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Abstract: Breast cancer (BC) is the most common malignancy and second only to lung cancer in terms
of mortality in women. Despite the incredible progress made in this field, metastatic breast cancer has
a poor prognosis. In an era of personalized medicine, there is an urgent need for better knowledge
of the biology leading to the disease, which can lead to the design of increasingly accurate drugs
against patients’ specific molecular aberrations. Among one of the actionable targets is the fibroblast
growth factor receptor (FGFR) pathway, triggered by specific ligands. The Fibroblast Growth Factor
Receptors/Fibroblast Growth Factors (FGFRs/FGFs) axis offers interesting molecular targets to be
pursued in clinical development. This mini-review will focus on the current knowledge of FGFR
mutations, which lead to tumor formation and summarizes the state-of-the-art therapeutic strategies
for targeted treatments against the FGFRs/FGFs axis in the context of BC.

Keywords: fibroblast growth factor; fibroblast growth factor receptor; targeted treatments;
breast cancer

1. Introduction

1.1. The Biochemical Structure of the Receptor

Breast Cancer (BC) is the most common malignancy and second only to lung cancer in terms of
mortality in women worldwide, with an estimated 268,670 new diagnoses and 41,400 deaths in 2018
in the US for both men and women [1]. With the advancement of personalized medicine, patients
have been stratified on the basis of expression of actionable molecular targets. Among such actionable
targets in BC is the fibroblast growth factor receptor (FGFR).

The FGFR family is characterized by four receptors, binding to 18 ligands called fibroblast
growth factors (FGFs), employing heparin as a co-factor [2–4]. These receptors have pivotal roles
in embryogenesis and metabolism [5,6], and play a critical role in the development of the skeletal
system [7,8]. Fibroblast growth factors are secreted glycoproteins that are promptly sequestered by the
extracellular matrix and at the cell membrane by heparan sulfate proteoglycans (HSPGs), which, in turn,
make the FGF ligand-receptor interaction stable [9] by safeguarding FGFs from protease-mediated
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degradation [10]. Each ligand tethers the FGFRs with different specificity; some are promiscuous,
such as FGF1, and bind to multiple receptors, while others, such as FGF7, tether only one receptor
isoform [11]. FGFRs are a class of receptor tyrosine kinase (RTK) and are single-pass membrane
proteins made of N-terminal extracellular (EC) domains with three immunoglobulin-like subdomains
(D1, D2 and D3), a transmembrane (TM) domain with a single α-helix, and an intracellular (IC) region
which includes tyrosine kinase motifs, a juxta-membrane domain and a carboxyl-terminal tail [12–14].
There is a total of seven signalling receptors, encoded by four FGFR genes, FGFR1-4 [15]. Furthermore,
immunoglobulin-like subdomains D2 and D3 are necessary and sufficient for ligand binding, whereas
the aminoterminal part of the receptor-including D1-has an auto-inhibitory function [16]. In addition,
alternative splicing of the D3 extracellular fragment of FGFR1, 2 or 3 may encode isoforms that differ
in relation to the specificity of ligand binding [17].

1.2. FGFR Signalling

Since the discovery of RTKs around fifty years ago, the most widely accepted model of RTK
transduction is the diffusion-based model, also known as the canonical model [18]. This model states that
RTKs are monomers in need of a ligand for dimerization, thereby performing cross-phosphorylation
and, consequently, activating one other [19]. After its activation, FGFRs transmit biochemical signals
with lateral dimerization within the plasma membrane [20]. The dimerization of the receptor is a
necessary step as it shortens the distance between the two tyrosine kinase domains, allowing them to
cross-phosphorylate on tyrosine residues at the activation chain of the receptors [21,22]. These kinases’
triggering process tethers adaptors and phosphorylates proteins within the cytoplasm, triggering
downstream signaling cascades [23,24]. Noteworthy among such adaptors is FGFR substrate 2 (FRS2),
which, upon ligand binding and its association with the receptor, triggers downstream signaling with
the activation of mitogen-activated protein kinase (MAPK) [25] and the phosphoinositide-3-kinase
(PI3K)/AKT pathways [26]. Of note, FGFR signaling has also been found to be connected to
phospholipase C-gamma (PLC-γ) in an FRS2-unrelated mode and activates protein kinase C (PKC) [27],
which partially strengthens the MAPK pathway activation by phosphorylating RAF [28]. However,
in relation to the cellular context, many other pathways might be activated by FGFRs, such as those
involving a signal transducer and activator of transcription signaling and ribosomal protein S6 kinase
2 (RSK2) [29], as well as the p38 MAPK and Jun N-terminal kinase pathways [10,13,30,31]. Interestingly,
all such related pathways are captivating targets to be explored in the context of clinical development
of anti-cancer agents against the FGFs/FGFRs axis [32] (Figure 1).

