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Abstract 

Background:  We proposed an artificial intelligence-based immune index, Deep-immune score, quantifying the 
infiltration of immune cells interacting with the tumor stroma in hematoxylin and eosin-stained whole-slide images of 
colorectal cancer.

Methods:  A total of 1010 colorectal cancer patients from three centers were enrolled in this retrospective study, 
divided into a primary (N = 544) and a validation cohort (N = 466). We proposed the Deep-immune score, which 
reflected both tumor stroma proportion and the infiltration of immune cells in the stroma region. We further analyzed 
the correlation between the score and CD3+ T cells density in the stroma region using immunohistochemistry-stained 
whole-slide images. Survival analysis was performed using the Cox proportional hazard model, and the endpoint of 
the event was the overall survival.

Result:  Patients were classified into 4-level score groups (score 1–4). A high Deep-immune score was associated with 
a high level of CD3+ T cells infiltration in the stroma region. In the primary cohort, survival analysis showed a signifi-
cant difference in 5-year survival rates between score 4 and score 1 groups: 87.4% vs. 58.2% (Hazard ratio for score 4 
vs. score 1 0.27, 95% confidence interval 0.15–0.48, P < 0.001). Similar trends were observed in the validation cohort 
(89.8% vs. 67.0%; 0.31, 0.15–0.62, < 0.001). Stratified analysis showed that the Deep-immune score could distinguish 
high-risk and low-risk patients in stage II colorectal cancer (P = 0.018).
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Background
The immune system was an essential component of the 
tumor microenvironment (TME) in colorectal can-
cer (CRC) [1]. It played a central role in tumorigenesis 
and progression, affecting the treatment and progno-
sis of CRC [2]. The need to go beyond the tumor-node-
metastasis (TNM) staging system has been addressed by 
detecting the tumor immune microenvironment (TIME), 
which was affected by the type, density, and location of 
tumor-infiltrating lymphocytes (TILs) [3–5]. The Immu-
noscore®, calculated based on the density of CD3+ and 
CD8+ T cells in the tumor core and invasive margin, has 
been shown to provide superior prognosis to TNM stage 
in CRC [4, 6]. However, most of the current immune 
scores needed to be stained with immunohistochemis-
try (IHC) or other special staining (such as multiplexed 
immunofluorescence), which is not commonly used 
in clinical practice, hindering their widespread clinical 
application.

In most cases, high-quality hematoxylin and eosin 
(HE)-stained slide was sufficient to confirm the diag-
nosis [7]. Immune-related features within HE-stained 
whole-slide images (WSIs), such as TILs and Crohn-
like lymphoid reaction (CLR), can be quantified using 
deep learning. HE-stained slides also have immunologi-
cal information, with a larger sample size and lower cost. 
Deep learning has recently entered the field of compu-
tational pathology and shows excellent promise for task 
automation [8]. Deep learning with digital pathology has 
been successfully applied to breast, prostate, lung, and 
CRC [9–15]. The tissue-level components of CRC, such 
as tumor-stroma ratio (TSR) and CLR [16, 17], can be 
quantified using deep learning. Therefore, the artificial 
intelligence (AI)-based method has the potential to quan-
tify the tissue composition and immune status using HE-
stained WSIs.

The spatial distribution of TILs was important for CRC 
prognosis. TILs can interact with the tumor through 
direct contact or cytokine signaling to produce tumor-
killing immune cells for protection of the organism, 
mainly in the interstitial region [18]. The immune cells 
in the stroma are produced by the surrounding lymphoid 
follicles or migrate from the blood to the tumor area. As 
the stroma increases, the number of immune cells in the 
stroma decreases and the anti-tumor effect decreases 
[16]. In addition, the distribution of immune cells in the 

stroma impacted the prognosis of CRC [19]. We hypoth-
esized, therefore, that a comprehensive consideration of 
the stroma proportion and the immune cell infiltration in 
stroma would further refine the prognostic stratification 
of CRC patients.

