proteins will only be 

discussed in the context of common challenges and opportunities for de novo simulations.  

2. Challenges in Detailed Experimental Characterization of IDPs 

Structural information of the bound state alone is not sufficient to establish biologically relevant 

regulatory mechanisms. For IDPs, the nature of the unbound state holds important clues to function. 

Due to the heterogeneous and dynamical nature, detailed characterization of unbound IDPs has proven 

to be a principal challenge. Consequently, a lack of understanding of the nature of residual structures 

in unbound IDPs hinders further clarification of their functional roles. Among a wide range of 

biophysical techniques available for characterizing disordered protein states [34], biomolecular NMR 

is probably the most comprehensive [38]. Many observables can be measured for multiple sites 

throughout the protein to infer (transient) organizations at the secondary and tertiary levels, including: 

chemical shift, coupling constant, nuclear Overhauser effect (NOE), residual dipolar coupling (RDC), 

paramagnetic resonance enhancement (PRE), and spin relaxation. Chemical shifts, coupling constants 

and NOEs can be used to determine secondary structure propensities semi-quantitatively at the residue 

level [39–42]. PRE and RDC are powerful tools for uncovering the existence of transient tertiary 

organizations [43–45]. They have been applied to derive important insights on many disordered 

protein states (see recent reviews [7,38,46,47]). However, a quantitative, structural interpretation of 

these experimental observables measured on unbound IDPs is generally not feasible. A key issue is 

that only ensemble-averaged properties can be measured in general and they must be represented as 

averaged quantities of a heterogeneous structure ensemble. Coupled with typical scarcity of data, the 

structural calculation is severely underdetermined and a unique structure ensemble cannot be 

determined solely from the experimental restraints. This critical limitation has not been fully 

appreciated in the literature. Certain intrinsic properties of RDC and PRE further complicate the 

structural interpretation. For example, PRE is extremely sensitive to the electron-nucleus distance with 

r dependence [48]. While such sensitivity allows detection of weakly populated transient contacts, it 

also renders PRE largely insensitive to the majority of accessible conformations. Using theoretical 

PRE data sets derived from simulated disordered protein states, we recently demonstrated that 

ensemble structural calculation protocols with PRE distance restraints [49,50] could generate 

misleading ensembles that reflect little on the true underlying protein state [51]. Direct incorporation 

of RDC in disordered ensemble calculation has not been feasible because of the intricate relationship 

between observed data and individual ensemble structure, even though strategies exist for globular 

proteins [52–54]. Thus, RDC has been mainly used for validation of various (coil) models of unfolded 

states [55,56] or as filters to select conformations from pre-generated structural pools [57,58]. 

Importantly, this general difficulty in structural interpretation arises mainly from the fundamental 

limitations of ensemble-averaged properties measured on disordered protein states rather than 
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technical ones. There is simply not sufficient constraint for independent identification of representative 

ensembles from experimental restraints alone. A few exceptions may include cases where additional 

information on the accessible conformational substates is available or can be assumed [59,60], or 

where unusually large amount of experimental data were measured [61].  

3. Opportunities and Challenges for de Novo Simulations  

The substantial challenge in detailed experimental characterization of IDPs presents a unique and 

exciting opportunity for molecular modeling to make critical contributions. In particular, atomistic 

simulations using physics-based empirical molecular mechanics force fields [62,63] arguably provides 

the ultimate level of detail necessary for understanding disordered protein states. The experimental 

data can be the used as independent validation of simulated ensembles instead of as restraints. Such a 

strategy avoids the under-determined structural calculation problem that tends to generate a false sense 

of excellent agreement with experiment. At the same time, the dynamic and unstructured nature of 

IDPs also presents substantial new challenges, pushing the limit on both force field accuracy and 

conformational sampling capability. Traditional explicit inclusion of water molecules arguably 

provides the most realistic description of solvent, but also significantly increases the system size  

(~10–fold). This can lead to prohibitive computational cost if one wants to sufficiently sample the 

broad manifold of functionally relevant states of IDPs. Moreover, mainly optimized for folded native 

states, current explicit solvent protein force fields are known to suffer from systematic biases in 

describing peptide conformational equilibria, such as tendency to over-stabilize helices [64,65] and 

peptide-peptide interactions [66]. These existing force field limitations need to be carefully considered 

in simulations of IDPs. Thanks to development of powerful computational hardware and advanced 

sampling techniques, important advances are being made recently in optimization of explicit solvent 

protein force fields [67–69]. Nonetheless, correcting the systematic biases in a consistent and 

transferable fashion has been difficult, and the computational cost is one of the main obstacles. 

