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The new benzimidazole based receptor Lansoprazole has been used to detect

carbonate anion by naked-eye and Uv-Vis spectroscopy. This receptor revealed visual

changes with CO2−
3 anion in ethanol. No detectable color changes were observed

upon the addition of any other tested anions. The lansoprazole chemosensor selectively

recognizes CO2−
3 ion over the other interference anions in the ethanol, followed by

deprotonation and reflected 1:1 complex formation between the receptor and the

carbonate ion. Lansoprazole exhibits splendid selectivity toward carbonate ion via a

visible color change from colorless to yellow with a detection limit of 57µM. The binding

mode of CO2−
3 to receptor L is supported by Density Functional Theory calculation.

Moreover, this receptor shows a practical visible colorimetric test strip for the detection

of carbonate ions. The transition states calculation demonstrates the occurrence of

reaction from L to L-CO2−
3 after overcoming an energy barrier of 10.1 kcal/mol, and

there is considerable interaction energy between L and CO2−
3 (94.9 kJ/mol), both of

which confirmed that receptor L has high sensitivity and selectivity to the carbonate

ion. The theoretical studies were performed to acquire an electronic description of the

complexation mechanism by CO2−
3 as well as to study bonding and structure in the

complex. The optimized structures and binding mechanisms were supported with a high

correlation and agreement by spectroscopy and DFT calculations.

Keywords: lansoprazole, benzimidazole derivatives, chemosensor, carbonate ion, UV-Vis studies, density

functional theory

INTRODUCTION

Developing anionic chemosensors is one of the most important topics nowadays. The optical
sensor systems based on light usage as a most valuable and versatile output signal and several
chromatographic and fluorogenic anion sensors have been recently established (Fabbrizzi et al.,
2001, 2003; Ghorai et al., 2016a; Iqbal et al., 2018; Isaac et al., 2018; Wasim et al., 2018; Mahmudi
et al., 2019; Mobed et al., 2019). Carbonate is one of these anions which is extensively used in the
production of cosmetics, rubber, glass, printing ink, rayon, food, toothpaste, and rechargeable Li-
ion batteries (Tas, 2009; Zhao et al., 2014; Ghorai et al., 2016a; Kordi et al., 2019; Darroudi et al.,
2020). Moreover, carbonate has a pivotal role in agricultural planning, hydrology, soil, and geology

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2020.626472
http://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2020.626472&domain=pdf&date_stamp=2021-02-02
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles
https://creativecommons.org/licenses/by/4.0/
mailto:M.darroudi@alzahra.ac.ir
mailto:gmohammadi@alzahra.ac.ir
https://doi.org/10.3389/fchem.2020.626472
https://www.frontiersin.org/articles/10.3389/fchem.2020.626472/full


Darroudi et al. Lansoprazole as a Selective Calorimetric Carbonate Chemosensor

FIGURE 1 | 2-[[[3-methyl-4-(2,2,2,-trifluoroethoxy)-2-pyridil]sulfinyl-1H-

benzimidazole(Lansoprazole).

science (Choi et al., 2002; Zougagh et al., 2005; Morris et al.,
2010). Regardless of these broad applications in different
industries, CO2−

3 ion is a toxic chemical in high dosages as
abdominal pain, collapse, and even death, thus developing
a cost-effective and straightforward chemosensor for CO2−

3
ion is vital (Jain et al., 2006; Abramova et al., 2010). Some
analytical procedures have been established for CO2−

3 ion
detection, including continuous-flow, pH-ion sensitive field-
effect transistor (Morf et al., 1989; Tsukada et al., 1990; Meruva
and Meyerhoff, 1998), electrochemical (Lee et al., 2005), FT-IR
spectroscopy (Burt and Rau, 1994), and chromo ionophore based
optodes, etc. (Morf et al., 1989; Burt and Rau, 1994; Zougagh
et al., 2005). However, these procedures are naked-eye-invisible
and also time-consuming in most cases (García-Acosta et al.,
2007; Movassagh et al., 2013; Ghorai et al., 2016a; Rouh et al.,
2018; Smyth et al., 2020).Whilemany probes have been described
for the detection of various anions incorporate to acetate, sulfide,
fluoride, and cyanide (Kondo and Takai, 2013; Reena et al., 2013;
Tang et al., 2013, 2015; Zhang et al., 2013; Zheng et al., 2013; Kaur
et al., 2015), limited chemosensors have been reported for CO2−

3
ion (Hennrich et al., 2001; Rice, 2008; Han et al., 2010; Vaněk
et al., 2013).

