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ABSTRACT 

Serosurveys are a key resource for measuring SARS-CoV-2 cumulative incidence. A growing body of 
evidence suggests that asymptomatic and mild infections (together making up over 95% of all 
infections) are associated with lower antibody titers than severe infections. Antibody levels also peak 
a few weeks after infection and decay gradually. We developed a statistical approach to produce 
adjusted estimates of seroprevalence from raw serosurvey results that account for these sources of 
spectrum bias. We incorporate data on antibody responses on multiple assays from a post-infection 
longitudinal cohort, along with epidemic time series to account for the timing of a serosurvey relative 
to how recently individuals may have been infected. We applied this method to produce adjusted 
seroprevalence estimates from five large-scale SARS-CoV-2 serosurveys across different settings 
and study designs. We identify substantial differences between reported and adjusted estimates of 
over two-fold in the results of some surveys, and provide a tool for practitioners to generate adjusted 
estimates with pre-set or custom parameter values. While unprecedented efforts have been launched 
to generate SARS-CoV-2 seroprevalence estimates over this past year, interpretation of results from 
these studies requires properly accounting for both population-level epidemiologic context and 
individual-level immune dynamics. 

INTRODUCTION 

Over the past year, numerous SARS-CoV-2 seroprevalence studies have been conducted to 
measure population exposure to this novel pathogen (1,2). The need to consider basic assay 
performance characteristics (sensitivity and specificity) to accurately interpret serosurvey results has 
been well-established (3–5). Accurate estimation of seroprevalence relies on adequate 
characterization of assay sensitivity to detect prior infections in the general population. However, for 
most commercially available assays, manufacturer-reported performance characteristics are usually 
only applicable to early convalescent samples from hospitalized patients; notably, antibody responses 
in these individuals are not representative of antibody responses in the general population. 
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Sufficiently accounting for SARS-CoV-2 antibody responses varying as a function of disease severity 
(6,7) and waning over time (8,9) is necessary to correctly interpret data from serosurveys performed 
using these assays. 
 
We previously raised this issue and performed simulations to demonstrate how relying on validation 
samples that do not represent the distribution of severity and time since infection in a population can 
introduce spectrum bias into seroprevalence estimation (10). Various modeling approaches have 
since been proposed to reduce the effects of spectrum bias stemming from antibody waning over 
time and seroreversion on various serologic platforms (11–15). A key advance of our approach is the 
ability to parametrize seroreversion using longitudinal antibody kinetic data generated from the same 
assays used in large-scale serosurveys. To our knowledge, differential antibody responses by 
disease severity (and factors associated with disease severity such as age (16)) have not yet been 
incorporated alongside these temporal considerations into a unified framework to accurately estimate 
seroprevalence from surveys. Failing to account for factors that reduce assay sensitivity will typically 
underestimate the cumulative SARS-CoV-2 attack rate in the population (10). 
 
Here, we present a flexible statistical approach to produce adjusted seroprevalence estimates that 
incorporate assay-specific test performance characteristics by severity and time (Figure 1). To inform 
parametrization of the magnitude and kinetics of SARS-CoV-2 immune responses, we used data from 
a post-infection cohort study with some of the commercial serologic platforms that have been most 
widely used throughout the pandemic (17). We apply this approach to re-analyze large-scale 
serosurveys from five locales: Italy, Spain, the United States, Manaus, Brazil, and Japan. Broadly, 
incorporating variability in individual-level immune dynamics into population-level epidemiologic 
estimates allows for more accurate estimation of the attack rate, which opens the way for more 
accurate characterization of population exposure, transmission dynamics, and infection fatality ratios. 
 
METHODS 
 
Estimating time-varying, severity-specific assay sensitivities 
 
To estimate time-varying, severity-specific assay sensitivities, we used longitudinal antibody response 
data collected from a cohort of participants with PCR-confirmed SARS-CoV-2 through the University 
of California, San Francisco-based Long term Impact of Infection with Novel Coronavirus (LIINC) 
natural history study (NCT04357821). Extensive descriptions of the cohort and laboratory results, 
including antibody responses on 14 commercial and research-use assays, are available elsewhere 
(17–19). Briefly, we re-analyzed data published in (17) to estimate assay sensitivity as a function of 
disease severity and time since symptom onset (Supplementary Table 1). As in (17), we calibrated 
the time-metric from days since symptom onset (or days since positive PCR test, for asymptomatic 
individuals) to days since expected seroconversion by adding 21 days to the former (20). For 
parsimony, we equated having had severe disease with having required hospitalization (16,21). 
 