The aim of this study was two-fold. First, we proposed 
a deep learning-based immune index, the Deep-immune 
score, quantifying immune infiltration interaction with 
the stroma in HE-stained WSIs. A further investigation 
of its prognostic value is performed in CRC patients from 
three centers.

Methods
Patients
Our study recruited patients with histologically con-
firmed stage I–III CRC who had undergone surgery with 
the intent of curing their cancer, and had paraffin-embed-
ded tumor samples available (Additional file  1: Fig. S1). 
The primary cohort consists of patients from Guangdong 
Provincial People’s Hospital (from Apr 2008 to Jun 2016), 
and the validation cohort includes patients from Yunnan 
Cancer Hospital (from Dec 2012 to Apr 2015) and The 
Sixth Affiliated Hospital of Sun Yat-sen University (from 
Jan 2013 to Oct 2016). This study was approved by the 
Research Ethics Committees of the respective hospitals, 
with the need for informed consent waived for this ret-
rospective study. The exclusion criteria are presented in 
Additional file 1: Methods.

Clinicopathological characteristics information was 
collected, including age, sex, stage, tumor location, 
grade, and carcinoembryonic antigen (CEA) level. Stage 
was performed according to the Union for International 
Cancer Control guideline [20]. Preoperative CEA level 
was binarized as normal and abnormal groups, with the 
cut-off of 5 ng/mL. We focused on overall survival (OS), 
defined as the time from surgery to death for any reason.

Whole‑slide images acquisition and segmentation
The HE-stained slide selection and digitization process 
are shown in Additional file 1: Methods. The stain type, 
stain location, and digital slide scanner for three differ-
ent hospitals are presented in Additional file 1: Table S1. 
A convolutional neural network (CNN) model, VGG-
19, was used to classify WSIs into eight tissue types and 
background. The detailed training process of the deep 
learning model (CNN-HE) has been reported in our 

Conclusion:  The proposed Deep-immune score quantified by artificial intelligence can reflect the immune status 
of patients with colorectal cancer and is associate with favorable survival. This digital pathology-based finding might 
advocate change in risk stratification and consequent precision medicine.
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previous work [16]. Then, HE-stained WSIs were tiled 
into overlapped patches (224 × 224 pixel2 at 20×). The 
model’s prediction maps were reserved, and the tissue 
segmentation was obtained by setting each image patch 
as the tissue class with the max probability (Fig. 1A). The 

model training and segmentation were done in MATLAB 
environment (R2019a, MathWorks, USA). Additional 
file  1: Fig. S2 shows example of HE-stained WSIs and 
corresponding tissue segmentation results from three 
hospitals.

Fig. 1  Study workflow. A Top panel: A CNN model (CNN-HE) was used to classify the HE-stained WSI of colorectal cancer into eight tissue types 
and one slide background. A rough segmentation map was obtained. The Deep-TSR score is calculated as "the area of STR /the area of STR and 
TUM". Bottom panel: Using STR of tissue segmentation as the mask, we define the Deep-TIL score as the mean prediction probability of LYM class 
in STR class. B The Deep-immune score was synthesized by the Deep-TSR score and Deep-TIL score. Deep-TSR-high and Deep-TSR-low groups 
were given 0 and 1 points, respectively. Deep-TIL-low, Deep-TIL-middle, and Deep-TIL-high groups were given 1, 2, and 3 points, respectively. A 
four-level scoring system (score 1–4) was established by summing both the Deep-TSR score and the Deep-TIL score. HE, hematoxylin and eosin; 
WSI, whole-slide image; CNN, convolutional neural network; ADI, adipose; BAC, background; DEB, debris; LYM, lymphocyte aggregates; MUC, mucus; 
MUS, muscle; NOR, normal mucosa; STR, stroma; TUM, tumor epithelium; TSR, tumor-stroma ratio; TIL, tumor-infiltrating lymphocyte
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Deep‑TSR score and Deep‑TIL score
With deep learning, CRC tissues within WSIs can be seg-
mented into nine categories. We defined Deep-TSR score 
as the area of stroma divided by the area of stroma plus 
tumor epithelium. The calculation process of the Deep-
TSR in HE-stained WSIs can be seen in Fig.  1A (top 
panel). Patients were divided into Deep-TSR-low and 
Deep-TSR-high groups using a cutoff of 50%.