1.3. The Control of FGFR Signalling

Regulation of FGF signaling is critical to ensure a balanced response to receptor stimulation.
Unfortunately, the mechanism of attenuation is poorly understood and it is likely to vary depending on
the cell type [17]. Nevertheless, the current understanding is that it takes place largely via a negative
feedback mechanism, involving receptor internalization through ubiquitination [18,33] and induction
of negative regulators, such as SEF, SPRY, SPRED 1 and 2 [19,34,35]. An additional level of control
takes place in the form of receptor auto-inhibition [16,36]. For example, the electrostatic bonding
between the acid box and the Heparane Sulfate (HS)-binding site creates an auto-inhibited closed
conformation [6,37]. This process of auto-inhibition sustains FGF binding specificity to receptors [38].
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Figure 1. Current status of fibroblast growth factor receptor (FGFR) therapeutic strategies in
breast cancer.

2. FGFRs as Oncogenic Drivers

A long series of evidence is pointing towards the prospect that deregulated FGFRs can work as
driving oncogenes in several types of tumor [10,39]. When an FGF receptor is deregulated, aberrant
activation of downstream signalling results in mesenchymal, antiapoptotic and mitogenic responses in
cells [40]. To date, several different FGFR pathway aberrations [41] have been discovered in cancer,
and include: (i) Translocations of FGFR-fusion proteins with constitutive FGFR kinase activity [41];
(ii) gene amplification or post-transcriptional regulation resulting in high expression levels of the
receptor protein [42]; (iii) upregulation of FGF in cancer cells, stromal cells or the extracellular matrix,
showing paracrine/autocrine activation of the pathway [43]; (iv) alternative splicing of the genes
encoding FGFR and FGFR isoform switching, which are alterations that modify ligand specificity,
increasing the range of FGFs that can stimulate proliferation [44]; and (v) FGFR mutations that result
in receptors that are constitutively active. According to Sarabipour et al. [45], in regards to the FGFR
pathway aberration described in (v), FGFRs are capable of dimerize also without being triggered
by ligands binding to them at physiological conditions, and these unbound dimers are stabilized
via contact between the TM domains and IC domains [46]. Furthermore, unbound FGFR dimers
are phosphorylated, providing an explanation for the fact that the overexpression of FGFR leads
to cancer [4,47–49]. However, structural changes (induced by the ligand) that occur in the FGFR
dimers in the plasma membrane and the ligand can control the structure of the TM domain, causing
a switch to a specific conformation [50]. The resulting configuration of the TM dimers regulates
the receptor activity [51]. Ultimately, the structural transformations in response to FGF1 and FGF2
are quite different, leading to different distances between the IC domains and a different level of
phosphorylation of FGF1- and FGF2-bound dimers [52]. For this reason, there are several resulting
active ligand-bound states for the FGF receptors [45]. In humans, many gain-of-function germline
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mutations in the FGFR genes cause skeletal dysplasias, and mutations in cancer are similar to those seen
in hereditary diseases [53]. Intriguingly, these mutations are not limited to the kinase domain, but can
cover the full length of the gene [54]. In particular, FGFR signalling in cancer shows a clear dependence
with the context [55], resulting in aberrations differing according to tumor type [13,30,56,57]. For the
purpose of this mini-review, the next section will focus on FGFR abnormalities that have been identified
in breast cancer.