Building off of the approach we described in (17), individuals were partitioned into 2 severity groups 
depending on whether or not they were hospitalized for their SARS-CoV-2 infection. We modeled log-
transformed signal to cutoff (S/C) or cutoff index (COI) values using Bayesian linear mixed effects 
models (Figure 2; see Supplementary Methods) (22). We estimated sensitivity by severity group and 
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assay continuously for up to 1 year following expected seroconversion (Supplementary Table 2). In 
sensitivity analyses, we further partitioned non-hospitalized individuals into separate severity groups 
by asymptomatic and symptomatic. We also extended these methods to estimate joint assay 
sensitivity from data where every sample was tested on two assays for which results may be 
correlated (see Supplementary Methods). 
 
SARS-CoV-2 serosurveys for application of adjustment framework 
 
The published large-scale serosurveys re-analyzed here were conducted in five locales (23–30). As 
outlined in Table 1, multiple differences exist between these serosurveys in terms of study design, 
timing, spatial scale, and testing strategies. We included large-scale serosurveys performed using 
assays with demonstrable heterogeneities in antibody responses, as they would be most affected by 
issues of spectrum bias (10). 
 
Reconstructing time series of symptom onset dates in the locations of selected serosurveys 
 
Properly accounting for the effects of time-varying assay sensitivity on seroprevalence estimates 
requires understanding how recently individuals in that population might have been infected, relative 
to when the serosurvey was done. Various data sources can be used as a proxy for population 
exposure, including time series counts of symptom onsets, positive tests, hospitalizations, and deaths 
(31). Here, we obtained publicly available time series for each serosurvey locale (Table 2) and used 
symptom onsets as the time-metric for both assay sensitivity and epidemic time series. Where only 
reporting dates -- but not date of symptom onset -- was available (i.e., United States, Manaus, and 
Japan), we applied a back-calculation procedure to reconstruct time series of daily symptom onsets 
using the EpiNow2 software package (32) and parameter estimates for the relevant time delay 
distributions (33–35) (see Supplementary Methods; Supplementary Table 3). Back-calculation was 
not necessary for the Italy and Spain time series, as they directly report case counts by date of 
symptom onset. We also shifted the (reconstructed) time series of symptom onsets forward by 21 
days to account for the time between symptom onset and seroconversion. 
 
Sub-national time series in Italy, Spain, and Japan were generally congruent to national time series 
during waves of infection included here, so we used a single national-level time series to represent 
recency of infection for these serosurveys (Supplementary Figures 1-3). Assay-specific 
seroprevalence data in the United States were only available at the census division level, so we 
aggregated state-level time series to the census division using weights derived from the number of 
samples tested by state and by survey round (Supplementary Figure 4). As available, we compared 
results of symptom onset reconstruction from multiple sources of data (Supplementary Figures 5-6). 
 
Joint framework for obtaining adjusted seroprevalence estimates 
 
For each serosurvey, we first calculated a single time-varying assay sensitivity, obtained as the 
average of the severity-specific, time-varying sensitivities, weighted by the expected distribution of 
disease severities among the serosurvey population. We considered the age distribution of 
participants in the serosurvey and combined this with published estimates on age-specific weights for 
the expected proportions of asymptomatic, non-hospitalized, and hospitalized infections 
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(Supplementary Tables 4-6, Supplementary Figure 7). Although a degree of variation in population 
age structure exists across the included serosurveys, the resulting distribution of severities was, on 
average, 5% hospitalized (severe), 45% symptomatic and not hospitalized, and 50% asymptomatic. 
 
To obtain an estimate of the expected sensitivity of the assay at the time of a serosurvey, we 
calculated the dot product of the severity-weighted time-varying assay sensitivity and the difference 
between the reconstructed time series of symptom onsets and the date of the serosurvey. Using the 
posterior distribution of this single weighted sensitivity that accounts for both severity and time, along 
with the manufacturer reported point estimates of specificity for each assay (Supplementary Table 2), 
we obtained adjusted seroprevalence estimates and 95% credible intervals using the Rogan-Gladen 
estimator (3) or a binomial model of seroprevalence (4). A multinomial model (36,37) was used for the 
two-assay scenario. We used the R statistical software (version 3.5.3), EpiNow2 R package (version 
1.2.1), and the Stan programming language (versions 2.19.3 and 2.21.2) for all analyses. 
 
RESULTS 
 
Kinetics of antibody responses and time-varying, severity-specific assay sensitivity 
 
Across each of the three assays included here (Abbott ARCHITECT, Roche Elecsys, and Ortho 
VITROS IgG), average antibody responses in hospitalized individuals were consistently higher than 
those in non-hospitalized individuals, and thus sensitivity estimates were higher in this group (Figure 
2). Antibody responses in non-hospitalized individuals were strikingly heterogeneous: some 
individuals had high responses on par with hospitalized individuals, while others had distinctly lower 
responses. Antibody responses and estimated sensitivities on the Abbott ARCHITECT assay and, to 
a lesser extent, the Ortho VITROS IgG assay decayed over time, while they remained stable on the 
Roche Elecsys assay. Additional time points tested suggest that these trends persist over subsequent 
months (Supplementary Figure 8). Though limited by a small sample size in our study, assay 
sensitivity for asymptomatic individuals may be substantially lower than that for non-hospitalized, 
symptomatic individuals (Supplementary Figure 9). We identified similar antibody waning rates on the 
Abbott ARCHITECT assay in longitudinal samples from the blood donor population in Manaus used 
for SARS-CoV-2 serosurveillance (Supplementary Figure 10). 
 
