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Abstract
Background: The liver is one of the organs affected by doxorubicin toxicity. Therefore, in this study, the potential protective role of
aqueous leaf extracts of Chromolaena odorata and Tridax procumbens against doxorubicin-induced hepatotoxicity was
investigated.

Methods: In order to achieve this, their impact on hepatic biomarkers of oxidative stress, lipid and electrolytes’ profile, and plasma
biomarkers of liver functions/integrity were monitored in doxorubicin treated rats. The animals were treated with either metformin
(250mg/kg body weight orally for 14days) or the extracts (50, 75, and 100mg/kg orally for 14days) and/or doxorubicin (15mg/kg,
intraperitoneal, 48h before sacrifice).

Results: The hepatic malondialdehyde, cholesterol, calcium, and sodium concentrations, and plasma activities of alanine and
aspartate transaminases and alkaline phosphatase, as well as plasma albumin to globulin ratio of test control were significantly
(P< .05) higher than those of all the other groups. However, the plasma albumin, total protein, globulin, and total bilirubin
concentrations; hepatic concentrations of ascorbic acid, chloride, magnesium, and potassium; and hepatic activities of catalase,
glutathione peroxidase, and superoxide dismutase of test control were significantly (P< .05) lower than those of all the other groups.

Conclusions:Pretreatment with the extracts and metformin prevented to varying degrees, doxorubicin-induced hepatic damage,
as indicated by the attenuation of doxorubicin-induced adverse alterations in hepatic biomarkers of oxidative stress, lipid and
electrolyte profiles, and plasma biomarkers of hepatic function/integrity, and keeping them at near-normal values.

Keywords: cholesterol, Chromolaena odorata, doxorubicin, electrolyte profiles, hepatic oxidative stress, plasma liver biomarkers,
Tridax procumbens
Introduction

The liver is one of the organs affected by doxorubicin toxicity.1–4

An increasing number of evidence supports the role of oxidative
stress as a key mechanism of doxorubicin-induced hepatotoxici-
ty,3–8 although many studies have also reported the involvement
of apoptotic responses,3,9 as well as induction of the inflamma-
tory cascade in the pathogenesis of doxorubicin-induced
hepatotoxicity.3,4,9

The oxidative stress that results from doxorubicin’s toxicity in
hepatic tissues is characterized by lipid peroxidation (often
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indicated by high malondialdehyde [MDA] levels),5,6,9,10 in
addition to decreased levels of reduced glutathione5,6,9 and the
antioxidant enzymes such as catalase, superoxide dismutase,
glutathione peroxidase, glutathione reductase, and glutathione-
S-transferase.3,6,9,11 Doxorubicin-induced hepatic injury is
accompanied by increased plasma levels of uric acid, gamma-
glutamyl transferase, lactate dehydrogenase, alanine transami-
nase, aspartate transaminase, and alkaline phosphatase; and
decreased plasma albumin and total protein levels.5,6,9

Metformin a biguanide, widely used in the treatment of type 2
diabetes,12 has been found to exert beneficial effects on various
diseases including obesity, cancers (e.g., melanoma, breast,
endometrial, bone, and colorectal cancers), and liver, cardiovas-
cular, and renal diseases.12–17 In humans, metformin was also
found to reduce the incidence of fatty liver diseases and to cause a
histological response,12,18 whereas in animal trials, it prevented
the development of high-fat diet-induced fatty liver disease in ob/
obmice, which displayed decreased liver triglyceride content.12,19

It has been reported to protect against doxorubicin-induced
hepatic toxicity.10 Its hepatoprotective activity occurs via
antioxidant, anti-inflammatory, and anti-apoptotic mecha-
nisms10,20,21; as well as via activation of adenosine 50-mono-
phosphate-activated protein kinase.12

Currently, there is a global propensity toward the use of plant
products (herbal drugs), due to the belief that they are safer and
more effective with fewer side effects than modern pharmaceuti-
cal drugs.22 In line with this, various bioactive compounds of
plant origin have been reported to prevent or mitigate the
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hepatotoxicity of doxorubicin via antioxidative activity. They
include caffeic acid, carotenoids, catechin, epicatechin, epigallo-
catechin gallate, quercetin, and silymarin; all of which have been
reported to exert hepatoprotective effects via attenuation of
doxorubicin-induced oxidative stress in the liver.1,9,11,23–27