3. FGFR Genetic Alterations in Breast Cancer

The first documentation of the amplification of the FGFRs genes in human breast cancer relates
back to the early 1990s [58]. A large series of studies since then have both confirmed the initial
observation of the oncogenic potential of FGFRs and significantly expanded upon mechanisms by
which the FGFs/FGFRs axis contributes to breast cancer formation. In addition to gene amplification,
higher expression of ligands and receptors, mutations and single nucleotide polymorphisms have
also been identified in FGFRs in BC patients’ samples, suggesting that more than one mechanism is
involved in the aberrant activation of FGFRs [59].

The FGF/FGFR signaling pathway is frequently deregulated in human cancers. In breast cancer,
FGFR1 amplification is the most frequent genomic aberration, whereas the FGFR2–4 gene amplifications
and FGFR activating mutations are uncommon [4,60].

3.1. Amplification of FGFRs

About 14% of breast cancer patients bear mutations in the 8p11-12 chromosomal region, which is a
site harboring the FGFR1 gene locus [49,54,61]. Always in the context of BC, amplification of FGFR1-
and/or 11q12-14, which is a chromosomal region containing CCND1, FGF3, FGF4, and FGF19, has been
detected in 23% of hormone receptor-positive (HR+) BC, 27% Human Epidermal Growth Factor Receptor
2 (HER2)-positive BC, and 7% Triple Negative Breast Cancer (TNBC). These amplifications have also
been shown to be a prognostic indicator for early relapses and poor patient outcomes [62–66]. As shown
by in vitro studies, the expression of FGFR1 is required for the survival of FGFR1-amplified BC cell
lines, supporting the oncogenic role of FGFR1 amplification. Using two cell lines with either FGFR1
(MDA-MB-134) or FGFR2 amplified (SUM52), Andrè et al. showed a reduction in both proliferation
and tumor growth after treatment with anti-FGFR1 dovitinib (TKI1258) therapy [67]. The IC50 for cell
growth inhibition was 190 nmol/L and 180 nmol/L. In negative controls that did not express either
FGFR1 or FGFR2, the IC50 values were more than 2000 nmol/L. Moreover, through the use of an in vivo
mouse model with FGFR1-amplified BC primary xenograft (HBCx-3), the authors showed that the
tumor regressed after treatment with 50 mg/kg of dovitinib, compared to mice treated with just a
vehicle control (p < 0.001) [67]. Additionally, FGFR1 amplification has been shown to drive resistance
to endocrine therapy. In fact, Turner et al., through a viability assay, showed that the breast cancer
cell lines MDA-MB-134 and SUM44, which overexpress FGFR1 were resistant to 4-hydroxytamoxifen
(4-OHT) [49]. Such resistance was reversed when the cells were treated with small interfering RNA
against FGFR1 (siFGFR1), suggesting that FGFR1 drives sensitivity to this type of therapy. Another
proof of concept that such a mechanism of sensitivity to the drug was attributable to FGFR1 comes from
the fact that the addition of FGFR2 to siFGFR1-treated cell lines did not reverse the resistance to 4-OHT.
Moreover, the authors proved that treatment with an FGFR1 inhibitor (PD173074) caused a loss of the
cell lines’ ability to form colonies, suggesting that FGFR1 has a role in making those cancer cells capable
of growing colonies, and therefore confirming its tumorigenic function in BC [49].

According to several studies, FGFR2 amplifications-shown to occur in 4% of TNBC, as well
as activating mutations of the receptor-have been associated with high sensitivity to FGFR
inhibitors [67–69] and maintenance of tumor-initiating cells [68].
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3.2. FGFRs Activating Mutations

In the context of FGFR-driven tumor formation, and although FGFR gene amplifications are
the most common type of alterations leading to BC, there is evidence that the activating mutations
also have an oncogenic role in this type of cancer [4]. Activating FGFR mutations may result in
aberrant FGFR signaling through different mechanisms, including: (i) Constitutive dimerization of
the receptors; (ii) enhancement of the kinase domain’s activity; and (iii) alteration in affinity for FGF
ligands. In fact, the most commonly occurring oncogenic FGFR aberrations in BC are the following:
FGFR1 translocation [70]; FGFR1 amplification (10–15%) [49,62–67], which has shown transforming
potential in several in vivo models, conferring sensitivity to FGFR inhibitors [65] and an ability to
drive resistance to endocrine therapy [49], as previously described; FGFR2 translocation, which in
preclinical models exhibited transforming potential and sensitivity to FGFR inhibitors [70]; and FGFR2
amplifications (4%, [68]), which in preclinical models conferred resistance to FGFR inhibitors [67–69].
In different solid tumors, including breast cancer, various studies in the literature have described
FGFRs activating mutations:

FGFR1: Two point mutations (K656E and N546) have been observed in vitro affecting the
intracellular domain of the receptor, and were therefore operating as activating mutations [71,72].