Since the serosurveys in Japan performed parallel testing on the Abbott ARCHITECT and Roche 
Elecsys assays, we jointly modeled the probability of testing positive on both assays. We found that 
this was highest in the earliest times since infection; the probability of testing negative on Abbott and 
positive on Roche increased over time, consistent with relatively rapid declines in sensitivity over time 
on the Abbott assay and consistently high sensitivity of the Roche assay (Supplementary Figure 11). 
Parameter values for all fitted antibody kinetics models are provided in Supplementary Tables 7-9. 
 
Overall impacts of serosurvey timing and demography on expected assay sensitivity 
 
Timings of serosurveys relative to the local epidemic curve varied. In some settings, serosurveys 
were conducted a few months after the first peak, while others during or after periods of ongoing 
transmission. Figure 3 shows reconstructed daily numbers of symptom onsets relative to the timing 
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of each serosurvey locale. These are based on the reported time series identified in Table 2 and 
delay distributions identified in Supplementary Table 3. 
 
Estimates of expected assay sensitivity that account for local epidemic recency, antibody waning, and 
disease severity differed considerably from manufacturer reported sensitivity values (Table 3). 
Expected sensitivity was lower when surveys were performed in locations where infections occurred 
longer ago, particularly for serosurveys using the Abbott assay. The serosurvey in Italy, the 
serosurvey rounds in Spain, and the June 2020 round of the serosurvey in Manaus were all 
conducted at similarly recent times relative to their local epidemics, resulting in similar expected 
sensitivities of around 70% based on the 2 severity group model. In contrast, serosurveys conducted 
longer ago relative to their local epidemic had lower expected sensitivities (e.g., the estimate was as 
low as 45% for the December 2020 round of the serosurvey in Manaus). Expected sensitivity was 
also strongly influenced by our choice of model, and in particular whether asymptomatic individuals 
were included with other non-hospitalized individuals or classified in a separate group 
(Supplementary Figure 12). 
 
Adjusted seroprevalence estimates and degree of potential spectrum bias by survey 
 
Italy 
 
The raw national seroprevalence result of this population-based serosurvey, conducted between May 
25 and July 15, 2020, was 2.5% using the Abbott ARCHITECT assay. Based on our 2 severity group 
model, we estimated adjusted seroprevalence to be 3.0% (95% credible interval (CrI): 2.7%, 3.4%). 
Based on our 3 severity group model, adjusted seroprevalence increased to 3.7% (95% CrI: 3.0%, 
4.7%). As identified in the original serosurvey report, northern regions of the country were particularly 
affected during the first wave of infection (Figure 4A). As we set the weighted assay sensitivities to 
be equal across regions, the ratio of adjusted to raw seroprevalence scaled with raw seroprevalence: 
in the Lombardia region (orange on Figure 4A), which had the highest raw seropositive proportion at 
7.5% in this survey, the adjusted seroprevalence was estimated to be 1.35-fold greater (95% CrI: 
1.20, 1.55) than reported (Figure 5A; Supplementary Figure 13). Ratios below 1 represent regions 
with extremely low raw seroprevalence, accounting for expected test performance (i.e., false positive 
results due to imperfect specificity, see Supplementary Methods). 
 
Spain 
 
The raw national seroprevalence results for this population-based serosurvey, conducted in two 
rounds, were 5.0% (Round 1: April 27-May 11, 2020) and 5.2% (Round 2: May 18-June 1, 2020) 
using a rapid serologic test, and 4.6% (Round 1) and 4.5% (Round 2) using the Abbott ARCHITECT 
assay. Point estimates of seroprevalence were generally consistent within provinces between rounds 
(Figure 4B; Supplementary Figure 14), which may be explained by their close temporal spacing 
(early May and late May 2020). Based on our 2 severity group model with the Abbott ARCHITECT 
data, we estimated adjusted seroprevalence to be 5.8% (95% CrI: 5.2%, 6.5%) in Round 1 and 5.7% 
(95% CrI: 5.2%, 6.5%) in Round 2. The ratio of adjusted to raw seroprevalence within a province and 
serosurvey was similar to in Italy, reaching a high of 1.35-fold increase (95% CrI: 1.21, 1.54) over the 
reported value in the Cuenca province (dark orange on Figure 4B) (Figure 5B). For additional 
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context, the adjusted seroprevalence estimates in Round 2 here, using the 3 severity group model, 
were as high as what was measured (using a rapid test) during Round 4 of the survey (7.1%), which 
was conducted from November 16 to 29, 2020 (38).  
 