Others are allicin, apigenin, ascorbic acid, baicalein, chlorogenic
acid, ellagic acid, gallic acid, genistein, kaempferol, lignans,
lutein, myricetin, naringenin, nobiletin, and saponins; all of
which have been reported to exert hepatoprotective effects via
attenuation of carbon tetrachloride- or acetaminophen- or
tamoxifen- or lipopolysaccharide or D-galactosamine- or
pyrogallol-induced oxidative stress in the liver.28–42

Previous studies have shown that the leaves of Chromolaena
odorata and Tridax procumbens, and their extracts contain this
aforementioned bioactive compounds43–51; all of which have
been reported to be potent antioxidants.47,50,52–55 These
antioxidants may account for the numerous pharmacological
properties exhibited by these leaves and their extracts; such as
hepatopro- tective,51,56 antidiabetic,57,58 hematoprotective,59

nephroprotec- tive,60 antihypertensive,46,49,61,62 hypolipidemic
and weight reducing,48,63–66 as well as their anticancer67,68

activities. The leaf extracts of C odorata and T procumbens have
also been reported to exhibit antioxidant activities.69,70 There-
fore, this study is an attempt to harness the antioxidant properties
of C odorata and T procumbens leaf extracts, for the prevention
of doxorubicin- induced hepatotoxicity in Wistar rats.
Materials and methods

Preparation of extracts

Fresh samples of C odorata and T procumbens were harvested
from within the University of Port Harcourt, and were duly
identified as earlier reported.45–51,56,61–65 The leaves were rinsed
in water and drained, to remove dirt, before macerating 6kg of C
odorata and 5.5kg of T procumbens, respectively. The resultant
extracts were dried in a water bath, and their residues (127 and
116g, respectively) were stored for use in the assay. The resultant
leaf residues ofCodorata andT procumbens (hereinafter referred
to as Chromolaena odorata leaf extract (COLE) and Tridax
procumbens leaf extract (TPLE), respectively, or extracts), were
weighed, reconstituted in distilled water and administered to the
experimental animals, according to their individual weights and
dosages of their groups.
Experimental design and sample collection

Forty five Wistar rats (weight 120–190.6g) were obtained from
the Animal House of Department of Pharmacology, University of
Port Harcourt. They were housed in cages therein, and allowed
unfettered access to water and feed (product of Port Harcourt
Flour Mills, Port Harcourt, Nigeria). All the experimental
procedures used in this study were in agreement with the ethical
guidelines for investigations using laboratory animals, and
Table 1

Samples collected and biomarkers evaluated

Sample type Form used Biomarkers evaluated

Blood Plasma Plasma alanine and aspartate transamina
Liver Homogenates Malondialdehyde, ascorbic acid, calcium,

Catalase, glutathione peroxidase, and su

2

conformed to the guide for the care and use of laboratory
animals.71 The animals were weighed and arranged into
9 groups of 5 animals each, with average differences in
weight <2.95g.72 The animals were acclimatized for 1week,
before commencing the treatment, which lasted for 14days.
Diabetmin (metformin HCl) (dissolved in distilled water) was
orally administered daily at 250mg/kg body weight to the
Metformin group. The extracts were administered via same
route at 50mg/kg to COLE-50mg (COLE) and TPLE-50mg
(TPLE); 75mg/kg to COLE-75mg (COLE) and TPLE-75mg
(TPLE); and 100mg/kg to COLE-100mg (COLE) and TPLE-
100mg (TPLE). The normal and test control received distilled
water instead.
Onday12, doxorubicin (in normal saline)was intra- peritioneally

injected (15mg/kg body weight), into all the groups, except the
normal control which was administered normal saline instead. The
doxorubicin dosage was adopted and modified from Song et al.4

The dosages of administration of theCodorata extractwas adopted
and modified from Ikewuchi et al46,48,49; that of T procumbens
extract was adopted andmodified from Ikewuchi et al,65,66 whereas
that of metformin was adopted from Zilinyi et al.73

On day 14, the animals were sacrificed under chloroform
anesthesia and blood samples were collected into heparin sample
bottles, then their livers were collected, and their weights and sizes
were recorded.48 The blood samples were centrifuged at 1000rpm
for 10 minutes, and the respective plasma samples were collected
and stored for use in the assay (Table 1). The collected organswere
homogenized indistilledwater (at 0.4gper 5mL), and the resultant
homogenateswere storedandused for the assay (Table1).The liver
weights/sizes indices were determined according to the following
the formula adopted from Ikewuchi et al.74

