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Abstract: Surface topography parameters are an important factor affecting the wear resistance of
parts, and topography parameters are affected by process parameters in order to explore the influence
law of process parameters on surface topography parameters and to find the quantitative relationship
between milling surface topography parameters and wear resistance. Firstly, this paper took the
surface after high-speed milling as the research object, established the residual height model of
the milled surface based on static machining parameters, and analyzed the relationship between
the residual height of the surface and the machining parameters. Secondly, a high-speed milling
experiment was designed to explore the influence law of processing parameters on surface topography
and analyzed the influence law of processing parameters on specific topography parameters; Finally,
a friction and wear experiment was designed. Based on the BP neural network, the wear resistance
of the milled surface in terms of wear amount and friction coefficient was predicted. Through
experimental verification, the maximum error of the prediction model was 16.39%, and the minimum
was 6.18%.

Keywords: high-speed milling; topography parameters; BP neural network; prediction of wear resistance

1. Introduction

Surface wear is the main factor affecting the service performance of parts, and how to
improve the wear resistance of the surface of the parts has always been a research hotspot
in the manufacturing industry.

In recent years, some scholars have found through research that good wear resistance
can be obtained when the surface of the part has some special topography [1–3]. Braun et al.
used the dial test method to characterize the friction and wear behavior of steel sliding
pairs with a diameter of 15–800 µm under mixed lubrication conditions, stated that at
a certain sliding speed, using the best texture diameter can reduce friction by 80% and
reduce wear [4]; Tillmann W et al. used the micro-milling method to prepare surfaces with
honeycomb and dimple topographies using high-speed steel materials, and focused on
the analysis of the impact of the surface topography on its friction and wear properties [5];
Conradi et al. studied the different morphologies of the Ti6Al4V surface: linear, cross-
corrosion and dimples, and analyzed the effect of titanium alloy surface topography, weave
density, and orientation (parallel, perpendicular and at 45◦) on frictional wear under dry
and lubricated conditions [6]; Razfa et al. pointed out that the micro topography of the
machined surface has a great influence on the surface wear performance of the parts, and
the analysis and research of the surface topography is of great significance to the wear
resistance of the product [7]; Wiciak-Pikuła used machine learning algorithms to predict the
surface morphology parameters Ra and Rz of composite materials, and the effectiveness
of the prediction model was verified by experiments [8]; Feng et al. found that the fabric
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surface with high entanglement and nano-structured particles could obtain high abrasion
resistance [9]; Daymi et al. designed an experiment for ball-end milling Ti-6Al-4V titanium
alloy, and explored the influence law of the machining inclination on the milling surface at
the same time, a prediction model of milled surface roughness with cutting speed, feed,
and radial depth of cut as variables was also established [10]; Taoheed et al. studied the
influence of different spindle speeds and feed rates on the surface topography of aluminum-
based alloys. The test results showed that the surface roughness will decrease as the spindle
speed decreases [11]; Mardi et al. studied the influence of kinematic parameters on the
surface morphology of nanocomposites, and expressed the results through topography
parameters [12]; Maher et al. established an adaptive neuro-fuzzy system of machining
parameters and surface roughness by studying and analyzing the correlation between
machining parameters (spindle speed, feed per tooth, depth of cut), milling forces, and
surface roughness [13]; Vishwas et al. investigated the effect of process parameters such
as cutting speed, feed, and depth of cut on the surface topography of martensitic stainless
steel by means of turning machining [14].

The above research provides a new idea for improving the wear resistance of parts.
The purpose of improving wear resistance can be achieved by preparing some special
topographies on the surface of the parts; therefore, the purpose of preparing ideal sur-
face topography can be achieved by exploring the influence of processing parameters on
surface topography. Some studies have shown that the topography parameter is an intu-
itive manifestation of the surface topography and can be used to characterize the surface
topography [15–18]; therefore, the influence of the processing parameters on the surface
topography can be further explored by analyzing the relationship between the topography
parameters and the processing parameters. In addition, there is also a certain relationship
between the topographic parameters and the wear resistance of the parts [19–21]. The
relationship between the topography parameters and the wear resistance of the parts can
be used to establish a wear resistance prediction model to predict the wear resistance of
the parts.