We also noticed that the infiltration level of lym-
phocytes in stroma could be quantified by using the 
stroma region of tissue segmentation as the mask, com-
bined with the prediction probability map of LYM class 
(Fig.  1A, bottom panel). We define the Deep-TIL score 
as the mean prediction probability of LYM class in the 
stroma. For each patient, a percentile value was calcu-
lated according to the distribution of the Deep-TIL score 
in the primary cohort. With 33% and 66% percentiles as 
thresholds, patients were classified into a 3-level group: 
low, middle, and high score.

Deep‑immune score
We further developed the Deep-immune score, syn-
thesized by the Deep-TSR and Deep-TIL scores. The 
calculation details are as follows: Deep-TSR-high and 
Deep-TSR-low groups were given 0 and 1 points, respec-
tively. Deep-TIL-low, Deep-TIL-middle, and Deep-TIL-
high groups were given 1, 2, and 3 points, respectively. 
A four-level scoring system was established by summing 
both the Deep-TSR and Deep-TIL scores (Fig. 1B).

Immunohistochemistry validation
We used a subgroup of patients for immunohistochemi-
cal validation to explore whether the Deep-immune 
score extracted from HE-stained WSIs could reflect the 
patient’s immune status. We used the CD3+ T  cells to 
measure immune infiltration in CRC. A consecutive sec-
tion was processed for immunohistochemistry (Addi-
tional file 1: Fig. S1), and the details of the IHC (CD3+) 
staining procedure were presented in our previous work 
[19].

We used a second deep learning model (CNN-IHC), for 
tissue-level segmentation, to automatically obtain stroma 
regions in IHC-stained WSIs. The segmented stroma 
was used as the region of interest (ROI) for WSI, and 
all CD3+ T cells were segmented and counted using our 
previously developed software [21]. Then, the stroma-
CD3 density was calculated by using the number of 
CD3+ T cells divided by the stroma area. The calculation 
process of the stroma-CD3 density is shown in Fig. 2A.

Statistical analysis
Clinicopathological characteristics were compared by 
Student t-test for a continuous variable or Chi-square 

test for a category variable. Kaplan–Meier curves were 
plotted to determine difference in survival rates among 
groups, and log-rank tests were used to calculate P val-
ues. For multivariate analysis, univariate variables with 
P < 0.05 were selected. Hazard ratio (HR) with 95% con-
fidence interval (CI) was calculated by using the Cox 
model. The discrimination performance of factor or 
model was assessed using Harrell’s C-statistics (C-index) 
with 95% CI and the integrated area under the ROC 
curve (iAUC) of 0–5  years. All statistical analyses were 
conducted in R environment (version 4.0.3), with statisti-
cal significance set at 0.05.

Results
Patients
A total of 1010 CRC patients from three hospitals were 
included. Among them, 544 patients formed the pri-
mary cohort, with a median follow-up time for censored 
of 6.46 (interquartile range [IQR], 5.46–8.50) years; 466 
patients formed the validation cohort, with a median 
follow-up time of 5.09 (IQR, 4.39–5.82) years. A com-
parison of clinicopathologic characteristics between the 
two cohorts is shown in Additional file  1: Table  S2. For 
each patient, one HE-stained WSI was used to construct 
Deep-TSR, Deep-TIL, and Deep-immune scores. Among 
them, 477 from the primary cohort and 129 patients from 
the validation cohort had the paired IHC-stained WSIs 
for CD3+ T cells density evaluation (Additional file 1: Fig. 
S1).