Liverweight or size index ð%Þ

¼ Liverweight ðgÞor liver size ðcm3Þ
Bodyweight ðgÞ � 100
Assay of biochemical parameters

All chemicals used in this study were of analytical grade and
products of Sigma-Aldrich, St Louis, MO, USA. The triglyceride,
cholesterol, calcium, alanine and aspartate transaminases and
alkaline phosphatase, total protein, and albumin kits were
products of Randox Laboratories Ltd, County Antrim, UK; the
sodium and potassium kits were products of Atlas Medical,
Cowley Rd, Cambridge, UK, while the chloride and magnesium
kits were products of Agappe Diagnostics Switzerland GmbH.

Assay of hepatic biomarkers of oxidative stress and
endogenous antioxidant status. The MDA contents of the
homogenates were analyzed in compliance with the method
reported by Gutteridge and Wilkins.75 The assay mix was
ses, alkaline phosphatase activities Total protein and albumin concentrations
sodium, chloride, magnesium, potassium, cholesterol, and triglyceride concentrations
peroxide dismutase activities
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prepared by combining 1mL of glacial acetic acid, 1mL of 1%
thiobarbituric acid solution and 0.2mL of sample. After zeroing
the spectrophotometer with a blank containing 0.2mL of distilled
water in the place of the sample, they were read at 532nm. The
homogenates’ ascorbic acid contents were estimated by iodine
titration, as adopted from Ikewuchi et al.60 One milliliter (1.0
mL) of the sample was added to 5mL of reaction mix (31.746mg
% starch in 1.243% (v/v) HCl); and titrated with iodine solution,
until a permanent blue color appeared.
The catalase activities of the homogenates were determined

with the method reported by Beers and Sizer.76 The “sample
tubes” consisted of 2.50mL of hydrogen peroxide, and 2.70mL
of distilled water was used to zero the spectrophotometer and
absorbance read at 420nm, exactly 1 minute after adding 0.20
mL of the sample. The “reference” had 0.20mL of distilled water
instead of the sample. The assay of superoxide dismutase
activities of the homogenates was carried with the method of
Misra and Fridovich.77 The assay mix was prepared by
combining 0.1mL of sample and 1.25mL of 0.05M carbonate
buffer. After equilibrating at room temperature, 1.5mL of
distilled water was used to zero the spectrophotometer, before
reading absorbance at 520nm, exactly 1 minute after adding
0.15mL of 0.3mM adrenaline. The “reference” had 0.1mL of
distilled water instead of the sample. Glutathione peroxidase
activities of the homogenates were determined in compliance
with the method of Rotruck et al.78 The assay mix prepared by
combining 0.5mL of 0.1M sodium phosphate buffer (pH 7.4),
0.1mL of 10mM sodium azide, 0.2mL of 4mM reduced
glutathione, 0.1mL of 25mM hydrogen peroxide, 0.5mL
sample, and 0.6mL distilled water was incubated at 37°C for
3 minutes. The reaction was stopped by adding 0.5mL 10%
trichloroacetic acid. After centrifugation, the residual glutathione
contents of the supernatants, was measured by combining 0.5mL
of the supernatants, 4.0mL of 0.3M disodium hydrogen
phosphate solution, and 1mL of 0.01M 5,5-dithiobis-2- nitro-
benzoic acid (DTNB) reagent, and reading at 412nm, against a
reagent blank containing only 4.5mL phosphate solution and 1
mL DTNB reagent. Half milliliter of 4mM glutathione solution
(the standard) was treated in a similar way. The protein contents
of the homogenates were estimated by the Lowry method.79

Determination of hepatic lipids and electrolytes profiles. The
cholesterol, triglyceride, calcium, sodium, potassium, chloride,
and magnesium contents of the homogenates were assayed
according to the kits manufacturer’s instructions; except that
homogenates were used instead of plasma.
Table 2

Effects of the extracts on hepatic biomarkers of oxidative stress

Treatment
Malondialdehyde
(mmol/mg protein)

Ascorbic acid
(mg/mg protein)

Glutathio
(mmol/m

Normal control 2.497±0.440
∗,† 149.409±2.749

∗
1.89

Test control 4.934±0.653‡ 49.874±1.111‡ 0.98
Metformin 2.186±0.038† 126.461±3.073† 2.51
COLE-50 mg 3.304±0.338