On the other hand, one of the known aza heterocyclic
structures in medicinal chemistry is benzimidazole scaffold,
which has recently taken a great amount of attention in
the scientific fields (Zhukova and Mamedov, 2017; Mostarda
et al., 2019) because of their biological activities such as
antibacterial (Xu et al., 2013), antifungal (Patel et al., 2014),
antiviral (Monforte et al., 2008), antidiabetic (Liu et al., 2011),
analgesic (Smith et al., 2008), and anticancer (Smith et al.,
2008). Furthermore, benzimidazole-containing scaffolds, such as
Lansoprazole currently is in use for the treatment of gastro-
esophageal reflux and ulcer disease (Gremse, 2001; Miyashita
et al., 2013; Shin and Kim, 2013; Yu et al., 2015; Estrada-Ortiz
et al., 2019). The generic name of Lansoprazole is 2-[[[3-methyl-
4-(2,2,2,- trifluoroethoxy)-2-pyridil] sulfinyl-1H-benzimidazole
(Figure 1). To date, several fluorescents and UV-Vis sensors
have been designed and reported, which some of them are
benzimidazole-based, for various cations (Patel et al., 2013;
Zhong et al., 2014; He et al., 2015; Maji et al., 2017; Liu C.
et al., 2020) and anions (Yu et al., 2007; Zhang and Yu, 2017;
Karuk Elmas et al., 2018; Ko et al., 2019; Liu F. et al., 2020;
Tian and Li, 2020). Some carbonate chemosensors have been

developed in recent years due to their rapidity, high sensitivity,
and selectivity. However, some of the prepared sensors have
much more detection limit to CO2−

3 ion detection in high
sensitivity, most of these chemosensors are difficult to prepare, or
the reactions are not cost-effective (Ghorai et al., 2016b; Tavallali
et al., 2016, 2019; Karuk Elmas et al., 2018; Kahriman et al.,
2019; Naderi et al., 2019; Singh et al., 2019; Morikawa et al.,
2020; Velmurugan et al., 2020). Herein, we proposed a naked-
eye chemosensor, which has some superior as a simple process,
biocompatibility, efficiency, side effects on the body, and rapid
response time. As a part of our ongoing research on the design
of chemosensors (Karimi et al., 2017; Shiravand et al., 2018,
2020; Ahmadi et al., 2019; Arab et al., 2019; Kordi et al., 2019),
we report the study of a chemosensor (L) for efficient sensing
of carbonate ion over other ions by UV-Visible spectroscopy
and remarkable colorimetric responses in the solution. The
chemosensor L detected CO2−

3 ion by an alteration in absorbance
accompanied by an instantaneous color change from colorless
to yellow.

MATERIALS AND METHODS

Materials and Instruments
All the commercial-grade chemicals and reagents and all organic
solvents were purchased from Sigma-Aldrich company and
were used without further purifications. Stock solutions of all
metal ions were prepared using their nitrate salts purchasing
from Merck company. Also, Stock solutions of all anions
were prepared using their sodium salts purchasing from Merck
company. All the UV-Vis absorption spectra were recorded on
Analytik Jena Specord S600 Spectrophotometer using a 10mm
path length quartz cuvette.

UV-Vis Studies
The anion recognition studies were performed at 25 ± 1 C,
and before recording any spectrum, sufficient time was given
to ensure the solution uniformity. The UV-Vis spectra of
chemosensor L (1 × 10−4 mol L−1) probe was evaluated with
the addition of different anions such as Br−, CH3COO−, Cl−,
CN−, CO2−

3 , Cr2O
2−
7 , F−, HPO2−

4 , HSO−

3 , I
−, NO−

2 , NO
−

3 , OH
−,

SCN−, and SO42− with the concentration of 1 × 10−2 mol L−1.
Among all studied anions, only carbonate ion could impose UV-
Vis absorption of chemosensor L, which led to color change
as a colorimetric sensor for CO2−

3 ion, as shown in Figure 2.
However, upon the CO2

3, a strong red-shift on the absorption is
observed; while, the other anions affect slightly.

Interfering Anions
The sensor competition test of chemosensor L was investigated
at 350 nm via the addition of CO2−

3 (1 × 10−2 mol L−1, 100 µl)
and other anions (1 × 10−2 mol L−1, 100 µl) to chemosensor L
(1mL, 1 × 10−4 mol L−1) transferring into a cell. After mixing
them for a few seconds, the UV-Vis spectra were recorded at
room temperature.
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FIGURE 2 | Change in absorption spectra and color changes of benzimidazole L (1mL, 0.0001M) after addition of different anions (100 µL, 0.01M) in ethanol (pH =

10.2).