Association of Deep‑TSR, Deep‑TIL, and Deep‑immune 
scores with stroma‑CD3 density
For patients with IHC-stained WSIs in the primary 
cohort, 338 (71%) patients were grouped as Deep-TSR-
low, and 139 (29%) patients were grouped as Deep-TSR-
high. The distribution of stroma-CD3 density versus 
Deep-TSR is shown in Fig. 2B. Deep-TSR-low was associ-
ated with a high level of stroma-CD3 density (P < 0.001). 
For the Deep-TIL score, 164 (34%) cases were classified as 
a low score, 162 (34%) as middle score, and 151 (32%) as 
a high score. The mean stroma-CD3 density of the high-
score group was 1.5 times higher than that of the low-
score group (1513 vs. 1001 cells/mm2; P < 0.001; Fig. 2C). 
We also observed that with the increase in Deep-immune 
score, the mean density of the stroma-CD3 also increased 
(density in score 1–4: 844, 1088, 1246, and 1708 cells/
mm2; Fig. 2D).

In the validation cohort, the Deep-TSR score, Deep-TIL 
score, and Deep-immune score had a similar trend to the 
primary cohort (Fig.  2E–G; Additional file  1: Table  S3). 
Based on this analysis, high Deep-immune scores were 
associated with increasing levels of CD3+ T cells infiltra-
tion in the stroma region.
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Fig. 2  Association of Deep-TSR score, Deep-TIL score, and Deep-immune score with stroma-CD3 density. A A second CNN model (CNN-IHC) was 
used for tissue-level segmentation of IHC-stained WSI. The tissue types of the segmentation are the same as Fig. 1A. STR was used as the region of 
interest for WSI, and all CD3 + T-cells were segmented and counted within WSI. Then, the stroma-CD3 density was calculated by using the number 
of all CD3+ T cells divided by the STR area. B-D Student t-test was also used to compare the difference in stroma-CD3 density between groups with 
different scores (such as Deep-immune score 4 vs. 3) in primary cohort. E–G Student t-test was used in validation cohort to compare the difference 
in stroma-CD3 density between groups with different scores. (nsP > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, Student’s t-test). HE, hematoxylin 
and eosin; IHC, immunohistochemistry; WSI, whole-slide image; CNN, convolutional neural network; STR, stroma; TUM, tumor epithelium; TSR, 
tumor-stroma ratio; TIL, tumor-infiltrating lymphocyte
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Prognostic value of Deep‑TIL score and Deep‑TSR score
In the primary cohort, overall survival was signifi-
cantly longer for patients with higher Deep-TIL scores. 
The 5-year survival rates were 67.4% in Deep-TIL-low 
group, 76.6% in middle group, and 82.9% in high group 
(P = 0.0003; Fig.  3A). Patients with high and low Deep-
TIL scores experienced a significant difference in sur-
vival (unadjusted HR 0.45, 95% CI 0.30 − 0.67; P < 0.001; 
Table  1). In the validation cohort, these findings were 
confirmed (0.49, 0.31–0.77; 0.002; Fig. 3B; Table 1).

In the primary cohort, the 5-year overall survival for 
CRC patients with low and high Deep-TSR scores were 
78.9% and 67.3% respectively (unadjusted HR for low 
vs. high 0.62, 95% CI 0.45–0.86; P = 0.004; Fig. 3C). Val-
idation cohort results confirm the initial findings: the 
5-year survival rates for low-stroma and high-stroma 
patients were 82.7% and 72.2%, respectively, with 
unadjusted HR (low vs. high) of 0.57 (0.38–0.85; 0.005; 
Fig. 3D).

Fig. 3  Kaplan–Meier plots for CRC patients according to Deep-TIL score and Deep-TSR score. A Deep-TIL score in the primary cohort; B Deep-TIL 
score in the validation cohort; C Deep-TSR score in the primary cohort; D Deep-TSR score in the validation cohort. TSR, tumor-stroma ratio; TIL, 
tumor-infiltrating lymphocyte
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Prognostic value of Deep‑immune score
The Deep-immune score was synthesized by the Deep-
TSR score and the Deep-TIL score. In the primary 
cohort, a significant difference was observed in 5-year 
survival rates between score 4 and 1 groups: 87.4% vs. 
58.2% (P < 0.001; Fig. 4A). Patients with the highest score 
had the most favorable OS (unadjusted HR for score 4 vs. 
score 1 0.27, 95% CI 0.15–0.48; P < 0.001; Table 1).