∗,x 120.559±3.217† 2.11
COLE-75 mg 2.734±0.166

∗,†,x 353.624±8.380jj 2.85
COLE-100 mg 3.073±0.197

∗,†,x 262.700±9.664¶ 3.00
TPLE-50 mg 3.100±0.217

∗,†,x 270.377±5.800¶ 2.72
TPLE-75 mg 2.787±0.246

∗,†,x 102.828±7.851# 1.77
TPLE-100 mg 3.570±0.137x 171.767±6.433x 1.92

Values are mean ± standard error of the mean (SEM), n=5 animals, per group. Values in the same colu
extract; TPLE, Tridax procumbens leaf extract.
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Assay of plasma biomarkers of liver function/integrity. The
assay procedures for the plasma alanine and aspartate trans-
aminases, alkaline phosphatase, total protein, and albumin were
compliant with the kits manufacturer’s instructions. The plasma
globulin levels and plasma albumin/globulin ratios were
calculated with the following formulae.80

i: Plasma globulin concentration ¼ total protein½ � � albumin½ �
ii: Plasma albumin to globulin ratio ¼ Plasma albumin½ �
Plasma globulin½ �
Determination of percent protection

The percent protection of the liver or the extent to which the
extracts restored the measured biochemical parameters to normal
values, in comparison to the test control (untreated or disease
control) was calculated using the following formula.81

Percent protection ¼ Parametertest control � Parametertreatment

Parametertest control � Parameternormal control
� 100
Statistical analysis of data

Excel 2010 (Data Analysis Add-in) software was used to carry out
the statistical calculations. All data are expressed as mean ±
standard error of themeanandwere analyzed using 1-wayanalysis
of variance. Significant difference of themeanswasdeterminedbya
post-hoc analysis involving least significant difference test. In all,
P< .05 was considered statistically significant.

Results

Hepatic biomarkers of oxidative stress and endogenous
antioxidant status

The effects of aqueous leaf extracts of C odorata and T
procumbens on hepatic biomarkers of oxidative stress and
endogenous antioxidants in doxorubicin treated rats is shown in
Table 2. The hepatic MDA concentration of Test control was
significantly (P< .05) higher, whereas the hepatic ascorbic acid
concentration, and catalase, glutathione peroxidase, and super-
oxide dismutase activities of test control were significantly
(P< .05) lower than those of all the others.
ne peroxidase
in/ mg protein)

Superoxide dismutase
(units/mg protein)

Catalase
(mmol/min/ mg protein)

5±0.023
∗

1.009±0.027
∗

2.128±0.014
∗

4±0.025‡ 0.615±0.010‡ 1.984±0.037‡

0±0.025† 0.914±0.040† 2.292±0.020†

0±0.048
∗

0.896±0.010† 2.157±0.030
∗

5±0.046†,x 2.914±0.031jj 3.277±0.028jj

0±0.035x 3.269±0.054¶ 2.682±0.043x,¶

7±0.378†,x 3.549±0.040# 2.640±0.040¶

5±0.021
∗

1.212±0.014
∗∗

2.705±0.040x,¶

7±0.054
∗

1.399±0.020x 2.766±0.026x

mn with different superscript symbols differ significantly at P< .05. COLE, Chromolaena odorata leaf

http://www.portobiomedicaljournal.com


Figure 1. Effects of the extracts on hepatic cholesterol and triglyceride concentrations of doxorubicin treated rats. Values are mean±standard error in the mean,
n=5 animals, per group. Bars in the same block, with different superscript letters differ significantly at P< .05.
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Hepatic lipids and electrolytes profiles

The hepatic cholesterol concentration of test control was
significantly (P< .05) higher than those of all the other groups
(Fig. 1). However, the hepatic triglyceride concentration of the
test control was only significantly (P< .05) higher than those of
normal control, COLE-50mg, TPLE-75mg, and TPLE-100mg
(Fig. 1). The hepatic calcium and sodium concentrations of test
control were significantly (P< .05) higher, whereas the chloride,
magnesium, and potassium concentrations were significantly
(P< .05) lower than those of all the other groups (Table 3).

Plasma biomarkers of liver function/integrity

The plasma albumin, total protein, globulin, and total bilirubin
concentrations of test control were significantly (P< .05) lower,
whereas the albumin to globulin ratio, and plasma activities of
alanine and aspartate transaminases and alkaline phosphatase of
test control were significantly (P< .05) higher than those of all the
other groups (Table 4).