Regarding the prediction of part wear resistance, Wang et al. established a zero-
order six-variable gray model for predicting wear characteristic parameters using finite
element simulation technology and gray relational analysis [22]; Zhang et al. proposed
a method to predict the amount of wear by using the size of the surface topography of
parts [23]; Durmuş et al. used artificial neural networks to predict the amount of wear
on 6315 aluminum alloy under different conditions [24]; Mahdi proposed a novel hybrid
machine learning method for tool wear prediction based on XGBoost-SDA, and used
simulation to verify the effectiveness of the prediction method [25]; Suresh et al. used
the response surface method to minimize the test conditions, established a mathematical
model of the wear rate, and predicted the wear rate on a 99.5% confidence interval [26];
Dursun et al. established an artificial network prediction model to predict the wear of
A356 composite material. Compared with the test data, the correlation coefficient R2 is
0.9855, and the prediction model has a high degree of credibility [27]; Zhao et al. proposed a
numerical method for joint wear prediction of rotational gap joints in a flexible mechanical
system that combines wear prediction with flexible multi-body dynamics [28].

Based on previous research, a model of the residual height of the milled surface
was established, the effect of processing parameters on surface topography and specific
topographic parameters was analyzed, and the dual-indicator wear resistance prediction
was completed based on BP neural network for specific topographical parameters.

2. Analytical Modeling of Residual Height of Ball-End Milling Surface

After the workpiece is processed by high-speed milling, a part of the material will
remain on the surface. Its manifestation is the pit topography surrounded by four surface
ridgelines, and its corresponding height value is called the residual height of the surface.
The residual height of the surface is an important index to evaluate the surface micro-
topography; therefore, a model of the residual height of the surface was established in the
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feed direction and the row spacing direction, as shown in Figures 1 and 2. Among them, fz
represents the feed per tooth, and ae represents the row spacing.
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2.1. Residual Height Modeling in Feed Direction

The projection view of the characteristic ridgeline of the feed direction of the surface
topography micro-unit in the xoz plane is shown in Figure 1. V1 and V2 are the projections
of the ridgelines corresponding to the highest point and the lowest point of the topographic
unit on the xoz plane.

The mathematical relationship between the arc radius r′ of the ridgeline V1 and the
arc radius r of the ball end mill exists in the following equation:

r′ =
√

r2 − ( fz/2)2 (1)

Hmax is the maximum residual height on the surface topography unit, which represents
the distance from the highest point to the lowest point of the topography unit. The
calculation equation of Hmax is as follows:

Hmax = r−
√

r′2 − (ae/2)2 (2)

A point Q was chosen arbitrarily on the ridgeline V1, and i is the distance between the
projection of point Q on the x-axis and point O. Since the projection plane of the ridgeline
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V1 is perpendicular to the feed direction, H1 represents the height from point Q to the
lowest point of the micro-unit profile. The calculation equation of H1 is as follows:

H1 = r−
√

r′2 − i2(0 ≤ i ≤ ae/2) (3)

The calculation equation of the height H2 of the point on the ridgeline V2 correspond-
ing to the point Q selected by the ridgeline V1 is as follows:

H2 = r−
√

r2 − i2(0 ≤ i ≤ ae/2) (4)

According to Equations (3) and (4), the residual height ridgeline V1 and V2 trajectory
matrix expressions of the surface topography micro-unit projected in the feed direction can
be obtained as follows:

V1 = [ x1 y1 z1 ]
T
= [ i fz H1 ]

T
= [ i fz r−

√
r′2 − i2 ]

T
(5)

V2 = [ x2 y2 z2 ]
T
= [ i fz H2 ]

T
= [ i fz r−

√
r2 − i2 ]

T
(6)

2.2. Residual Height Modeling in Row Spacing Direction

The projection view of the characteristic ridgeline of the row spacing direction of the
surface topography micro-unit in the yoz plane is shown in Figure 2. V3 and V4 are the
projections of the ridgelines corresponding to the highest point and the lowest point of the
topographic unit on the yoz plane.