Similar trends were observed in the validation cohort. 
Compared with score 1, patients with score 4 of Deep-
immune score had favorable outcomes (unadjusted HR 
for score 4 vs. score 1 0.31, 95% CI 0.15–0.62, P < 0.001; 
Table 1). The 5-year survival rates of score 4 and score 1 

groups were 89.8% and 67.0%, respectively (Fig. 4B). The 
results showed that a combined analysis of two scores 
proved to be more accurate at predicting outcomes.

Survival analysis of scores stratified with stage
In addition, when we examined whether Deep-TSR score 
could be applied to subgroups of patients with stage, 
based on stratification by stage I and II, the score had 
no statistically significant impact on the prognosis. (All 
P > 0.05; Additional file 1: Fig. S3A, C, E). As the Deep-
TIL score, only a marginally statistically significance 
was found among stage II individuals (P = 0.051; Addi-
tional file 1: Fig. S3F). However, the Deep-immune score 

Table 1  Uni– and multivariate analyses including TNM, sex, age, location, CEA, grade, Deep-TSR score, Deep-TIL score, and Deep-
immune score for OS in the two cohorts

TNM, tumor-node-metastasis; CEA, carcinoembryonic antigen; TSR, tumor-stroma ratio; TIL, tumor-infiltrating lymphocytes; OS, overall survival; HR, Hazard ratio; CI, 
confidence interval

Univariate analysis Multivariate analysis

Primary cohort Validation cohort Primary cohort Validation cohort

HR (95% CI) P HR (95% CI) P HR (95% CI) P HR (95% CI) P

TNM

I 1 1 1 1

II 2.48 (1.12–5.50) 0.025 1.53 (0.54–4.34) 0.400 2.56 (1.01–6.51) 0.048 1.14 (0.39–3.36) 0.800

III 6.17 (2.87–13.3)  < 0.001 3.94 (1.44–10.8) 0.008 5.78 (2.33–14.4)  < 0.001 2.70 (0.94–7.79) 0.066

Sex

Male 1 1

Female 1.05 (0.71–1.56) 0.800 0.78 (0.33–1.84) 0.600

Age 1.03 (1.01–1.04)  < 0.001 1.03 (1.01–1.04) 0.001 1.03 (1.01–1.04)  < 0.001 1.03 (1.01–1.04)  < 0.001

Location

Colon 1 1

Rectum 1.00 (0.73–1.37) 0.999 1.48 (1.00–2.21) 0.053

CEA

Normal 1 1 1 1

Abnormal 2.58 (1.87–3.56)  < 0.001 1.98 (1.35–2.91)  < 0.001 1.94 (1.40–2.70)  < 0.001 1.46 (0.46–1.18) 0.200

Grade

Low 1 1

High 1.44 (0.91–2.28) 0.120 1.80 (1.22–2.67) 0.003

Deep-TSR score

High 1 1

Low 0.62 (0.45–0.86) 0.004 0.57 (0.38–0.85) 0.005

Deep-TIL score

Low 1 1

Middle 0.69 (0.48–0.99) 0.044 0.73 (0.46–1.17) 0.200

High 0.45 (0.30–0.67)  < 0.001 0.49 (0.31–0.77) 0.002

Deep-immune score

1 1 1 1 1

2 0.68 (0.43–1.08) 0.100 0.72 (0.45–1.14) 0.200 0.67 (0.42–1.10) 0.110 0.73 (0.46–1.18) 0.200

3 0.48 (0.30–0.77) 0.002 0.48 (0.29–0.79) 0.004 0.54 (0.33–0.90) 0.019 0.64 (0.38–1.07) 0.091

4 0.27 (0.15–0.48)  < 0.001 0.31 (0.15–0.62)  < 0.001 0.36 (0.20–0.66) 0.001 0.41 (0.20–0.84) 0.016
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showed good prognostic ability in all stage I–III sub-
groups (All P < 0.05; Additional file 1: Fig. S4), especially 
in the stage II group (P = 0.018).