FGFR2: In the Catalog Of Somatic Mutations in Cancer (COSMIC) database, 12 mutations have
been reported, but only seven of them are activating mutations (missense mutations) of the extracellular
domain, with the most common ones being P253R, N549K and S253R [54].

FGFR3: In the COSMIC database, 13 different point mutations have been described, with S249C
being the most common. The most frequent activating mutations of FGFR3 affect either the
transmembrane (A391E, G370C, G380R, Y373C, S371C) or the extracellular (R248C, S249C) domains of
the protein. Rarer mutations are those in the kinase domain (N540S, K650E, K650M, K650N, K650Q,
and K650T) [54,73].

FGFR4: There are only four FGFR4 activating mutations occurring in the kinase domain. Two of
them (E550 and K535) cause auto-phosphorylation, and therefore induce constitutive activation of
the receptor [54,74].

Some of these mutations have been associated with an increased risk of developing breast
cancer. Genome-Wide-Association-Studies (GWAS) from several independent research groups showed
how Single Nucleotide Polymorphisms (SNPs) on intron 2 of FGFR2 is a risk factor associated with
disease [75–78]. In fact, Easton et al., using their GWAS composed of 4398 BC cases and 4316 controls,
investigated commonly known SNPs to find risk factors associated with the disease [75]. The authors
identified SNPs in five new loci that exhibited strong and consistent association with breast cancer
(p < 10−7). Among these loci there was a FGFR2 whose oncogenic role in BC had already been
consolidated in the literature [75]. Accordingly, Stacey et al., in their GWAS made up of 6145 BC
cases and 33016 controls, identified two SNPs (rs4415084 and rs1094179) on 5p12, which conferred
a risk in developing BC, especially in Estrogen Receptor Positive (ER) + BC (p = 1.3 × 10−17) [76].
By the use of gene expression microarray data, Meyer et al. showed that there is a trend of increasing
FGFR2 expression in rare homozygotes [77]. Moreover, Meyer et al. demonstrated by Real-Time PCR
(RT-PCR) that there is a different trend between the FGFR2 rare and common homozygotes (Wilcox
p-value of 0.028), and proved that Oct-1/Runx2 binding site is probably the dominant determinant for
such differential expression [77]. According to Easton et al. [75] and Stacey et al. [76], the GWAS of
Hunter et al. [78] identified alleles in FGFR2 associated with a higher risk of sporadic post-menopausal
BC. Their study investigated 528,173 SNPs in 1145 postmenopausal women of European ancestry with
invasive BC and 1142 controls [78]. The authors identified several genomic locations as potentially
associated with BC, and four of the ones with the most significant p-values-r1219648, rs2420946,
rs11200014 and rs2981579-were located on intron 2 of FGFR2.

Although GWAS from several groups has confirmed that a germ-line polymorphism in intron
2 of FGFR2 is associated with BC susceptibility [75–78], emphasizing the relevance of FGFR2 in BC
development, little is known about the mechanism by which FGFR2 functions as a risk factor leading
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to BC. A plausible explanation comes from the work of Kim et al., which showed that FGFR2 promotes
breast cancer tumorigenicity by maintaining tumor-initiating cells (TICs) [68]. As a matter of fact,
the authors revealed in their model of BC TICs-isolated through flow-cytometer with CD29high CD24+