Protection of hepatic biomarkers by the extracts

The administration of the extracts prevented doxorubicin- induced
liver damage as signified by the attenuation of doxorubicin-
induced adverse alterations in hepatic biomarkers of oxidative
Table 3

Effects of the extracts on the hepatic electrolytes profiles of doxoru

Treatment
Calcium

(mg/mg protein)
Chloride

(mEq/mg protein)

Normal control 58.166±1.668
∗

7.225±0.141
∗

Test control 98.057±1.652‡ 5.475±0.142‡

Metformin 69.225±1.727x 6.230±0.190x

COLE-50 mg 63.727±3.114jj 6.656±0.160
∗,x

COLE-75 mg 61.697±2.294
∗,jj 13.608±0.223¶

COLE-100 mg 62.389±0.554
∗,jj 18.285±0.345†

TPLE-50 mg 59.896±1.185
∗,jj 12.548±0.335jj

TPLE-75 mg 63.492±1.875jj 7.246±0.209
∗

TPLE-100 mg 60.480±1.432
∗,jj 7.229±0.080

∗

Values are mean ± standard error of the mean (SEM), n=5 animals, per group. Values in the same colu
extract; TPLE, Tridax procumbens leaf extract.
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stress, lipid and electrolyte profiles, and plasma biomarkers of
hepatic function/integrity; and caused a subsequent protection
toward near-normal values. These protections are presented in
Table 5 in the form of percent protection of the parameters.
Liver size and weight indices

Theeffectsof aqueous leaf extractsofCodorataandTprocumbens
on the liver size and weight indices of doxorubicin treated rats is
presented in Figure 2. The liver size of test control was only
significantly (P< .05) lower than those of the normal control,
COLE-75mg and TPLE-50mg. However, the liver size index of
test control was only significantly (P< .05) lower than that of
COLE-75mg.The liverweight of test controlwasonly significantly
(P< .05) lower than those of normal control and COLE-75mg.
Nevertheless, the liver weight index of test control was only
significantly (P< .05) lower than those of normal control, COLE-
50mg, COLE-75mg, TPLE-50mg, and TPLE- 100mg.

Discussion

Oxidative stress is one of the major contributors to doxorubicin
toxicity, and one of the major causes of liver damage.3,4,7,8 In this
study, doxorubicin treatment produced oxidative stress as
bicin treated rats

Magnesium
(mg/mg protein)

Potassium
(mmol/mg protein)

Sodium
(mEq/mg protein)

3.106±0.022
∗

0.676±0.029
∗,† 42.987±1.864

∗

2.877±0.015‡ 0.139±0.012‡ 56.985±0.848‡

3.204±0.009
∗

0.498±0.013x 38.413±0.721x

3.234±0.168
∗

0.452±0.028x 37.630±1.807x

9.324±0.042x 1.349±0.049¶ 45.456±1.637
∗

10.081±0.040¶ 1.284±0.023¶ 46.674±1.517
∗,jj

10.549±0.049† 1.969±0.042jj 50.311±0.708jj

3.936±0.021# 0.752±0.018† 46.272±0.862
∗

5.083±0.044jj 0.631±0.029
∗

45.246±1.739
∗

mn with different superscript symbols differ significantly at P< .05. COLE, Chromolaena odorata leaf



Table 4

Effects of the extracts on plasma biomarkers of liver function/integrity

Treatment
Albumin
(g/L)

Total protein
(g/L)

Globulin
(g/L)

Albumin to
globulin ratio∗

Total bilirubin
(mg/dL)

Alanine
transaminase (U/L)

Aspartate
transaminase (U/L)

Alkaline
phosphatase (U/L)

Normal control 26.48q±0.304† 49.718±0.483† 23.238±0.620† 1.144±0.038† 1.853±0.019† 136.903±4.811†,‡ 125.438±4.051† 25.944±4.077†

Test control 17.797±0.266x 25.160±0.531x 7.363±0.591x 2.482±0.205x 1.674±0.025x 201.559±4.844x 176.325±2.136x 41.952±1.899x

Metformin 24.914±0.221jj 39.859±0.775jj 14.945±0.555jj 1.677±0.051jj 2.103±0.018jj 175.251±2.057jj 146.719±2.630jj 1.840±0.291jj