Alternatively, implicit solvent has emerged as a powerful approach for atomistic simulation of 

protein conformational equlibria that provides a balance between description of the essential physics 

and computational feasibility [70]. The principle and practice of implicit solvent is well documented 

[70,71]. The basic idea is to capture the mean influence of water on the solute via direct estimation of 

the solvation free energy. As such, only the solute is represented atomistically, and the system size is 

reduced ~10-fold. Important advances have been made recently to greatly improve the efficiency and 

achievable accuracy of implicit solvent, particularly with the generalized Born (GB) approximation. 

For example, protein simulations in the GBSW implicit solvent is ~30 times faster than equivalent 

ones in explicit water [72]. Importantly, a substantial gain in efficiency allows careful optimization of 

implicit solvent protein force fields to suppress certain systematic biases that have plagued explicit 

solvent ones [62]. The key is to capture the delicate balance of competing solvation and intramolecular 

interactions on the peptide and protein level. We recently re-balanced the GBSW protein force field 

based on pair-wise interactions of side chain analogs and conformational properties of model peptides 

[73]. The optimized force field does not only recapitulate the experimental structures and stabilities of 

several helical peptides and a series of -hairpins with a wide range of stability, but also folds hairpin 

trpzip2 and mini-protein Trp-cage [73]. The same force field has also been successfully applied to pKa 
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prediction [74], pH-dependent protein folding [75–77], structure refinement [78], and recently to 

simulation of regulatory IDPs [79,80]. Similar optimization efforts have also led to substantial 

improvement in other GB models [81,82]. An ABSINTH implicit solvent has also been developed and 

optimized specifically for IDPs [83].  

It is important to recognize that inherent and methodological drawbacks do exist in implicit solvent 

[70]. They need to be carefully considered in the interpretation of implicit solvent simulations. This is 

particularly important considering that validation based on ensemble-averaged properties is not 

conclusive because of the same reasons detailed above for difficulty in structural calculations. Implicit 

solvent will not properly describe short-range effects where the detailed interplay of a few  

non-bulk-like water molecules is important. With a lack of solvent granularity, continuum models do 

not capture all the fine structures in potentials of mean force (PMFs) of interactions [73,84], and the 

conformational diffusion kinetics is altered. The temperature dependence cannot be described 

accurately in general either. Besides these intrinsic limitations, implicit solvent might be further 

limited by the specific methodology for calculating the solvation free energy as well as the physical 

parameters of the solvation model and underlying protein force fields. In particular, the surface-area 

(SA)-based treatment of nonpolar solvation appears to be a key methodological limitation in the 

current GB implicit solvent [85,86]. Nevertheless, a substantial reduction in the computational cost 

without compromising the essential physics is an important advantage of implicit solvent. By taking 

care in interpretation and validation of simulations, one can expect that de novo simulations to provide 

reliable details on the structure and interaction of IDPs. 

Even with the dramatic reduction in system size using implicit solvent, it is challenging to 

sufficiently sample biologically accessible, functionally relevant conformational space of IDPs. 

Conventional constant temperature molecular dynamics (MD) is generally insufficient for achieving 

convergence in simulated structural ensembles of IDPs. The difficulty arises not only because of the 

large and complex conformational space of proteins, but also due to significant energy barriers that 

might separate different conformational subspaces. It is necessary to exploit various advanced 

techniques to enhance sampling [87,88]. One particularly simple yet effective technique is replica 

exchange (REX) [89]. The basic idea is to simulate multiple independent replicas of the system at 

different temperatures, typically distributed exponentially between the temperature of interest and a 

maximum temperature. Periodically, replicas attempt to exchange simulation temperatures according 

to a Metropolis criterion that preserves the detailed balance and ensures proper canonical ensembles at 

all temperatures. The resulting random walk in the temperature space helps the system to avoid being 

kinetically trapped in states of local energy minima. The required number of replicas increases with 

the system size N (as a function of its squared root [89]). With ~10-fold smaller system size, implicit 

solvent is thus particularly suitable for REX. Recent theoretical considerations [90–92] and actual 

simulations of small peptides [93–96] generally confirm that REX can enhance protein conformational 