markers-that there were several markedly upregulated genes compared to non-TICs. The genes that
exhibited significantly higher mRNA expression levels were GABRA4, FGFR2 and FOXA1. The group
then also proved that the FGFR2 protein levels were higher in TICs. Furthermore, their in vivo results
demonstrated that down-regulation of FGFR2 by short hairpin RNA (shRNA) substantially reduced
(64 to 70%) the TICs subpopulation (CD29high CD24+). Intriguingly, shFGFR2 significantly increased
(65 to 67%) the subpopulation of non-TIC cells (CD29low CD24−). These results suggest that FGFR2
causes a decrease of TICs and an increase of non-TICs [68]. Moreover, the authors showed that FGFR2
in shFGFR2-treated mice resulted in a considerable increase of bipotent precursor-like cells (K18+K14+),
suggesting that FGFR2 rescued the bipotent capacity driven by the FGFR2 knockdown. Therefore,
inhibiting FGFR2 could be a valid strategy to destroy those TICs populations in BC. Additionally,
Kim et al., in an in vivo mice model, found that treatment with FGFR2-inhibitor (TKI258) suppressed
tumor growth. Such a growth inhibition was accompanied by a significantly reduced phosphorylation
of FGFR2 and Erk1/2, suggesting that such an inhibition was dependent on FGFR2 activation and its
targets [68]. Guagnano et al. screened 541 cancer cell lines—including BC cell lines-for “FGFR genetic
alterations”, and investigated the sensitivity of the cells to an anti-FGFR inhibitor (NVP-BGJ398).
They considered nine distinct types of FGFR genetic alterations already established in the literature:
FGFR1-4 copy number gains; FGFR1-3 activating mutations; and FGFR1 or FGFR2 chromosomal
translocations. Their compound NVP-BGJ398 proved to be a strong multi-kinase inhibitor targeting
FGFR1-4 and the Vascular Endothelial Growth Factor Receptor (VEGFR) 2. Finally, the research
group showed that such FGFR genetic alterations are considered a top predictor of the response
to NVP-BGJ398 [69]. In a small study employing comprehensive molecular analyses of 13 lobular
breast carcinomas, Reis-Filho et al. demonstrated that a high level of gains was detected at the
chromosomal position 8p12-p11.2 in six of their primary cases [65]. Furthermore, through siRNA
and a small-molecule inhibitor of FGFR1 (SU5402), they proved that inhibition of FGFR1 was capable
of blocking survival of the ductal carcinoma cell line MDA-MB-134 [65]. Therefore, the analyses of
different research groups are supportive of the fact that inhibition of the FGFR/FGF axis could be a
valid approach for further investigation in large and randomized clinical trials. According to more
recent studies based on Next Generation Sequencing (NGS), the levels of FGFR3 and FGFR4 were very
low in BC. In fact, in a NGS study by Helsten et al., made up of 4853 solid tumors (including 522 BCs),
the authors proved that the amplification of the FGFR3 and FGFR4 is expressed in less than 1% and 2%
of BC patients, respectively [54]. On the other hand, in a previous study based on RT-PCR and made
of 10 tumor cell lines and 103 breast-tumor samples, FGFR4 was expressed in up to 32% of patients
with BC while FGFR3 was not detected [79].

3.3. Gene Fusions of FGFRs

Gene fusion involves the joining of two different genes, either via a translocation or an inversion.
It represent 8% of FGFR aberrations [4,54]. There are at least 11 fusion partners identified for FGFR1.
Such fusions include ZNF198, BCR and FOP. The most commonly occurring FGFR genes with this
kind of alteration are the FGFR2 and the FGFR3. The majority of gene fusions have been identified
in patients with myeloproliferative disorder stem cell leukemia/lymphoma syndrome. Gene fusions
with the TACC3 gene, resulting in a FGFR3-TACC fusion protein, lead to a constitutive activation
of the receptor [20,80]. As for breast cancer, FGFR1–3 gene fusions have been observed to occur
with multiple partners (i.e., TACC1, TACC2, TACC3, BAIAP2L1, BICC1, NPM1, PPAPDC1A, AFF3,
SLC45A3 and AHCYL1) [54,70,81].