The mathematical relationship between the arc radius r” of the ridgeline V3 and the
arc radius r of the ball end mill exists in the following equation:

r′′ =
√

r2 − (ae/2)2 (7)

Hmax is the maximum residual height on the surface topography unit, which represents
the distance from the highest point to the lowest point of the topography unit. The
calculation equation of Hmax is as follows:

Hmax = r−
√

r′′2 − ( fz/2)2 (8)

A point K was chosen arbitrarily on the ridgeline V3, and j is the distance between the
projection of point K on the y-axis and point O. The calculation equation of H3 is as follows:

H3 = r−
√

r′′2 − j2(0 ≤ j ≤ f /2) (9)

The calculation equation of the height H4 of the point on the ridgeline V4 correspond-
ing to the point K selected by the ridgeline V3 is as follows:

H4 = r−
√

r2 − j2(0 ≤ j ≤ f /2) (10)

According to Equations (9) and (10), the residual height ridgeline V3 and V4 trajectory
matrix expressions of the surface topography micro-unit projected in the row spacing
direction can be obtained as follows:

V3 = [ x3 y3 z3 ]
T
= [ ae j H3 ]

T
= [ ae j r−

√
r′′2 − j2 ]

T
(11)

V4 = [ x4 y4 z4 ]
T
= [ ae j H4 ]

T
= [ ae j r−

√
r2 − j2 ]

T
(12)
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In summary, based on the ridgeline expression of the residual height in the feed
direction and the line spacing direction, the residual height matrix of the surface topography
obtained by ball-end milling can be expressed as:

V =
[

V3 V1
]T (13)

It is precisely because of the periodic arrangement of the residual height ridges of
the two types of feed direction and line spacing direction of V1 and V3 that the surface
topography obtained by high-speed ball milling shows a regular pit shape.

Combining Equations (1),(2),(7) and (8), we can obtain the relationship between the
maximum residual height and the processing parameters as follows:

Hmax = r−
√

r2 − ( fz2 + a2
e )/4 (14)

It can be seen from Equation (14) that the maximum residual height of the surface is
affected by the radius of the ball end milling cutter, fz and ae, and it is positively correlated
with fz and ae.

3. High-Speed Milling Experiment and Topography Detection
3.1. Experimental Equipment and Specimen Materials

As shown in Figure 3, the machine tool used in this milling experiment is the DMU
60 monoBLOCK five-axis vertical machining center(DMG company, Bielefeld, Germany).
An indexable insert ball-end milling cutter was used. The blade model is BNM200-TG. The
blade diameter is 20 ± 0.006 mm. The base material of the blade is cemented carbide. The
surface is coated with JC6102, and the hardness is about 70 HRC. The cutting edge line is
“S” type. The material selected for the experiment is heat-treated Cr12MoV die steel, and
its main chemical composition is shown in Table 1. The inclination angle of the ball-end
milling cutter during milling is controlled by the machining center. High-speed cutting
was used in the milling experiment.
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The experimental testing equipment used the ultra-depth-of-field microscope
(KEYENCE company, Osaka, Japan) and Taylor Map CCI white light interferometer (Taylor
Hobson company, Leicester, UK). Figure 4a is the ultra-depth-of-field microscope, and
Figure 4b is Taylor Map CCI white light interferometer.
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3.2. Experimental Parameter Design

According to the analysis of the residual height of the milling surface in the first
section, in order to explore the relationship between the main processing parameters and
the surface topography, the following single-factor experimental schemes for different
processing parameters are designed, ae, ap, and fz were analyzed in Tables 2–4 using the
control variable method, respectively.

Table 2. ae single factor test.

Groups fz (mm/z) ae (mm) ap (mm) n (r/min) Processing Angle

A1 0.4
A2 0.5
A3 0.4 0.6 0.3 10,000 30◦

A4 0.7
A5 0.8

Table 3. ap single factor test.

Groups fz (mm/z) ae (mm) ap (mm) n (r/min) Processing Angle

B1

0.4 0.6

0.3

10,000 30◦
B2 0.4
B3 0.5
B4 0.6

Table 4. fz single factor test.