COLE-50 mg 21.899±0.220¶ 46.081±0.538¶ 24.182±0.669† 0.909±0.032¶ 1.922±0.025¶ 151.824±1.783¶ 153.080±2.525jj,¶ 12.696±2.657¶,#

COLE-75 mg 38.492±0.533‡ 57.922±0.416‡ 19.430±0.372¶ 1.985±0.061‡ 1.842±0.023† 151.614±3.892¶ 165.854±0.867‡ 32.384±4.898†,x

COLE-100 mg 21.488±0.326¶ 67.439±0.972
∗∗

45.952±1.250‡ 0.470±0.020# 1.827±0.008† 133.919±8.752†,# 149.101±2.037jj 23.368±2.579†,¶

TPLE-50 mg 36.172±0.436
∗∗

67.111±0.711
∗∗

30.939±1.038
∗∗

1.176±0.050† 2.009±0.016# 128.265±7.006‡,# 132.453±0.573† 11.960±2.909†,#

TPLE-75 mg 31.023±0.495†† 59.618±0.631‡ 28.595±0.250†† 1.085±0.016†,¶ 1.812±0.010† 146.065±4.688†,¶ 162.085±1.486#,‡ 27.784±5.930†

TPLE-100 mg 23.534±0.432# 64.459±0.960# 40.925±1.047# 0.577±0.022# 1.909±0.013# 132.348±1.955†,# 156.745±3.667¶,# 32.936±5.191†,x

Values are mean ± standard error of the mean (SEM), n=5 animals, per group. Values in the same column with different superscript symbols differ significantly at P< .05. COLE, Chromolaena odorata leaf
extract; TPLE, Tridax procumbens leaf extract.
∗
Has no unit.
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indicated by the significant elevations in hepatic MDA level and
reductions in ascorbic acid level and activities of superoxide
dismutase, catalase, and glutathione peroxidase. This is in
agreement with earlier reports of doxorubicin-induced increases
in hepatic MDA levels, and decreases in superoxide dismutase,
catalase, and glutathione peroxidase activities.5,6,9,10

However, pretreatment with the extracts and metformin
attenuated the doxorubicin-induced oxidative stress by reducing
the hepatic MDA and raising the levels of ascorbic acid and
antioxidant enzymes. This antioxidant protective effect is in
consonance with reports of the improvement of ocular antioxidant
levels in alloxan-induced diabetic rats by T procumbens extract,57

and improvement of antioxidant levels in the diaphragms of
streptozotocin-induced diabetic rats by C odorata extract.58 This
result is in line with the suggestion by Lee et al82 that significant
enhancements of endogenous enzymatic antioxidants by plant
extractsmight be a legitimate strategy for decreasing oxidative stress
in the liver. So, these increases caused by the extracts, portends a
consolidation of the endogenous antioxidant status of hepatic
tissues, and their subsequent protection from free radical damage.57
Table 5