Cells 2018, 7, 76 7 of 14

4. Anti-FGFR Therapies

The relevance of the FGFR/FGF pathway in the development and progression of BC justifies
the growing interest in developing new, targeted therapies for this pathway [82]. Small inhibitors
of FGFR tyrosine kinase, selective or nonselective, are under clinical evaluation, although mainly in
the early stages of trials [83]. Efforts are being made to increase the selectivity to the intracellular
ATP-binding domain of the receptor to minimize the toxicity [30]. BGJ398 (infigratinib), a pan-FGFR
inhibitor, is currently under evaluation as a single agent to establish the maximum tolerated dose
(MTD) (NCT01004224) [84]. Moreover, another phase I trial (NCT01928459) was conducted in order
to determine the MTD for BGJ398 with BYL719 for the treatment of solid tumors bearing FGFR
1–3 alterations and PIK3CA mutations. AZD4547 is another TKI that has shown strong activity
against FGFR-3, yet weaker activity against FGFR4. Its safety and effectiveness is under evaluation in
ER+ patients harboring FGFR1 polisomy or gene amplification after progression to endocrine-based
therapies (NCT01791985). Another phase I study (NCT03238196) has been conducted for ER+ HER2-
metastatic breast cancer (MBC) patients in order to evaluate Erdafitinib, which is an orally administered
FGFR inhibitor, in combination with anti-CDK4/6 palbociclib and anti-HR fulvestrant.

The development of non-selective TKI-targeting FGFRs has recently been shown to be very
successful in preclinical studies [6]. Some of these inhibitors have passed the phase I trial with
encouraging results in terms of safety and tolerability. TKI258 (dovitinib) is effective against VEGFR1-3,
FGFR1-3 and PDGFR [37], and was under evaluation in combination with fulvestrant for the treatment
of HER2 negative metastatic breast cancer, however this was terminated due to slow and low
enrollment (NCT01528345).

E3810 (lucitanib), a drug that inhibits VEGFR1-3, FGFR1, colony stimulating factor 1 receptor
(CSF1R), and FGFR2 has been administered as a single agent in two phase II trials in MBC patients
with or without FGFR1 amplification; one phase II study (NCT02202746) is ongoing. A phase I study is
currently evaluating the safety and tolerability of the combination of letrozole and nindetanib, a triple
kinase inhibitor (VEGFR, PDGFR, and FGFR), in postmenopausal women with ER+ MBC (NCT02619162).

Other strategies used to inhibit the FGFR/FGF axis are under investigation [85]. Similar to the
development of antibodies against HER2+ isoforms, antibodies against FGFR isoforms represent a
valid therapeutic strategy to intervene in BC. As a matter of fact, GP369 recognizes FGFR-IIIb isoform
and has exhibited good results in blocking breast cancer cell line proliferation [86]. Such positive
preliminary results warrant further research. Lastly, another approach against the FGFR/FGF axis
concerns the use of inhibitors of FGF ligands. Long pentraxin-3 (PTX3) is an inhibitor of various FGFR
ligands, among them FGF2 and FGF8b, which have both been found to be implicated in breast cancer
development [87]. FP-1039 is a recently developed ligand-trap in which a ligand-binding domain of
FGFR1 is fused to an Ig-Fc domain. This compound showed promising activity in vitro and passed a
phase I clinical trial (NCT00687505) for solid tumors, including breast cancer [88]. Of note, FGFR may
play a role in the development of resistance to anti-VEGFR therapy. Therefore, a proposed strategy is
the use of small molecules targeting both receptors [89]. Additionally, several studies have suggested
that inhibition of FGFR activation may lead to synergic activity with endocrine-based therapies and
anti-ErbB therapies. For this reason, it would be interesting to consider the combination of anti-FGFR
therapies with other already established treatments for breast cancer, targeting other pathways in order
to obtain an increased effect while developing more powerful molecules to better treat this disease [90].
Table 1 summarizes ongoing clinical trials testing anti-FGFRs therapies in breast cancer. These results
are certainly relevant, but a deeper understanding of the FGFR action in the promotion of breast cancer
and its connection with other already established pathways are surely needed.
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Table 1. Selected ongoing trials with FGFR inhibitors in breast cancer.

Clinical Trial
Identifier Study Design Intervention/s Setting Primary Endpoint Phase Status

NCT03238196
32 Participants,

Non-Randomized,
Open label

Fulvestrant + palbociclib + erdafitinib as an escalation (Arm A: 4–8 mg once
daily for erdafitinib, 125 mg once every 21 days followed by 1 week of rest

(without taking the drug) and 500 mg once daily for erdafitinib) or the same
combination of drugs as an expansion (Arm A: 4–8 mg once daily for

erdafitinib, 125 mg once every 21 days followed by 1 week of rest (without
taking the drug) and 500 mg once daily for erdafitinib).