The added value of the Deep‑immune score
In Table  1, the univariate association between clinico-
pathological characteristics and OS is presented. We 
identified age, stage, CEA level, Deep-TSR score, Deep-
TIL score, and Deep-immune score as prognostic factors 
for OS (P < 0.05). In multivariate analysis, Deep-immune 

score was still associated with OS, independent of age, 
CEA level, and stage. There was an association between 
a lower Deep-immune score and a shorter OS in the pri-
mary (adjusted HR for score 4 vs. score 1 0.36, 95% CI 
0.20–0.66, P = 0.001) and validation cohorts (0.41, 0.20–
0.84, 0.016; Table 1).

Two Cox models were developed in order to evaluate 
the added prognostic value of the Deep immune score: 
the full model incorporated the independent predic-
tors (stage, age, CEA level, and Deep-immune score) in 

Fig. 4  Kaplan–Meier and iAUC plots. Kaplan–Meier plots of Deep-immune score in primary cohort (A) and in the validation cohort (B). The iAUC of 
0–5 years of factors and models in primary cohort (C) and in the validation cohort (D). TSR, tumor-stroma ratio; TIL, tumor-infiltrating lymphocytes. 
TNM, tumor-node-metastasis; CEA, carcinoembryonic antigen; iAUC, the integrated area under the ROC curve
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multivariate analysis of the primary cohort, and a clinical 
model incorporated clinical factors. The model with the 
Deep-immune score had a better discrimination perfor-
mance than the clinical model (C-index: 0.732 vs. 0.720; 
iAUC: 0.726 vs. 0.713; Fig. 4C). The results of the valida-
tion cohort were similar as well (0.701 vs. 0.689; 0.691 vs. 
0.676; Additional file 1: Table S4, Fig. 4D).

Discussion
The AI-based method could quantify the tissue composi-
tion in TME with HE-stained WSIs of CRC. To under-
stand the basis of tumor heterogeneous clinical behavior, 
many scholars have focused on TME [22, 23]. Studies 
have shown that TME characterization provides addi-
tional insight into the prognosis of patients with solid 
tumors [24, 25]. The stroma of TME was the focus of 
studying the prognosis of CRC. Our previous analysis 
and studies by other scholars have shown that in CRC 
patients, abundant stroma in tumor tissue was associ-
ated with poor prognosis [16, 26]. Results of our present 
work also suggested that stroma proportion quantified in 
HE-stained WSIs can help stratify risk of CRC patients. 
Patients who have Deep-TSR-high scores have a much 
lower 5-year survival rate than those who have low scores 
(67.3% vs. 78.9%). Remodeling of stroma can serve as a 
physical barrier to prevent tumor cells from coming into 
contact with immune cells [27–29]. The mean stroma-
CD3 density in the Deep-TSR-low group was 1350 cells/
mm2, higher than that in the Deep-TSR-high group 
(1011 cells/mm2). Additionally, the stroma contains spe-
cial connective tissues such as fibroblasts, mesenchymal 
stromal cells, osteoblasts and chondrocytes, along with 
extracellular matrix. The endothelial cells within it pro-
vide nourishment for tumor growth, constitute a pathway 
for metastatic spread through angiogenesis, and lead to 
resistance to chemotherapy and radiation therapy [23, 30, 
31]. Therefore, the more stromal components, the lower 
the OS of patients.

Furthermore, the stroma was incredibly intricate. For 
example, desmoplastic reaction was classified as imma-
ture, intermediate, or mature according to the different 
connective tissue-promoting reactions in the stroma [32]. 
Moreover, according to cancer-immune phenotypes, 
anticancer immunity in humans can be categorized into 
three main types: the immune-desert, the immune–
excluded, and the inflamed phenotypes [33]. Studies have 
shown that the content and density of TILs in the stroma 
were also attached to OS [15, 34]. A patch-level segmen-
tation was performed in our work without dissecting 
each lymphocyte with precision, which cannot accurately 
quantify the density and spatial location of lymphocytes. 
However, we noted that the class of lymphocytes, one 
of the tissue categories in our model, were structured 