sampling as long as the activation enthalpies (of conformational transitions) are positive. In particular, 

it is important to specify a maximum REX temperature slightly above where the folding rate 

maximizes [91,92]. The key to obtain well-converged structural ensembles of IDPs is efficient 

sampling of transitions between conformational substates. However, the nature of these substates and 

the energy barriers of their inter-conversion are not known. Therefore, the efficacy of REX for IDPs is 

not very obvious, nor is the optimal choice of key REX-MD parameters such as the number of 
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replicas, range and distribution of simulation temperatures and exchange attempt frequency. On the 

other hand, several recent experimental studies suggest that the average roughness of protein energy 

surface likely exceeds 5 RT [97–99], which can lead to a strong temperature dependence of 

conformation diffusion [100]. The roughness consideration argues strongly for the general ability of 

REX to enhance sampling of protein conformations including those of IDPs.  

Another particularly attractive approach to overcome the sampling bottleneck is to combine large 

numbers of equilibrium and/or generalized ensemble simulations (e.g., on distributed computing 

platforms [101]) using network methods like the Markov State Models (MSMs) [102–104]. Even 

though it is yet to be applied to IDPs, this strategy has provided unprecedented detail on energy 

landscapes of several proteins under both stable and unstable conditions [105–107]. It is important to 

emphasize that sampling efficiency also strongly depends on the force field quality. In particular, 

modern protein force fields, with explicit or implicit solvent, tend to overestimate the strength of 

protein-protein interactions [66]. Consequently, non-specific collapsed protein states are often over-

stabilized, which severely hinders conformational sampling. When the goal is not to generate proper 

thermodynamic ensembles at physiological temperatures, temperature-induced unfolding/unbinding 

simulations can be used to infer on the mechanism of coupled binding and folding of IDPs given the 

complex structures. This strategy has been quite successful in studies of protein folding [108,109], and 

has already been applied to understand IDP interactions [110,111]. An interesting advantage of  

high-temperature simulations is that they are less sensitive to imperfections in the force fields, besides 

reduced computational cost. A key concern is that the transition states or the most probable transition 

paths might depend on the temperature. However, IDP complexes tend to be less stable than globular 

ones, and the temperature required for unbinding simulations will likely be moderate.  

4. Key Lessons from Recent de Novo Simulations of Regulatory IDPs  

4.1. Unbound IDPs: Nascent Structures and Dependence on Post-Translational Modifications 

As discussed above, the nature of the unbound state of an IDP holds important clues to how it might 

interact with specific targets. Abundant experimental evidence exists to suggest that various levels of 

residual structures persist in unbound IDPs. Such examples include several domains of transcription 

factor CREB [7], activation and regulatory domains of tumor suppressor p53 [112–114], the steroid 

receptor coactivator ACTR [115], the synuclein family [116,117], and cyclin-dependent kinase (Cdk) 

regulators p21 and p27 [118,119]. A key goal of de novo simulations of IDPs has thus been to provide 

molecular detail of such residual structures in unbound IDPs. In the following, we summarize key 

results from several recent de novo simulations of free regulatory IDPs where the goal is to understand 

coupled binding and folding. We note that physics-based simulations have also provided important 

insights into the intrinsic conformational properties of IDPs and how they might depend on certain 

physiochemical properties [120,121]. In particular, IDPs are known to have low sequence complexity 

with enriched charges. Several recent studies have shown that the structure of IDPs is correlated with 

the charge content [121,122]. It has been further suggested charges on IDPs can directly affect 

function, in both protein-DNA [123] and protein-protein interactions [80].  

The kinase-inducible domain (KID) of CREB is one of the most extensively studied IDPs. In cell, 

CREB regulates transcription in response to cAMP signaling partially by binding to the coactivator 
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CBP (CREB binding protein) [124]. This recognition requires phosphorylation of Ser133 of KID 

(pKID) and involves direct interaction with the KIX domain of CBP [125,126]. When in complex with 

KIX, pKID adopts a helix-linker-helix structure that involves residues 119 to 146 [127]. However, free 

KID and pKID lack stable tertiary structures in solution. NMR chemical shift analysis has estimated 

that helix A (residues 120–129) is about 50-60% folded and helix B (residues 134–144) is only  

10–15% formed [128]. Furthermore, secondary chemical shift analysis does not reveal significant 

differences in mean residue helicities upon phosphorylation [128]. Accordingly, the principal role of 

pSer133 has been attributed to mediating intermolecular interactions. Slot et al. have investigated the 

intrinsic structural properties of the unbound KID and pKID using explicit solvent MD simulations 

[129]. It was argued that phosphorylation could reduce the loop flexibility connecting two helices in 

the bound structure and induce a transient structural element that resembles native-like conformation. 