Percent protection by the extracts

Parameter Metformin COLE-50 mg COLE-75 mg

Albumin 82.0±2.5
∗

47.2±2.5† 238.3±6.1 ‡

Total protein 59.9±3.2
∗

85.2±2.2‡ 133.4±1.7x

Globulin 47.8±3.5
∗

105.9±4.2† 76.0±2.3‡

Albumin/globulin ratio 60.2±3.8
∗

117.5±2.4‡ 37.1±4.6x

Total bilirubin 239.5±9.8
∗

138.6±13.9‡ 94.0±12.6†

Alkaline phosphatase 250.6±1.8
∗

182.8±16.6
∗,‡ 59.8±30.6†

Aspartate transaminase 58.2±5.2
∗

45.7±5.0
∗,‡ 20.6±1.7x

Alanine transaminase 40.7±3.2
∗

76.9±2.8‡ 77.2±6.0‡

Hepatic triglyceride 27.4±11.2
∗

117.2±10.2† 29.9±14.3
∗

Hepatic cholesterol 50.4±10.3
∗

108.6±6.4‡ 62.6±12.1
∗

Hepatic calcium 72.3±4.3
∗

86.1±7.8† 91.1±5.8†

Hepatic potassium 66.9±2.5
∗

58.3±5.2
∗

225.4±9.1‡

Hepatic magnesium 143.2±3.7
∗

156.0±73.7
∗

2824.1±18.4†

Hepatic chloride 43.1±10.9
∗

67.5±9.1
∗,‡ 464.7±12.7x

Hepatic sodium 132.7±5.2
∗

138.3±12.9
∗

82.4±11.7†

Hepatic ascorbic acid 76.9±3.1
∗

71.0±3.2
∗,‡ 305.2±8.4x

Hepatic malondialdehyde 112.8±1.6
∗

66.9±13.9†,‡ 90.3±6.8
∗,†

Hepatic superoxide dismutase 75.7±10.2
∗

71.3±2.6
∗

583.4±8.0†

Hepatic catalase 213.4±13.7∗ 119.6±20.8‡ 894.2±19.3x

Hepatic glutathione peroxidase 167.4±2.8∗,x 123.6±5.3‡,x 205.3±5.0
∗,†

Values are mean ± standard error of the mean (SEM), n=5 animals, per group. Values in the same row wi
TPLE, Tridax procumbens leaf extract.

5

Thehigh content of ascorbic acid in the liver tissuesmay be the result
of the high content of ascorbic acid in the leaves.44 This antioxidant
protective effectsof extractsmaybe sequel to their contentof anyone
or a combination of some or all of: allicin, apigenin, ascorbic acid,
baicalein, caffeic acid, carotenoids, catechin, chlorogenic acid,
ellagic acid, epicatechin, epigallocatechin gallate, gallic acid,
genistein, kaempferol, lignans, lutein, myricetin, naringenin,
nobiletin, quercetin, saponins, and silymarin,43–51 whose antioxi-
dant and hepatoprotective activities have been variously reported.
Lipid peroxidation decreases membrane fluidity,83,84 and could

compromise the integrity and function of the plasma membrane,
thereby leading to leakages of materials from hepatocytes into the
blood. Plasma aminotransferases (alanine and aspartate trans-
aminases), alkaline phosphatase, and total bilirubin are the standard
biomarkers for detecting and defining liver damage and liver
dysfunction in drug-induced liver injury.85,86 In the present study,
doxorubicin caused significant elevation in the plasma levels of
alkaline phosphatase, alanine, and aspartate transaminases; as well
as decreases in plasma albumin, globulin, total protein, and
bilirubin. This is in consonance with other studies which reported
COLE-100 mg TPLE-50 mg TPLE-75 mg TPLE-100 mg

42.5±3.8† 211.6±5.0x 152.3±5.7jj 66.1±5.0¶

172.2±4.0jj 170.8±2.9jj 140.3±2.6x 160.0±3.9†

243.1±7.9x 148.5±6.5jj 133.7±1.6jj 211.4±6.6¶

150.3±1.5† 97.6±3.8jj 104.4±1.2jj 142.3±1.6†

85.5±4.4† 186.7±9.1x 77.1±5.8† 131.3±7.2‡

116.1±16.1†,‡ 187.4±18.2
∗

88.5±37.0† 56.3±32.4†

53.5±4.0
∗

86.2±1.1jj 28.0±2.9†,x 38.5±7.2†,‡

104.6±13.5†,x 113.4±10.8x 85.8±7.3†,‡ 107.0±3.0†,x

24.0±37.8
∗

41.8±35.1
∗,‡ 73.8±28.1

∗,† 106.7±27.1†,‡
,† 52.9±12.7

∗
38.8±14.0

∗
92.5±11.4†,‡ 91.9±14.5†,‡

89.4±1.4† 95.7±3.0† 86.6±4.7† 94.2±3.6†

213.4±4.2‡ 341.0±7.8x 114.3±3.4jj 91.7±5.4†

3155.6±17.6‡ 3360.7±21.3x 463.8±9.0jj 966.4±19.3¶

732.0±19.7jj 404.2±19.2† 101.2±11.9 100.2±4.6‡

73.7±10.8†,‡ 47.7±5.1‡ 76.5±6.2† 83.9±12.4†

213.8±9.7¶ 221.5±5.8¶ 53.2±7.9‡ 122.5±6.5†

76.4±8.1†,‡ 75.3±8.9†,‡ 88.1±10.1
∗,† 56.0±5.6‡

673.5±13.7‡ 744.5±10.2x 151.5±3.5jj 198.9±5.0
482.8±29.7†,jj 453.9±27.8jj 499.0±28.0†,jj 541.0±17.7†