Groups fz (mm/z) ae (mm) ap (mm) n (r/min) Processing Angle

C1 0.4
0.4 0.3

10,000 30◦

C2 0.6

C3 0.5
1 0.5C4 0.9

C5 0.5
0.8 0.5C6 0.8
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3.3. Milling Topography Detection and Analysis

The surface detection of the milled workpiece is carried out with the ultra-depth-of-
field microscope, and the detection results are shown in Figures 5–7.
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It can be seen from Figure 5 that the overall size of the scallop crater topography
tends to increase as ae increases. This is because as ae increases, the distance between the
ridgelines of the texture of two adjacent rows increases. Comparing the effects of different
ap in Figure 6, it is found that the overall size of the scallop pits does not change significantly.
The reason for this phenomenon is that the smaller ap causes less material residue on the
surface, making the influence of ap insignificant. As can be seen from Figure 7, when fz
gradually increases from 0.5 to 0.9, the micro-texture topography of the processed surface
begins to be disordered. The main reason is that the cutting force is too large, which causes
the “wrong tool” phenomenon caused by the vibration of the tool and the machine tool.

3.4. Topography Parameter Detection

The white light interferometer is used to detect the shape parameters of the milled
workpiece. The results are shown in Table 5.

Table 5. The topography parameter value of the processed surface.

Group Sz (um) Sp (um) Sv (um) Sal Str Sdr

A1(C1) 19.951 12.175 7.776 0.283 0.239 2.325
A2 20.319 12.646 7.673 0.252 0.308 2.218
A3 22.013 12.944 9.069 0.227 0.535 2.153

A4(B1) 22.219 12.723 9.495 0.213 0.716 2.001
A5 23.772 13.526 10.247 0.217 0.727 1.901
B2 18.763 11.038 7.725 0.195 0.503 1.638
B3 21.072 11.097 7.974 0.205 0.511 2.092
B4 19.927 12.374 7.553 0.216 0.496 1.913
C2 16.893 9.197 7.696 0.234 0.766 1.935
C3 41.256 19.793 21.463 0.214 0.663 1.225
C4 47.598 24.849 22.749 0.197 0.784 1.198
C5 40.361 23.014 17.347 0.305 0.595 1.369
C6 41.469 21.622 19.847 0.227 0.670 1.238
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4. Analysis of Milling Surface Topography Parameters
4.1. Characterization of Milling Topography Parameters
4.1.1. Parameter Characterization of Pit Topography in Vertical Direction

The maximum residual height Hmax of the pit topography of the ball-end milling
surface is the distance from the lowest point of the pit topography to the highest point of
the remaining topography. The shape parameter Sz expresses the sum of the maximum peak
height Sp and the maximum valley depth Sq in the evaluation area. Since the inclination
angle of this processing is 30◦, combining Equation (14), the equation between Sz and Hmax
is as follows:

Hmax =
√

3(r−
√

r2 − ( f 2
z + a2

e )/4)/2 = Sz = Sp + Sv (15)

By substituting the radius r of the ball end mill, ae and fz and comparing them with the
measured Sz, they are approximately equal; therefore, Sz, Sp, Sv in the topography parame-
ters can be used to characterize the maximum residual height of the surface topography of
the ball-end milling pit, which is the size of the pit topography in the vertical direction.

The height ratio of surface features Str is a parameter for judging whether the surface
topography has directionality or not. When Str is close to 0, the topography is directional, as
shown in Figure 8a. When it is close to 1, the topography does not depend on the direction,
as shown in Figure 8b.
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Figure 8. Surface topography under different Str: (a) Str = 0.308; (b) Str = 0.716.

The greater the difference between the height of the residual ridgeline in the direction
of the row spacing and the height of the residual ridgeline in the feed direction, the stronger
the directionality of the topography; the smaller the difference, the weaker the directionality;
therefore, Str can be used to characterize the size relationship of the edge height dimension
of the pit topography between the feed direction and the row spacing direction.

4.1.2. Parameter Characterization of Pit Topography in Horizontal Direction

When the height distribution between the topography is similar, the minimum au-
tocorrelation length Sal represents the distance between two similar height points. Since
the height distribution of each group of ball-head milling dimple profiles is similar, Sal
can be used to represent the distance between the maximum residual height points of two
adjacent pits; therefore, the minimum autocorrelation length Sal can be used to characterize
the overall size of the pit topography in the horizontal direction.