However, these simulations were conducted by using a simulated annealing protocol in explicit 

solvent. The total simulation length is only 2.0 nanoseconds (ns) with the last 1.0 ns as the production 

stage at 300 K. This is too short to sufficiently sample relevant conformations in the disordered state, 

as reflected in the narrow backbone  distributions reported [129]. Persistence of native-like loop 

conformation in pKID could be an artifact of limited sampling initiated from the folded structure. This 

concern substantially weakens the reliability of the proposed effects of phosphorylation.  

Well-converged structural ensembles of KID and pKID were later calculated using 200-ns REX-MD 

simulations in the optimized GBSW force field [73]. The simulated ensembles are mainly validated by 

comparing the mean residue helicities with the NMR results. Further structural analyses show that both 

KID and pKID are compact and mainly occupy a small number of helical substates (see Figure 1). 

Interestingly, even though in agreement with NMR pSer133 only leads to marginal helicity changes on 

the ensemble level, the underlying conformational substates differ significantly. In particular, pSer133 

appears to restrict the accessible conformational space of the loop connecting two helical segments and 

thus can reduce the entropic cost of KID folding upon binding to KIX. This entropic contribution 

supplements the salt-bridge interactions between KID pSer133 and KIX Lys662 and Tyr658. 

Replacing pSer133 with a Glu residue fails to induce similar structural changes (see Figure 1c). This 

explains why KID S133E does not bind to KIX nearly as strong as pKID [130], even though Glu can 

interact with similar strength with Lys or Tyr [131]. However, in contrast to Slot et al.’s simulations, 

pS133 does not appear to induce native-like loop conformations. The expanded role of 

phosphorylation in regulating the KID/KIX recognition was not recognized in the NMR studies due to 

lack of experimentally detectable conformational changes on the ensemble level. This highlights the 

importance of combining simulation and experiment for detailed characterization of unbound IDPs. 

The ability of well-converged de novo simulations to “predict” important features of the disordered 

states of a 28-residue IDP is nontrivial and represents an encouraging progress towards accurate 

simulation of IDP conformational equilibria. 
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Figure 1. 2D probability distributions of helix starting positions and lengths in the 

unbound structure ensembles of (a) KID, (b) pKID and (c) KID S133E at 302 K calculated 

from REX-MD folding simulations in GBSW implicit solvent [79]. Contours are drawn at 

0.002, 0.005, 0.01, 0.02, 0.04, and 0.06 levels. 

 

REX-MD simulations in implicit solvent have also been used to compute the structure ensemble of 

unbound p53 extreme C-terminus [80]. The results demonstrate that the free p53 peptide samples 

several distinct conformations, which, importantly, correspond to those experimentally observed when 

bound to different partners [19]. Presence of folded-like nascent structures has also been suggested in 

integrated computational and experimental studies of several other regulatory IDPs. Kriwacki and 

coworkers combined NMR data with a 100-ns explicit solvent simulation and suggested that  

sub-domains within free p27 kinase inhibitory domain exhibit partially folded nascent structures that 

resemble the bound conformation observed in the ternary complex of p27/Cdk2/cyclin A [118]. Yoon 

et al. characterized the residual structural elements of the C-terminal segment of p21, also using a 

combination of NMR and MD simulations, and identified helical and extended conformations that 

resemble those in complex with either calmodulin or proliferating cell nuclear antigen (PCNA) [119]. 

However, the role of nascent structures within these free IDPs in binding is not obvious, even though 

one might be tempted to speculate that such preformed structures might facilitate binding by providing 

initial binding sites (i.e., conformational selection-like mechanisms) [26,27]. 