United States 
 
The first four rounds of the US CDC Nationwide Commercial Laboratory Seroprevalence Survey were 
conducted between July and September 2020, and were performed on multiple serologic assay 
platforms at the census division level (Supplementary Figures 15-18) (27,39). Adjusted point 
estimates at the census division level from Round 1 and Round 4 using our 2 severity group model 
are provided in Figure 4C, and estimates from the other rounds are available in Supplementary 
Figure 19. Compared to the raw seroprevalence results, adjusted seroprevalence estimates were up 
to 2-fold greater (Figure 5C; Supplementary Figures 20-21). Aggregation of data from multiple 
serologic assay platforms complicates interpretation of the raw results. For instance, in the Mountain 
census division, which comprises 8 states, all three assays were used; without further information, it 
is not possible to know which states used which combinations of the three. On the other hand, all of 
the data from the Middle Atlantic states (New York, New Jersey, and Pennsylvania) were from the 
Roche Elecsys assay (which exhibited the most stable antibody responses over time of the three 
assays), and thus the biases in this census division are the lowest in the United States (Figure 5C). 
 
To further explore the relative effects of time and assay choice on weighted sensitivity, we simulated 
serosurveys at various times at the census division level using different proportions of tests 
conducted on the Abbott ARCHITECT assay (i.e., decreasing responses over time), assuming that 
the rest of the tests were done on the Roche Elecsys assay (i.e., stable responses over time) (Figure 
6). In general, we found that a greater proportion of tests performed on the Abbott assay leads to a 
lower weighted sensitivity. However, even if a serosurvey was performed exclusively with one assay 
and serosurveys were conducted at the same time in all census divisions, expected assay sensitivity 
in the general population will differ considerably between census divisions due to the differential 
timings of the epidemic in the population. For example, a serosurvey conducted February 2021 in the 
Middle Atlantic census division using exclusively the Abbott assay would have an expected sensitivity 
of 32%, while a serosurvey in the West North Central census division at the same time using the 
same assay would have an expected sensitivity of 59%. 
 
Manaus, Brazil 
 
Seroprevalence in Manaus, Brazil has been measured monthly since April 2020 in cross-sectional 
samples from blood donors using the Abbott ARCHITECT assay. Manaus experienced a particularly 
large first wave of the SARS-CoV-2 pandemic in Spring 2020, followed by a relative trough period 
(Figure 3D). Both raw and adjusted seroprevalence peaked in June 2020 (raw seroprevalence of 
47.5% and estimated seroprevalence of 61.9% (95% CrI: 56.5%, 67.5%) using the 2 severity model) 
and then declined thereafter (Figure 4D). Temporal changes in the ratio of adjusted to raw 
seroprevalence echo the epidemic dynamics in Manaus, where the degree of bias increased over 
time from 1.28-fold (95% CrI: 1.16, 1.42) in May 2020 to 2.50-fold (95% CrI: 2.15, 2.88) in January 
2021 (Figure 5D; Supplementary Figure 22). 
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Japan 
 
In the convenience sampling-based serosurveys in 5 prefectures in Japan conducted in December 
2020, each sample was tested on both the Abbott ARCHITECT and the Roche Elecsys platforms 
(30). The raw seroprevalence values varied considerably between the univariate (single assay) and 
bivariate interpretations (in the latter, a sample had to be positive on both assays to be deemed a 
positive). We found adjusted seroprevalence values to be generally comparable between the 
univariate and bivariate models, but using either only Roche Elecsys or both assays led to lower 
uncertainty than using the Abbott ARCHITECT assay alone (Figure 4E). Based on our bivariate 
model with 2 severity groups, the ratio of adjusted to raw seroprevalence ranged from 1.50-fold (95% 
CrI: 0.90, 2.25) in Osaka prefecture to 2.23-fold (95% CrI: 1.04, 3.94) in Fukuoka prefecture (Figure 
5E; Supplementary Figure 23). Importantly, having all samples in this serosurvey tested on two 
assays, along with all validation sets also being tested on both assays, provided the opportunity to 
estimate the correlation between the assays (36) and to incorporate this into the estimation (see 
Supplementary Methods). 
 
DISCUSSION 
 
Differences in antibody responses as a function of disease severity and time since infection 
complicate inference from population-level serologic data, because they can substantially affect the 
expected sensitivity of the assay. In the serosurveys evaluated here, we found that true 
seroprevalence was up to 2.5-fold greater than that measured by raw seropositivity. Leveraging data 
on the kinetics of antibody responses measured by three of the most widely used serologic assays, 
we present a unified methodological framework to estimate SARS-CoV-2 seroprevalence that 
accounts for these factors and provide a toolkit for practitioners to generate adjusted seroprevalence 
estimates with either pre-set or custom parameter values. 
 