The interface expansion area ratio Sdr represents the increased value of the actual topo-
graphic surface area relative to the reference plane. When there are more pit topographies
in a certain area, that is, the overall size of the pit topography micro-unit is smaller, the
interface expansion area ratio Sdr will be larger; conversely, the larger the overall size of the
pit shape micro-unit, the smaller the Sdr; therefore, the interface expansion area ratio Sdr can
also be used to characterize the overall size of the pit topography in the horizontal direction.
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In the combined analysis above, Sz, Sp, Sv, and Str are used to comprehensively
characterize the size of the vertical height direction of the pit topography of the ball milling
surface; Sal and Sdr are used to comprehensively characterize the size of the horizontal
direction of the pit topography of the ball milling surface.

4.2. Analysis of the Influence Law of Processing Parameters on Topography Parameters

According to Tables 2 and 5, the changes of the topography parameters under the
change of ae are shown in Figure 9.
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Figure 9. The topography parameter changes with ae.

It can be seen from Figure 9 that with the increase in ae, the topography parameter
values of Sz, Sp, Sv, and Str are also increasing, while Sal and Sdr are gradually decreasing
trend. Since Sz, Sp, and Sv are all different expressions of the height distribution of surface
topography, as ae increases, the maximum residual height will increase, so the Sz, Sp, and
Sv parameter values increase. In addition, the increase in ae will increase the height of the
residual ridgeline in the feed direction, making it close to the height of the residual ridgeline
in the row spacing direction. As the heights of the remaining ridges in the two directions
approach, the directionality of the topography becomes less obvious, which then shows
an increase in the Str value. When ae increases, the amount of ball-end milling cutter
cutting into the workpiece increases, resulting in an increase in the overall size of the pit
topography. The distance between adjacent points with similar heights will increase, which
then shows a decrease in the Sal value. As the overall size of the pits becomes larger, the
number of pits in the same area will decrease, which then shows a decrease in the Sdr value.

According to Tables 3 and 5, the changes of the topography parameters under the
change of ap are shown in Figure 10.
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It can be seen from Figure 10 that with the increase in ap, there is no obvious trend
change in the changes of various shape parameter values. This is because the increase in ap
fails to significantly change the maximum residual height value, so the changes in various
topography parameters are not obvious.

According to Tables 4 and 5, the changes of the topography parameters under the
change of ap are shown in Figure 11.
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With the increase in fz, the topography parameter values of Sz, Sp, Sv, and Str also
increase, while Sal and Sdr gradually decrease. This changing trend is consistent with the
influence of ae on topographical parameters. The main reason is that the values of fz and ae
have a positive correlation between the maximum residual height of the topography and
the overall size of the pit topography unit.

5. Prediction and Verification of Milling Surface Wear Resistance
5.1. Friction and Wear Experiment
5.1.1. Experimental Equipment and Sample Preparation

The friction and wear experiment adopts the MFT-5000 multifunctional friction and
wear tester produced by Rtec Corporation of the United States.

Figure 12 shows the friction and wear tester, the wire-cutting machine was used to cut
the test piece completed in the milling test from the test material. The size of the specimen
used for the friction and wear test is 30 × mm × 16 mm × 6 mm. The upper sample size is
10 mm × 5 mm × 3 mm, and material selection is YS8.
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Figure 12. The friction and wear experiment.

The machining parameters of the last four groups of milling tests are selected relatively large
so that the cutting force is too large, and the vibration of the machine tool and the tool is more
obvious. This leads to an increase in the complexity of the surface topography, so the measured
topography parameters cannot effectively restore the forming mechanism; therefore, only the first
nine groups of samples after the milling test were selected for the friction and wear test.

The friction and wear experimental parameters in this section are as follows: the
sliding frequency is 2 Hz, the single stroke is 20 mm, the applied load is 80 N, and the test
time for each group of specimens is 6 min.

5.1.2. Topography Detection after Wear

The surface detection of the workpiece after the friction and wear experiment was carried
out with the ultra-depth-of-field microscope, and the detection results are shown in Figure 13.
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5.1.3. Wear Data Detection

Before the friction and wear test, the test sample was cleaned with an ethanol solution,
dried with a hairdryer, and weighed with an electronic balance (minimum measurement
value 0.1 mg). After the friction and wear test was completed, the test sample was cleaned
with an ethanol solution, dried with a hairdryer, and then weighed on an electronic balance.
We record the mass m1 of the test specimens before the test and m2 of the test specimens
after the test, and calculate the wear of each group of test specimens.