made up of clusters of TILs. Therefore, we tried to take 
the result of stroma segmentation as ROI and defined the 
mean predictive probability of the ROI for this category 
of LYM as the Deep-TIL score. Besides, we found that 
the mean stroma-CD3 density of the high-score group 
was 1.5 times higher than the low group. The automatic 
quantification of the Deep-TIL score could reflect the 
immune cells infiltration in the stroma region. Survival 
analysis showed that the Deep-TIL score could stratify 
the prognosis of CRC. The higher the Deep-TIL score, 
the longer the survival time. The 5-year survival rate was 
recorded for 70.2% of patients with a low score, 75.7% of 
patients with a middle score, and 85.4% of patients with a 
high score. This scoring method was kind to use, and this 
method only needed the label of the patch, which was 
less computationally intensive. More worth mentioning 
was that it also took into account the spatial distribution 
of TILs in the stroma.

Tumor growth pattern, aggressiveness, metastasis, 
and patient prognosis are the result of a combination of 
multiple factors. These include the interaction between 
components of TME from the cellular level to the tissue 
level [35, 36]. Based on this, after completing the above 
two scores, the Deep-TSR score, and Deep-TIL score, 
we raised the conjecture whether the combination of the 
two scores could reflect more prognostic information. 
Patients with the highest score had the most favorable 
OS (unadjusted HR for score 4 vs. score 1: 0.27). Simi-
lar results were also found in the validation cohort, which 
revealed that our score was robust. Furthermore, we 
found that the full model, including Deep-immune score 
and clinicopathological factors, had a higher prognostic 
value than a clinicopathological model (iAUC, 0.726 vs. 
0.713). Combined with clinicopathological factors, the 
prognosis of patients with CRC could be evaluated in a 
more comprehensive and integrated manner. We also 
observed that with the increase in the Deep-immune 
score, the stroma-CD3 density also increased. CD3+ T 
cells are membrane markers of mature T lymphocytes 
that can be used to quantify the total number of T lym-
phocytes [19]. When CD3+ cells was increased, it repre-
sented a higher tumor lymphatic infiltration and a higher 
amount of tumor-killing immune cells, which has a pro-
tective effect on the organism [37, 38]. This result sup-
ports the idea that our proposed Deep-immune score 
may be sufficient to predict prognosis of CRC. In addi-
tion, the Deep-immune score, which was fully automated 
and with HE-stained as a routine staining method and 
IHC-stained as a special staining, has certain economic 
benefits. There have been many studies suggesting that 
TSR and TILs could predict prognosis of other solid 
tumors. Take breast cancer as an example. Studies on 
TSR found a significant association between high tumor 
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stroma content and poor prognosis [39, 40]. The results 
of related studies on TILs showed that increased TILs 
concentrations were associated with increased frequency 
of adjuvant chemotherapy responses in all breast cancer 
subtypes, and they were also associated with longer sur-
vival in patients with triple-negative breast cancer and 
HER2-positive breast cancer [41, 42]. The results were 
similar to those of our study in CRC. This suggested that 
if we had segmented breast cancer tissues and defined 
the corresponding types of tissues, using our method to 
calculate tumor-stroma ratio, Deep-TIL score, and Deep-
immune score, could also predict prognosis for breast 
cancer patients. Therefore, our method has the potential 
ability to be applied to other solid tumors.

In stage II patients, neither Deep-TSR nor Deep-TIL 
score can distinguish between high-risk and low-risk 
CRC individuals (all P > 0.05). However, the composite 
score can stratify patients’ prognostic risk (P = 0.018). 
This indicated that Deep-immune score had the poten-
tial to guide clinical risk stratification of patients with 
stage II CRC, which in turn could influence clinical 
decision-making.

Conclusions
In conclusion, we proposed a Deep-immune score that 
can fully quantify the HE-stained WSI of CRC by artifi-
cial intelligence. Evidence suggests that a Deep-immune 
score may reflect the immune state of CRC patients and 
be associated with better survival. Findings based on 
digital pathology could be particularly useful for adjust-
ing risk stratification of CRC and impacting subsequent 
precision medicine.
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