Titration Experiments
The titration test was performed by adding the different
concentration of carbonate ion (1 × 10−2 mol L−1) to
chemosensor L (1× 10−4 mol L−1). The mixture was transferred
into a quartz cell. Then a certain amount of CO2−

3 ion from 0
to 1,000 µl (1 × 10−2 mol L−1) was added to the chemosensor
L probe solution. The UV-Vis absorption spectra were recorded
after 1min at room temperature.

Computational
All calculations were carried out by DFT theory with B3LYP
(Hay and Wadt, 1985) functionals as implemented in the
Gaussian 09 program package (Robert, 1990). The geometries
of all transition states (TSs) and ground states (GSs) were
optimized utilizing 6-311+G(2d,2p) basis set (Hay and Wadt,
1985). Solvent effects were considered using CPCM calculations
in the solvents (MacGregor, 1967; Luzar and Stefan, 1990; Klamt
and Schüürmann, 1993; Andzelm et al., 1995; Barone and Cossi,
1998; Cossi et al., 2003; Jie and Guo-Zhu, 2013). On the basis of
the optimized geometries, all energies were corrected with single
point dispersion effect using the DFT-D2 method of Grimme
(Grimme, 2006), as recent reports have shown that inclusion of
these effects can significantly improve the accuracy of the B3LYP
method (Xu et al., 2012).

RESULTS AND DISCUSSION

UV-Vis Analysis
The detecting anion ability of Lansoprazole could be evaluated
in ethanol by UV-Vis absorption spectra toward a wide range of
anions including Br−, CH3COO−, Cl−, CN−, CO2−

3 , Cr2O
2−
7 ,

F−, HPO2−
4 , HSO−

3 , I
−, NO−

2 , NO
−

3 , OH
−, SCN−, and SO42−at

350 nm (Figure 2). The spectra were instantly recorded after ion
addition to Lansoprazole, upon absorbance between 200 and

750 nm, which strongly increased at 300–700 nm in the presence
of carbonate ion. Upon adding carbonate ion to Lansoprazole,
distinct spectral changes were induced, and a red-shift in the
absorbance spectra was observed, while the other ions display no
tangible changes along with the color change from colorless to
yellow. These results show that Lansoprazole can be attended as
a naked-eye CO2−

3 detector.

Interfering Anions
To investigate the selectivity of the prepared probe, the consistent
mixtures of target ions and common interfering anions were
correspondingly checked, and the results are represented in
Figure 3. The absorbance spectra of chemosensor L were
monitored in CO2−

3 ion and equivalent amounts of competing

anions. The CO2−
3 ion created a significant red shift in

Lansoprazole’s UV-Vis spectra than other ions, as shown in
Figure 3.

To determine the influence of other anions on the detection of
carbonate anion in ethanol, different anions with a concentration
of 0.01M were added to the Lansoprazole (1 × 10−4 mol L−1)
containing CO2−

3 (1× 10−2 mol L−1). It was exhibited that other
anions under experiment did not interfere with the detection of
carbonate ion by receptor L. The interfering ions induced small
or no tangible changes in the absorbance system. As a result, this
probe can be considered as a highly selective and reliable probe
for CO2−

3 ion detection.

Titration Experiments
To evaluate the interacting potential of probe and CO2−

3 , the
titration experiments were performed (Figure 4).

Chemosensor L showed by the increase of carbonate ion
concentration from 0 to 20 eq, all the absorption peaks at 480 nm
were enhanced significantly. In the UV-Vis titration experiment,
the red-shifted band triggered by carbonate ion continuously
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FIGURE 3 | The competitive experiment of chemosensor L (100 µL, 0.01M) CO2−
3 ion at 480 nm in the presence of other anions (100 µL, 0.01M), and inset:

absorbance spectra of probe solution (1mL, 0.001M) after addition of various anions (100 µL, 0.01M). n = 3, Sd average = 1.86.

FIGURE 4 | Absorbance spectra of Benzimidazole L (1mL, 0.0001M) after adding the different concentration of an aqueous solution of CO2−
3 ion (10–1,000 µL,

0.01M), inset: the relationship between the concentration of CO2−
3 and maximum absorbance at 480 nm.
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TABLE 1 | Absorption properties of chemosensor L in various solvents.