The calculation equation for the amount of wear is as follows:

∆m = m1 −m2 (16)

The friction coefficient is measured by the detection software of the friction and wear
test equipment. Since the friction coefficient is a real-time monitoring measurement value,
there may be a large measurement error immediately before the end of the friction and
wear test. Here we stipulate that the real-time friction coefficient value at 359.5 s is selected.
The measurement data are summarized as shown in Table 6.

Table 6. Measurement data.

Group A1 A2 A3 A4 A5 B2 B3 B4 C2

Amount of wear (mg) 0.0044 0.0022 0.0032 0.0061 0.0051 0.003 0.0015 0.0027 0.0054
Coefficient of friction 0.5373 0.4835 0.5043 0.6188 0.5596 0.2843 0.2343 0.4776 0.5681

5.2. Wear Resistance Evaluation Index Prediction and Verification

The relationship between milling surface topography and wear and the friction coeffi-
cient is very complicated. From the previous analysis, it is known that Sp, Sz, Sdr, Sal, and
Sv can provide a relatively complete characterization of the milled topography; therefore,
the relationship between multiple topography parameters and wear resistance indexes is
comprehensively analyzed, and the wear resistance prediction model is constructed using
BP neural network.

5.2.1. BP Neural Network Parameter Selection

1. Input layer and output layer design

The number of nodes in the input layer is the dimensionality of the selected training
sample, and the dimensionality of the predictor index is the number of nodes in the
output layer. This article studies the relationship between the milling surface topography
parameters analyzed in the previous chapter (Sp, Sz, Sdr, Sal, and Sv) and surface wear
resistance evaluation indicators; therefore, the input layer is the five topography parameters,
and the output layer is the amount of wear (the method of predicting the coefficient of
friction is consistent with it). Finally, it is determined that the number of nodes in the input
layer of the prediction model is 5, and the number of nodes in the output layer is 1.

2. Hidden layer design

The calculation equation of the hidden layer is as follows:

i =
√

k + l + c (17)

In the equation, i is the number of hidden layer nodes; k and l are the number of input
layer and output layer nodes; c is a constant between 1 and 10.

Substituting the number of input layer nodes and the number of output layer nodes
into Equation (17), the interval of the number of hidden layer nodes is [4,12]. In order to
obtain the optimal value of the number of hidden layer nodes, each value of the interval is
substituted into the MATLAB prediction program to calculate. The model error obtained is
shown in Figure 14.
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From the analysis of Figure 14, the number of hidden layer nodes is 12 when the model
error is minimal.

Therefore, the number of nodes in the input layer, hidden layer, and output layer can
be finally determined to be 5, 12, and 1. The structure of the BP neural network prediction
model is shown in Figure 15.
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5.2.2. Training Sample Selection

This article selects A1, A4, and B4 in Table 7 as test samples and the remaining
six groups as training samples.

Table 7. Sample and test data.

Group Sp (µm) Sv (µm) Sz (µm) Sal Sdr m (mg) u

A1 12.646 7.673 20.319 0.252 2.218 0.0044 0.5373
A2 12.723 9.495 22.218 0.213 2.001 0.0022 0.4835
A3 12.175 7.776 19.951 0.283 2.325 0.0032 0.5043
A4 12.944 9.069 22.013 0.227 2.153 0.0061 0.6188
A5 13.526 10.247 23.773 0.217 1.901 0.0051 0.5596
B2 11.038 7.725 18.763 0.195 1.638 0.0030 0.2843
B3 11.097 7.974 19.071 0.205 2.092 0.0015 0.2343
B4 12.374 7.553 19.927 0.216 1.913 0.0027 0.4776
C2 9.197 7.696 16.893 0.234 1.935 0.0054 0.5681

5.2.3. Sample Normalization

Neural network normalization processing is realized by correlation function. This
article selects the most commonly used mapminmax function. The normalization equation
of mapminmax function is as follows:

xi
′ =

xi − xmin
xmax − xmin

(18)
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In the equation, xi and xi’ are the sample parameter values before and after normal-
ization, respectively; xmax and xmin are the maximum and minimum values of each index
data, respectively. The data after normalization are shown in Table 8.