We found that the degree of bias depends on the assay used, the timing of the serosurvey relative to 
the course of the epidemic locally, and the age distribution of the population and the age-dependent 
probability of severe disease. The serosurvey in Italy and the two serosurvey rounds in Spain were 
conducted relatively early with respect to the local epidemic, resulting in expected sensitivities of 
around 70%. In the United States, the serosurveys included here occurred during the first and second 
waves of the pandemic and used different assays in different census divisions, affecting the 
magnitude of the bias in estimated seroprevalence. In the Middle Atlantic census division, the 
magnitude of the bias was attenuated due to the exclusive use of the Roche assay; in the New 
England census division, which used the Abbott assay exclusively, the magnitude of the bias was 
greater. In Japan, the serosurvey was conducted almost a year after the first case of COVID-19 was 
reported (40). While the absolute magnitudes of both raw and adjusted seroprevalence were low 
(under 2%), expected sensitivity on the Abbott assay for this serosurvey was as low as 54%. 
 
In Manaus, the magnitude of the bias continuously increased from 1.28-fold in May 2020 to 2.50-fold 
in January 2021, revealing the footprint of the first wave of the pandemic in early 2020. These results 
corroborate findings that seroprevalence was likely already high prior to the subsequent resurgence 
of SARS-CoV-2 infection in late 2020 (15,29). The decrease in adjusted seroprevalence estimates 
after June 2020 suggest that these adjustments for severity and time may be insufficient, as we do 
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not expect actual cumulative incidence to decrease over time. This could be attributable to issues of 
sampling, age-patterns not adequately captured in this framework, or higher waning rates. The 
framework developed here provides an alternative to a previously developed approach (15). Our 
framework does not impose assumptions on seroprevalence estimates monotonically increasing at 
each month, but rather assumes that reported case counts (in this instance, hospitalizations) are an 
accurate reflection of temporal trends in transmission. Our framework implicitly assumes temporal 
homogeneity in the case fatality ratio, case hospitalization ratio, and the case reporting ratio. Known 
deviations from this assumption through estimation of time-varying metrics could be incorporated to 
improve the accuracy of estimates (e.g., potential decreases in the case fatality ratio over time (41)). 
 
This approach is broadly applicable beyond the assays and serosurveys included. We previously 
presented raw data to estimate time-varying sensitivity of 11 additional assays using cohort data (17), 
and numerous studies have also studied longitudinal antibody responses on an array of platforms 
(42–44). A key methodological development here is in providing a framework to use these data to 
adjust for time since infection as informed by the local epidemic in a population of interest. This 
framework incorporates a number of setting-specific scenarios, including the availability of different 
types of reported epidemiologic data, population representativeness of the serosurvey and necessary 
adjustments for weights, spatial scale, study design, and testing strategy. 
 
Two of the assays included here, the Abbott ARCHITECT and Ortho VITROS IgG, have considerable 
waning over the first 5 months following infection. Persistence of these trends will lead to further 
decreases in assay sensitivity. Over time, antibody waning will be increasingly important to account 
for, as more individuals will have been infected longer ago and with greater variability. These 
considerations will be important for interpreting subsequent rounds of serosurveys included here 
(e.g., Spain (38) and the United States (39)) and others not included (e.g., India (45)). These 
considerations underscore the need for continued longitudinal follow-up of individuals with confirmed 
SARS-CoV-2 infection (and various strains), as antibody kinetics often follow more complex dynamics 
of boosting and waning over time beyond linear changes (46). Assays demonstrating more waning 
may be better suited for other use-cases such as identifying recent infections. An additional 
consideration for designing a serosurvey in places where mRNA vaccines are used is on using 
assays measuring antibodies to non-spike proteins, which will play a role in distinguishing immune 
responses to natural infection from vaccine-elicited immune responses to the spike protein alone. 
 
There are a number of caveats associated with this analysis. The accuracy of this approach hinges 
on the accuracy of symptom onset curves reconstructed from the selected reported time series. This 
limitation is not unique to seroprevalence estimation; accurate estimates of downstream metrics such 
as the time-varying reproduction number similarly rely on the robustness of these data streams over 
time (32,47). Estimation will also be sensitive to the data type chosen; for example, hospitalizations 
and deaths are generally more robust to temporal trends in under-ascertainment than cases, but this 
may be context-specific. 
 