Solvent λabs (nm)

MeOH 473

Acetonitrile 482

H2O: EtOH 476

DMSO 485

increases with the successive increment of carbonate ion (0–10
eq) into the chemosensor L, as shown in Figure 4. The inset
in Figure 4 is a plot of the UV-Vis absorption of chemosensor
L. It can be seen that absorption increases through the increase
of CO2−

3 from 0 to 10µM. When the concentration of CO2−
3

is larger than 100µM, the absorption spectra almost remains
unchanged. The detection limit of Lansoprazole for CO2−

3 was
determined to be 0.57 × 10−6 M with a linear range of
concentration to be 0–10µM. The apparent bathochromic shift
that occurred by carbonate ion led us to propose that the π

conjugate system of chemosensor L underwent intramolecular
charge transfer from donor to acceptor by excitation through
the deprotonation of sensor L by CO2−

3 ion. Lansoprazole’s
ratiometric response on carbonate addition indicated a 1:1
stoichiometric adduct of chemosensor L and carbonate ion
(Figure 4). After concentration enhancement of CO2−

3 ion from
100 to 1,000µM, the absorbance reaches a plateau at 390 nm,
while the absorbance is steadily (insets in Figure 4). To identify
the charge transfer of chemosensor L, we have checked the
change of its absorption spectra in different solvents such as
DMSO, MeOH, H2O: EtOH, and Acetonitrile since it has
been reported that the dipole of solvents can relax the charge
transfer excited by polar solvents. As summarized in Table 1,
the absorption spectra of chemosensor L featured a marginal
absorption red-shift maximum at 11 nm, which indicate an
apparent solvent dependence of the absorption band. To confirm
whether the color change and absorbance change occur due to
charge transfer due to the deprotonation mechanism. Therefore,
the solvatochromic behavior demonstrated the occurrence of the
charge transfer transition in chemosensor L. The fact that the
sensing of carbonate ion by receptor L does not depend on
counter metal ion, established by a similar type of absorbance
spectra demonstrated by L with potassium carbonate.

Application of Probe L
To check the practical applications, the test kits were utilized
to sense CO2−

3 among different competing anions. As shown in
Figure 5, When the test kits coated with chemosensor L were
added to different anion solutions, the distinctive color change
was detected only with CO2−

3 in ethanol solution. Therefore, the
test kits coated with the probe L solution would be convenient
for detecting carbonate. These results depicted that chemosensor
L could be a valuable practical chemosensor for the analysis of
carbonate ions.

Reversibility
The reversibility of the receptor lansoprazole was performed
by adding acetic acid and Na+ binding agent. The addition of
acetic acid to a mixture of chemosensor L and sodium carbonate
resulted in the appearance of a peak at 480 nm, which indicates
the regeneration of the receptor L. The absorption band at
480 nm was recovered by the addition of sodium carbonate, the
same as the first. Such reversibility is vital for the fabrication of
devices to sense the CO2−

3 ion (Figure 6).

Theoretical Study
The molecular orbital (MO) energy level and distribution of
the Lansoprazole was carried out by density functional theory
(DFT) calculation at the B3LYP/6-311+G(2d,2p) level (Ishtiaq
et al., 2016; Iqbal et al., 2018; Isaac et al., 2018; Islam et al.,
2018). As we can see from Figure 7, the electron clouds of
LUMO+1, LUMO+2 level of energy for chemosensor L were
mainly distributed on the pyridine, and for LUMO level cloud
was distributed on the C=N bond of benzimidazole group.While
the electron density of HOMOwas delocalized over the sulfoxide
group, the electron density of HOMO-1 was almost populated on
the C=N bond of the pyridine group, and the electron clouds of
HOMO-2 were concentrated on the nitrogen in a five-membered
ring. Therefore, transitions between all levels of energy had
occurred for Lansoprazole. These levels of energies are much
accessible for electron transfer.

Furthermore, the orbital energies of Lansoprazole were
sequentially increased (Figure 7B), which indicates the easy
coordination ability of chemosensor toward ion. Also, the
electron density of LUMO+2 and HOMO of complex L-CO2−

3
were mainly populated on the benzimidazole group (Figure 7B).
While the electron density of LUMO+1 and HOMO-2 were
gathered together in the pyridine ring, the electron density of
LUMO, HOMO-1 were mainly concentrated on the sulfoxide
group. The distribution and MO level of energy indicated
the complexation of Lansoprazole and CO2−

3 ion through
intermolecular charge transfer (CT). Notably, the calculated
energy gaps between HOMO and LUMO decreased, respectively:
1.99 < 3.32 for probe L and L-CO2−

3 complex. Such lowering

HOMO-LUMO gaps of Lansoprazole upon CO2−
3 complexation

attributed to the electron distributions after bindings. The
electron redistributions resulted in the absorbance change with
subsequent shifts.