Second line Safety and
Tolerability 1 Recruiting

NCT02465060

6452 participants,
Non-Randomized,

Parallel assignment,
Open Label

Adavosertib, afatinib, binimetinib, capivasertib, crizotinib, dabrafenib,
dasatinib, defactinib, AZD4547, larotrectinib, nivolumab, osimertinib,
palbociclib, pertuzumab, GSK2636771, sapanisertib, sunitinib malate,

taselisib, trametinib, trastuzumab, trastuzumab emtansine, vismodegib

Second line OR 2 Recruiting

NCT02202746
178 participants,

Parallel Assignment,
Open label

Lucitanib in patients with FGFR1-amplified or 11q-amplified (Arm A: 10 mg
once daily), and in patients with FGFR1- non amplified and 11q

non-amplified (Arm B: 10 mg once daily)
Second Line PFS 2 Active, not

recruiting

NCT01004224

208 participants,
Single group
assignment,

Non-Randomized,
Open label

BGJ398 (dose escalation) Second line MTD 1 Active, not
recruiting

NCT01791985
56 participants, Single

group assignment,
Open label

Anastrazole (1 mg daily), letrozole (2.5 mg once daily) and AZD4547 (80 mg
twice daily) Second line Safety and

Tolerability 1 & 2 Active, not
recruiting

NCT02619162
22 participants, Single

group assignment,
Open label

Letrozole (2.5 mg) with nintedanib (100–150 mg) Second line DLT 1 Recruiting

NCT03344536
55 participants, Single

group assignment,
Open label

Fulvestrant (500 mg 1, 15, 29 and every 28 days
(+/− 3 days) thereafter) and Debio 1347

(dose escalation, administered once daily).

Second line maximum for phase II;
phase I could have received more

than one prior treatment
DLT 1 & 2 Recruiting

NCT02393248

280 participants,
Single group

assignment, Open
label

Combination therapy: Gemcitabine + Cisplatin + INCB054828;
Pembrolizumab + INCB054828; Docetaxel + INCB054828; Trastuzumab +

INCB054828.
Second line MTD 1 & 2 Recruiting

Abbreviations: Progression Free Survival, PFS; Objective Response, OR; Dose Limiting Toxicity, DLT; Maximum Tolerated Dose, MTD.
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5. Discussion

FGFR is an already established BC oncogenic driver involved in various mechanisms leading
to the formation of vessels, tumor growth and avoidance of apoptosis. Various genetic alterations of
FGFR have been associated with BC, and thus therapeutic strategies have been implemented in order to
inhibit FGFRs. In fact, several anti-FGF/FGFR therapies have been tested at phase I and II clinical trials.
Among them are the FGFR inhibitors erdafitinib and nindetanib, a pan-FGFR inhibitor infigratinib,
and FGFR1–3 inhibitors AZD4547 and dovitinib. It is worth noting that FGFR1 amplification is the
most frequent genomic aberration, whereas the FGFR2–4 gene amplifications and FGFR activating
mutations are uncommon. Therefore, for future therapeutic strategies involving FGFRs in BC, the
FGFR1 should be considered as a primary target to be predominantly pursued as it is the most
commonly altered FGFR gene currently in this context. The role of anti-FGFR therapies should be
tested in combination with other molecules targeting downstream molecules of the same pathway,
FGFs, and other tyrosine kinase cell membrane receptors like EGF, PDGF, VEGF, CCK, AXL, ROS,
RET, RYK, TIE, LMR and HGF. Through the stratification of patients in groups on the basis of specific
molecular alterations and evaluation of increasingly accurate predictive biomarkers, it becomes easier
to choose which combination of therapies could be most beneficial for the patients. Moreover, in an era
where immunotherapy is at the front-line of innovation, it would be interesting to test combinations of
anti-FGFR or anti-FGF therapies with specific immune stimulating molecules-like with checkpoint
inhibitors-in order to improve survival and quality of life of BC patients with novel and increasingly
accurate therapeutic strategies.
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