A key consideration here is the small sample size for asymptomatically infected individuals, who 
potentially comprise a majority of all SARS-CoV-2 infections (48,49). While the distinction between 
asymptomatic versus minimally symptomatic may be difficult to define, it is imperative to better 
understand the magnitude and kinetics of antibody responses in this group of individuals to better 
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understand the extent of bias in seroprevalence estimates. The decision to model asymptomatic 
individuals as their own severity group or aggregated with the other non-hospitalized individuals has a 
major effect on overall adjusted seropositivity. Our framework accounts for differences in assay 
sensitivity by disease severity and time, but does not explicitly incorporate other potentially important 
sources of variation, such as age and sex (16,50,51). Lastly, our focus has been on sensitivity, and 
we do not allow for specificity to vary over time. 
 
This work provides a broadly applicable framework incorporating individual-level immune dynamics 
into epidemiologic models to produce adjusted seroprevalence estimates for a number of serosurvey-
specific scenarios. The methodology has been made publicly available for broad public use 
(https://github.com/sakitakahashi/spectrum-bias-adjust). More accurate seroprevalence estimates will 
allow for better understanding of the proportion that has been exposed to date, and for various 
applications including integration into downstream mechanistic transmission models. 
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TABLES 
 
Table 1: SARS-CoV-2 population serosurveys included. 
 

 Italy Spain United States Manaus, Brazil Japan 

Serosurvey 
round(s) included 

in this analysis 

(1) May 25 – July 15, 2020 (1) April 27 – May 11, 2020 
(2) May 18 – June 1, 2020 

(1) July 27 – Aug 13, 2020 
(2) Aug 10 – 27, 2020 
(3) Aug 24 – Sep 10, 2020 
(4) Sep 7 – 24, 2020 

(10) Monthly cross-sections 
from April 2020 – Jan 2021 

(1) December 14 – 25, 2020 

Assay(s) used 
and included in 

this analysis 

Abbott ARCHITECT Abbott ARCHITECT Abbott ARCHITECT, Roche 
Elecsys, or Ortho VITROS 

IgG 

Abbott ARCHITECT Abbott ARCHITECT and 
Roche Elecsys 

Sample size 64,660 Round 1: 55,004 
Round 2: 56,138 

177,919 total 
(mean: 44,480 per round) 

177,785 included in analysis* 
*Removed 132 samples 

missing age and 4 samples 
missing sex 

9,839 total 
(mean: 984 per month) 

9,838 included in analysis* 
*Remove 1 sample under 15 

years of age 

15,043 

Study design & 
population 

Population-based Population-based Residual samples from 
commercial laboratories 

Blood donors Convenience sampling 

Spatial resolution 
of results 

Region (21) Province (52) US census division (9) Single city Prefecture 
(5 of 47 included) 

Age-stratification 
of results 

No* 
*Population-based 

serosurvey designed to be 
representative 

No* 
*Population-based 

serosurvey designed to be 
representative 

0 – 17 years, 18 – 49 years, 
50 – 64 years, 65+ years 

15 – 24 years, 25 – 34 years, 
35 – 44 years, 45 – 54 years, 
55 – 64 years, 65 – 70 years 

NA* 
*Inclusion criteria of 20+ 

years 

Sex-stratification 
of results 

No* 
*Population-based 

serosurvey designed to be 
representative 

No 
*Population-based 

serosurvey designed to be 
representative 

Yes Yes No 

Reported 
seroprevalence 

2.5% Round 1: 5.0%* 
Round 2: 5.2%* 

*Based on Orient Gene 
Biotech COVID-19 IgG/IgM 
rapid test; not reported for 

Abbott assay 

Various Various Tokyo: 0.91%*, Osaka: 
0.58%*, Miyagi: 0.14%*, 
Aichi: 0.54%*, Fukuoka: 

0.19%* 
*Based on positive test 
result on both assays 

Reference (52) (Figure 1) (24) (Figure 4); (25,26) (27,39) (28,29) (30) 
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Table 2: SARS-CoV-2 epidemic time series data sets included. 
 

 Italy Spain United States Manaus, Brazil Japan 

Data type 
(frequency) 

Reported symptom 
onsets (daily)* 

 
*Region-level data are of 

positive tests and are 
available from February 

24, 2020 onwards 

Reported symptom 
onsets (daily) 

Reported cases and 
deaths (daily) 

Reported 
hospitalizations (daily) 

Reported cases and 
deaths (daily) 

Time delay 
distribution(s) 

needed to obtain 
symptom onset 

time series 

NA NA Case/death report to 
symptom onset 

Hospitalization report to 
symptom onset 

Case/death report to 
symptom onset 

Date of first 
available data 

point 

January 28, 2020 January 1, 2020 January 21, 2020 March 16, 2020 January 16, 2020 

Spatial 
resolution 

Region Province State Single city Prefecture 

Reference Istituto Superiore di 
Sanità, EpiCentro 

(53,54) 

Gobierno de España, 
Centro Nacional de 
Epidemiología (55) 