Computations on the probe L, both after and before
combination with CO2−

3 were investigated in order to get the
close approach toward the possible binding mechanism. The
optimized structures and a schematic representation of SCF
counters have been shown for probe L and L-CO2−

3 complex
in Figure 8. The SCF counter showed that the chemosensor
L had a uniform electron cloud scattering throughout the
molecule and some active sites on sulfoxide, pyridine, and
benzimidazole groups shown in Figure 6. Otherwise, in L-CO2−

3
complex, a strong electron distribution was changed entirely,
and the electron density distribution is completely altering from
chemosensor L. Moreover, a strong interaction was exhibited
between the benzimidazole group, CH2 group linked to CF3, and
CO2−

3 anion.
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FIGURE 5 | Photographs of the lansoprazole test kits (0.5mM) in order to detect CO2−
3 rather than other anions.

FIGURE 6 | Reversibility test of chemosensor L with acetic acid and sodium carbonate addition.

Mulliken Charge Analysis
Mulliken charge analysis was done through the calculation of the
electron population for an individual atom. In chemosensor L,
the positive charge strongly found at S10, and moderately on C4,
C15, and C22. The positive charge for the sulfur atom is because
of electronegative atom O and C atom because of conjugated
structure in the closest sites. The O19 atom has negative charges;
C9 atom attached to S atom possesses a negative charge. MEP
is allied to electron density and is a very suitable descriptor
in acceptor sites for the nucleophilic and electrophilic attack
as hydrogen bonding interactions. The positive electron density
localized on the S atom and C atoms of benzimidazole and
pyridine structures.

Mechanism of Sensing
To elucidate the interaction process of the chemosensor L and
CO2−

3 ion, the Gibbs free energy profile of the reaction is

calculated, displayed in Figure 9.We choose the reactant energies
as the zero-point energy, and the data are listed in Figure 9.
The formation of the intermediate complex is carried out by
absorbing the energy of 3.2 kcal/mol and a transition states is
found by TS theory, which is located at the cleavage of C6, C10,
and S8 and the formation of CO2−

3 -S and CO2−
3 -C bonds. In

addition, through the IRC calculation, we have confirmed that the
transition state is indeed linked to the intermediate and product.
The reaction barrier from the intermediate complex to the TS is
10.1 kcal/mol, which is relatively low. The low reaction barrier
means that the chemosensor L has a favorable response speed to
CO2−

3 ion.
To explore the selectivity of the chemosensor L to carbonate,

the interaction energies between chemosensor L and different
anions have been studied, which are listed in Table 2. We
calculated the interaction energies based on the Eint = EL
+Eanion – Ep. As seen in Table 2, the interaction energy between
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FIGURE 7 | (A) Corresponding orbital electron distribution LUMO+2,

LUMO+, LUMO, HOMO, HOMO-1, and HOMO-2 of (A) chemosensor L and

(B) complex L-CO2−
3 .

L and CO2−
3 is the largest one among these energies. The

considerable interaction energy confirms the excellent selectivity
of the chemosensor L for CO2−

3 .

FIGURE 8 | Optimized geometries of chemosensor (A) L, and (B) L-CO3
2−

and also the SCF counter of (C) L and (D) L-CO2−
3 .

FIGURE 9 | Free energy profile for the nucleophilic addition reaction of

chemosensor L and CO2−
3 .

CONCLUSION

In summary, the receptor Lansoprazole has shown the
colorimetric response in the presence of CO2−

3 ion in ethanol
solution with high degree of selectivity. This naked-eye
colorimetric chemosensor for the detection of carbonate ion
revealed a low detection limit 0.57µM. It has excellent sensitivity
and selectivity to sense CO2−

3 by changes in absorption over
a variety of anions. Furthermore, the binding mechanism of
the Lansoprazole toward CO2−

3 ions was investigated by DFT
calculation. The structural parameter analysis indicates that
the intramolecular bonding in chemosensor L and the CO2−

3
ion, which induce the intramolecular proton transfer. The Ts
calculation demonstrates that the reaction between L and CO2−

3
need overcoming a small energy barrier (10.1 kcal/mol) and the
interaction energy (94.9 kJ/mol), both of which confirmed that
chemosensor L has high sensitivity and selectivity to CO2−

3 ion.
The experiments’ results and theoretical works beside each other
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TABLE 2 | Calculated interaction energies for the chemosensor L with different

anions.

Anions Eint (kJ/mol)

CO2−
3 94.9

F− 72.6

Cl− 34.1

Br− 22.9

I- 36.7

SCN− 22.3

AcO− 29.5

NO3- 11.3

NO−

2 17.5

Cr2O
2−
7 40.9

HPO−

4 14.2

SO2−
4 38.6

HSO−

3 30.7

OH− 69.1

can be sued to the chemosensor’s development and clarify the
mechanism of sensing metal ions, anions, and drug molecules.
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