221.2±3.8† 191.3±41.5
∗,† 86.8±2.3‡ 103.4±5.9‡

th different superscript symbols differ significantly at P< .05. COLE, Chromolaena odorata leaf extract;
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Figure 2. Effects of the extracts on the liver weight and size indices of doxorubicin treated rats. Values are mean ± standard error in the mean, n=5 animals, per
group. Bars in the same block, with different superscript letters differ significantly at P< .05.
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doxorubicin- induced elevations in plasma levels of alanine and
aspartate transaminases and alkaline phosphatase activities, and
decreases in plasma albumin and total protein concentrations.5,6,9

However, these adverse alterationswere attenuated by pretreatment
with the extracts and metformin. The lowering of these markers by
the extracts is an indication of their hepatoprotective potential.81

The extracts may have protected the hepatic cell membranes from
doxorubicin-induced damage, thereby restricting the leakage of
these enzymes into the plasma. This hepatoprotective effect is in
concord with earlier reports of hepatoprotective effects of leaf
extracts of T procumbens51 and C odorata56 against carbon
tetrachloride-induced liver damage. This hepatoprotective effect of
the extracts could be linked to the presence in them, of antioxidants
(mentionedabove), all ofwhichhavehepatoprotectiveactivities, and
are known to condition hepatocytes, so as to cause enhanced
regeneration of parenchyma cells, and consequently protecting
against membrane fragility and leakage of the marker enzymes into
the bloodstream.
Whereas reduced glutathione primarily prevents the oxidation

of water-soluble components, the lipophilic bilirubin protects
lipids from oxidation.87 Therefore, sequel to the antioxidant
property of bilirubin,88–90 and its ability to function as a cellular
antioxidant,86,91 epidemiological studies have shown that levels
of plasma bilirubin are inversely correlated with the risk for the
development and progression of both chronic kidney disease and
cardiovascular disease.88,89,90,92–96 Therefore, in the absence of
liver disease, high levels of total bilirubin, as observed in this
study, may confer some health benefits.92,95,97

In this study, the extracts prevented doxorubicin-induced
increases in hepatic cholesterol and triglyceride levels. They
6

extracts may owe this effect to the presence in them of any one or
a combination of 2 or more of ellagic acid, quercetin, chlorogenic
acid, naringenin,46,47,50,51 all of which modulates hepatic lipids
(both triglyceride and cholesterol),98–100 and lower adiposity and
triglyceride contents in adipose tissue.101–103 This tissue
cholesterol-lowering activity of the extracts is quite significant,
because studies have shown that the level of cholesterol in
membranes is inversely correlated with the fluidity of mem-
branes.83,104,105 The present results corroborated the reports of
induction of increases in hepatic cholesterol and triglycerides
levels in both humans and experimental animals by doxorubi-
cin.106,107 It is also in conformity with the report by Ferrans108

that interaction of doxorubicin and its metabolites with
membranes, results in interference with various functions of
membranes, including Na+-, K+-dependent ATPase activity,
calcium transport, and intracellular electrolyte balance. There-
fore, the elevated hepatic concentrations of chloride, calcium, and
sodium; and lowered magnesium and potassium, induced by
doxorubicin in this study, are reflective of compromised
membranes of hepatic tissues. However, pretreatment with the
extracts prevented doxorubicin-induced electrolyte imbalance.
This hepatic electrolytes’ modulating ability may be due to the
presence of chlorogenic acid, which according to Rodriguez de
Sotillo and Hadley109 improves mineral pool distribution in
plasma, spleen, and liver.
The reduction of hepatic cholesterol content may have been

responsible for the reduction in hepatic calcium content by the
extracts. This is in view of the reports that decrease in cholesterol
content of plasma membranes leads to decreased Ca2+ influx
through the Ca2+ channel in plasma membranes, which results in
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decrease in intracellular calcium, and vice versa.104,110 Reduction
in membrane cholesterol also stimulates the activities of Ca2
+-ATPase, Mg2+-ATPase, and Na+-, K+-ATPase,104,111,112 which
modulates transport of calcium, magnesium, potassium, and
sodium ions across plasma membranes, and by extension,
intracellular electrolyte balance.
Therefore, the above results suggest that the hepatoprotective

activity of the extracts against doxorubicin-induced toxicity, may
at least in part, be due to their ability to boost endogenous
antioxidants, and modulate hepatic cholesterol and electrolyte
profiles. This then, is an indication of their potential as resources
for the management or prevention of doxorubicin-induced
hepatic toxicity.
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