New York Times (56) Fundação de Vigilância 
em Saúde do Amazonas 

- FVS/AM (57,58) 

National-level data sets 
from the Ministry of 
Health, Labour and 

Welfare (59,60) 
 

Prefectural-level data 
sets from prefectural 

ministries of health (61–
65) 
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Table 3: Comparison of manufacturer reported assay sensitivity and expected sensitivity for 
selected rounds of each serosurvey, and the timing of the serosurvey relative to the local 
epidemic. The rightmost 5 columns represent percentiles, in days before serosurvey. For example, in 
Italy, 10% of all symptom onsets occurring prior to the serosurvey occurred within the 57 days before 
the serosurvey, and 90% of all symptom onsets occurring prior to the serosurvey occurred within the 
106 days before the serosurvey. A = Abbott ARCHITECT; R = Roche Elecsys. *Sensitivity is defined 
as the probability of testing positive on both assays, given infection. †Sensitivity is defined as the 
probability of testing positive on the Abbott assay, given infection (from a univariate model). 
‡Sensitivity is defined as the probability of testing positive on the Roche assay, given infection (from a 
univariate model). 
 

Serosurvey & 
round 

Assay & 
manufacturer 

reported 
sensitivity 

Expected 
sensitivity, 2 

severity groups 

Posterior mean 
& 95% CrI 

Expected 
sensitivity, 3 

severity groups 

Posterior mean 
& 95% CrI 

Days before serosurvey of the Xth percentile of 
cumulative symptom onsets prior to serosurvey 

X = 10  X = 25 X = 50 X = 75  X = 90 

Italy 100% (A) 
0.7072 

(0.6169, 0.7933) 
0.5672 

(0.4504, 0.7133) 
57 74 89 99 106 

Spain, Round 1 100% (A) 
0.7377 

(0.6520, 0.8176) 
0.6056 

(0.4853, 0.7432) 
20 32 42 49 54 

Spain, Round 2 100% (A) 
0.7243 

(0.6367, 0.8069) 
0.5863 

(0.4659, 0.7277) 
38 51 62 70 75 

Middle Atlantic 
census division, 

US, Round 1 
99.5% (R) 

0.9012 
(0.8471, 0.9402) 

0.8829 
(0.8111, 0.9372) 

64 100 120 130 135 

Middle Atlantic 
census division, 

US, Round 4 
99.5% (R) 

0.9056 
(0.8513, 0.9441) 

0.8882 
(0.8171, 0.9407) 

99 140 162 172 177 

New England 
census division, 

US, Round 1 
100% (A) 

0.6892 
(0.5959, 0.7775) 

0.5363 
(0.4138, 0.6901) 

61 87 107 120 129 

New England 
census division, 

US, Round 4 
100% (A) 

0.6376 
(0.5444, 0.7239) 

0.4834 
(0.3641, 0.6364) 

84 125 148 162 171 

Manaus, June 
2020 100% (A) 

0.7245 
(0.6351, 0.8074) 

0.5652 
(0.4302, 0.7208) 

18 34 48 61 70 

Manaus, 
December 2020 100% (A) 

0.4561 
(0.3705, 0.5412) 

0.3358 
(0.2334, 0.4666) 

37 86 203 234 248 

Japan 
100% (A)*† 
99.5% (R)*‡ 

0.4931* 
(0.4233, 0.5637) 

0.4026* 
(0.3242, 0.5017) 

7 18 54 205 251 
0.5409† 

(0.4660, 0.6127) 
0.4475† 

(0.3568, 0.5541) 

0.9053‡ 
(0.8529, 0.9433) 

0.8901‡ 
(0.8248, 0.9398) 
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FIGURES 