Table 8. Normalized samples and test data.

Group Sp (µm) Sv (µm) Sz (µm) Sal Sdr m (mg) u

A1 0.292 −1 −1 0.295 0.688 0.128 −0.049
A2 0.354 0.415 0.880 0.590 0.056 −1.005 0.967
A3 0.532 0.084 0.786 0.272 0.499 1.004 1.000
A4 1 1 1 0.500 0.234 0.488 −0.018
A5 0.086 0.920 0.135 1 1 −0.488 −0.581
B2 −1 0.959 0.403 −1 −1 −0.590 −0.999
B3 0.952 0.766 0.027 0.772 0.321 0.241 −0.634
B4 0.074 1.093 0.047 0.522 0.199 −0.364 0.897
C2 2.479 0.982 1.017 0.113 0.135 0.630 0.786

5.2.4. Wear Resistance Prediction

The training function and the transfer function of the prediction model have respec-
tively selected the trading function and the purelm function. The learning efficiency and
learning step length are, respectively, 0.05 and 0.7. The minimum mean square error was
set to 0.0001. The maximum number of training sessions was set to 100. After continuous
optimization, the BP neural network prediction model was completed, and the prediction
program was written using MATLAB.

The wear prediction program is used to predict the wear. After 14 sample training, the
error dropped to the lowest value 3.7582 × 10−7. The error curve is shown in Figure 16.
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5.2.5. Validation of Wear Resistance Prediction Model

We input the training samples into the model, and continuously carried out the error
reverse transmission correction. When the error value reached the specified value, the
training ended; that is, the model completed learning. At this point, the three sets of test
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samples set were input into the model, and the prediction of wear amount began. Finally,
the output predicted values were compared with the experimental measurements for error
calculation. The same method was used to complete the friction coefficient prediction. The
calculation results are shown in Tables 9 and 10.

Table 9. Wear prediction error.

Experimental measurements 0.0044 g 0.0061 g 0.0027 g

Model prediction 0.0039 g 0.0051 g 0.0033 g
Error percentage 11.36% 16.39% 14.81%

Table 10. Friction coefficient prediction error.

Experimental measurements 0.5373 0.6188 0.4476

Model prediction 0.5041 0.7020 0.4812
Error percentage 6.18% 13.45% 7.51%

The maximum relative error of the predicted values of each group is 16.39%, and the minimum
is 6.18%. It can be explained that the wear resistance prediction model established is relatively
accurate in predicting the evaluation indicators of the milling surface wear resistance. In addition,
due to the positive correlation between the amount of wear and the coefficient of friction, the
correctness of the wear resistance prediction model can also be proved from the side.

6. Conclusions

This paper takes the surface topography of Cr12MoV die steel after high-speed milling
as the research object, the relationship between the residual height of the surface and the
processing parameters was studied, the influence law of processing parameters on specific
topography parameters was analyzed, and the wear resistance is predicted based on the
topography parameters. The study’s general conclusions are as follows:

1. The model of the residual height of the ball-end milling surface was established, and the
relationship between the residual height of the surface and the processed static parameters
was obtained. The residual height value of the processed surface is determined by the size
of the ball end mill, f z and ae, and has a positive correlation with f z and ae.

2. Different processing parameters will have different effects on surface topography. The
increase in ae will make the surface topography unit larger, and the change of fz will
make significant changes in the residual height of the surface topography.

3. There is an influential relationship between processing parameters and topography
parameters. There is a positive correlation between Sz, Sp, Sv, Str, and ae and fz; There
is a negative correlation between Sal, Sdr, and ae and fz.

4. A wear resistance prediction model based on topographical parameters was developed
using BP neural network, and the prediction of the wear and friction coefficient of the
ball-end milled surface is accomplished by inputting topographical parameters. The
maximum relative error of the predicted value is 16.39%, and the minimum is 6.18%.
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Nomenclature

fz Feed per tooth
ae Row spacing
ap Axial depth of cut
Sz Largest height
Sp Largest peak height
Sv Largest pit height
Sal Minimum autocorrelation length
Sdr Interface expansion area ratio
Str Surface feature height ratio
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