4.2. Mechanism of Coupled Binding and Folding: Intrinsic Flexibility vs. Preformed Structures 

Compared to studies of unbound IDPs, there are even fewer de novo computational analyses of the 

molecular mechanisms of coupled binding and folding of IDPs. This can be primarily attributed to 

much greater computational cost. Rigorous thermodynamic and/or kinetic characterization of coupled 

binding and folding of IDPs is generally not feasible. In a pioneering study, Verkhivker et al. 

investigated the mechanism of p27 binding to Cdk2/cyclin A using high-temperature unfolding and 

unbinding simulations with a simplified all-atom protein energy function with physics-motivated terms 

[132]. The calculated transition state ensemble (TSE) suggests an induced folding-like mechanism, 

where molecular recognition is initiated by formation of nonspecific encounter complexes with 

unstructured p27. This finding supports the “fly-casting” mechanism proposed by Wolynes and 

coworkers [133,134], which argues that nonspecific binding of unstructured conformations confers a 

kinetic advantage for binding. Another key lesson obtained from this study is that intermolecular 

interactions appear to dedicate the folding mechanism of p27 and overwhelm local folding preferences 
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in unbound p27. This conclusion might prove to be applicable to other regulatory IDPs. In particular, 

structural plasticity for adopting distinctive folded states is believed to be a hallmark of regulatory 

IDPs. Therefore, the binding partner ultimately determines the IDP topology in the bound state, i.e., 

intermolecular interactions do overwhelm local folding preferences of IDPs prior to binding. Indeed, 

induced-folding was also observed in a recent high-temperature simulation of pKID/KIX [135]. 

Figure 2. 2D free energy surface of the folding and binding of p53 to S100B(). Folding 

is described by the number of helical residues, and the binding by the center-of-mass (CM) 

separation [80]. Representative structures are shown for regions that correspond to the 

unbound, nonspecific contact, and bound states. Charged residues on p53 and near its 

binding site on S100B() are shown in sticks 

 

The only attempt to rigorously calculate the binding and folding free energy surfaces of IDPs 

reported so far is on the p53/S100B(ββ) interaction [80]. A protocol that combines REX and umbrella 

sampling was used, and several approximations were necessary to further reduce the computational 

cost even with implicit solvent. In contrast to the speculation of conformational selection based on the 

presence of substantial helical content in the unbound state, the calculated energy surfaces reveal that 

the p53 extreme C-terminus initially binds to S100B(ββ) in an unfolded conformation and then quickly 

folds - an example of induced folding (e.g., see the green path in Figure 2). The residual structure in 

the unbound state thus mainly modulates the binding affinity, while the intrinsic flexibility is critical 

for the binding rate. This study illustrates that the presence of folded-like conformations in unbound 

IDPs is not sufficient evidence to establish conformational selection. It is important to directly 

examine the thermodynamics and/or kinetics of coupled binding and folding for mechanistic 

characterization. This study also reveals important remaining limitations in the current implicit solvent 

force field, which does not only substantially over-estimate the interaction strength but also fails to 

predict the experimental structure as the global free energy minimum.  

5. Conclusions 

IDPs are an important class of functional proteins, with high abundance and fundamental roles in 

biology and broad association with human diseases. Important progresses have been made in the 

prediction, identification and high-level characterization of disordered protein segments. Nevertheless, 

much needs to be learned about the nature of the unbound state and the molecular mechanism of 

coupled binding and folding. Detailed experimental characterization of IDPs is challenging due to the 
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heterogeneous and dynamic nature. IDP thus represents an exciting opportunity for physics-based 

modeling to make critical contributions. At the same time, simulation of IDP presents substantial new 

challenges that push the limit on both protein force field accuracy and conformational sampling 

capability. New modeling strategies need to be explored to address these challenges. Implicit solvent, 

coupled with advanced sampling techniques, provides a particularly suitable means for de novo 

characterization of IDP structure and interaction with a necessary balance between accuracy and 

efficiency. Only a small number of de novo simulations have been reported on regulatory IDPs so far, 

reflecting the existence of substantial challenges in the current simulation methodologies. Nonetheless, 

important insights have been obtained on the nascent structures and how they might contribute to 

molecular recognition of IDPs. With the sampling limitation alleviated by ever-increasing computing 

power and sophisticated algorithms that exploit abundant computing resources, the critical bottleneck 

for physics-based simulations of IDPs is in the achievable level accuracy of current protein force 

fields. This underpins intensive ongoing efforts in improving the ability of explicit and implicit solvent 

protein force fields to describe protein conformational equilibria. It is important to diligently validate 

de novo simulations using available experimental data and proper (positive and negative) controls. We 

anticipate an integrated computational and experimental strategy to address specific questions on the 

structure and interaction of biologically important IDPs, and are excited by the unique role that 

physics-based simulations will be expected (and required) to play. 
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