Figure 1: Schematic of the seroprevalence estimation framework. Each of the four boxes on the 
perimeter details its contributions to the target output of weighted assay sensitivity (center). 
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Figure 2: Longitudinal SARS-CoV-2 antibody kinetics and estimated assay sensitivities by 
time and hospitalization status. (Upper row) Time since symptom onset (offset by 21 days) is 
shown on the x-axis versus the log-transformed antibody response for each of the Abbott 
ARCHITECT, Roche Elecsys, and Ortho VITROS IgG assays, stratified by hospitalization status. For 
asymptomatic individuals, the time since the first positive PCR test (offset by 21 days) was used. This 
time-metric is referred to as ‘time since seroconversion’ hereafter. Longitudinal samples are 
connected by black lines. Black dotted lines indicate cutoff values for positivity on that assay. (Lower 
row) Estimated sensitivity of each assay (showing posterior median estimates as the solid line and 
95% credible intervals), stratified by hospitalization status, from 0 to 365 days after seroconversion. 
The dashed vertical line in purple indicates the maximum observed time on the corresponding panel 
above (i.e., x=136 for non-hospitalized and x=118 for hospitalized). 
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Figure 3: Reported epidemic time series from serosurvey locales, reconstructed symptom 
onsets, and serosurvey timing. Serosurvey dates are shown by the light blue bar (range) and dark 
blue circle (midpoint). For reconstructed symptom onset curves, reported data are shown as the black 
curve, and posterior median estimates and 95% credible intervals are shown in red. (A) Reported 
daily symptom onsets in Italy, January to July 2020. (B) Reported daily symptom onsets in Spain, 
January to June 2020. (C) Daily symptom onsets by census division in the United States, 
reconstructed from death reports, February to September 2020. (D) Daily symptom onsets in 
Manaus, Brazil, reconstructed from hospitalization reports, March 2020 to January 2021. (E) Daily 
symptom onsets in Japan, reconstructed from death reports, January to December 2020. 
Reconstructed symptom onsets from death reports precede deaths by approximately 3 weeks, while 
reconstructed symptom onsets from hospitalization reports precede hospitalizations by approximately 
10 days. 
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Figure 4: Adjusted seroprevalence estimates by survey. Panels A, B, and C all share the same 
color scale. (A) Estimated seroprevalence by region in Italy, using the antibody kinetics model 
classifying disease severity into (left) 2 groups: non-hospitalized and hospitalized, and (right) 3 
groups: asymptomatic (AS), symptomatic and non-hospitalized, and hospitalized. The former is 
considered as the primary scenario for this analysis, and the subsequent panels are derived under 
that scenario unless otherwise described. (B) Estimated seroprevalence by province in Spain for (left) 
Round 1 and (right) Round 2 of the serosurvey. (C) Estimated seroprevalence by census division in 
the United States for (left) Round 1 and (right) Round 4 of the serosurvey, incorporating weighting by 
the population demographics (age and sex) of each census division, as well as age-specific 
probabilities of hospitalization. (D) Estimated seroprevalence by month in Manaus, Brazil, 
incorporating weighting by age and sex, as well as age-specific probabilities of hospitalization and of 
experiencing symptoms, restricted to between the ages of 15 and 70 years. The raw seropositive 
proportion is in black; results from the antibody kinetics model classifying disease severity into 2 
groups are in pink, and 3 groups are in green. (E) Estimated seroprevalence for the 5 prefectures in 
Japan, considering the raw results from the (left) Abbott assay only, (center) Roche assay only, and 
(right) both assays. The raw seropositive proportion is in black and the estimated seroprevalence is in 
pink. When considering the results from both assays, the raw seropositive proportion is the proportion 
of samples that tested positive on both. 
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Figure 5: Relative bias in seroprevalence estimation. For each panel, the raw seroprevalence 
result is shown on the x-axis and the ratio of the adjusted to raw seroprevalence is shown on the y-
axis (median and 95% credible interval). The ratio equaling 1 (i.e., no bias) is shown in the dashed 
line. All panels are generated under the primary scenario of classifying disease severity into 2 groups, 
non-hospitalized and hospitalized. (A) Italy, where each point represents a region. (B) Spain, for 
(upper) Round 1 and (lower) Round 2, where each point represents a province. (C) The 9 census 
divisions of the United States, where the color of the point represents the survey round. (D) Manaus, 
Brazil, where each point represents a month. As in Figure 4, for panels C and D, the adjusted 
seroprevalence estimates are weighted by population demography and age-specific disease severity. 
(E) Japan, where each point represents a prefecture. The scenario considered here is the case of 
using the results of the two assays. 
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Figure 6: Weighted sensitivity by time and assays used for the US CDC Nationwide 
Commercial Laboratory Seroprevalence Survey. Weighted assay sensitivity by census division in 
the United States as a function of (hypothetical) serosurvey dates between March 2020 and March 
2021 (x-axis), and proportion of tests performed on the Abbott ARCHITECT assay (y-axis), 
incorporating symptom onset curves (black line) and demography at the census division level. This is 
using the 2 severity group scenario. This assumes that the rest of the tests were performed on the 
Roche Elecys assay, on which antibody responses remain robust over time. Contour interval of 0.05. 
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DATA AND CODE AVAILABILITY 
 
Raw antibody data used in this analysis are publicly available in a prior publication (17). Raw 
serosurvey data are available in the citations in Table 1. Access to COVID-19 seroprevalence data 
from the Nationwide Commercial Laboratory Seroprevalence Survey is maintained by the Centers for 
Disease Control and Prevention’s (CDC)’s Epi Task Force Seroprevalence Team. Requests for 
access to the data should be directed to: eocevent452@cdc.gov. The CDC does not take 
responsibility for the scientific validity or accuracy of methodology, results, statistical analyses, or 
conclusions presented. All code to reproduce these analyses are available at: 
https://github.com/sakitakahashi/spectrum-bias-adjust. 
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