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Abstract

We have recently shown that in monkey passive extraocular muscles the force induced by a stretch does not depend on the
entire length history, but to a great extent is only a function of the last elongation applied. This led us to conclude that
Fung’s quasi-linear viscoelastic (QLV) model, and more general nonlinear models based on a single convolution integral,
cannot faithfully mimic passive eye muscles. Here we present additional data about the mechanical properties of passive
eye muscles in deeply anesthetized monkeys. We show that, in addition to the aforementioned failures, previous models
also grossly overestimate the force exerted by passive eye muscles during smooth elongations similar to those experienced
during normal eye movements. Importantly, we also show that the force exerted by a muscle following an elongation is
largely independent of the elongation itself, and it is mostly determined by the final muscle length. These additional
findings conclusively rule out the use of classical viscoelastic models to mimic the mechanical properties of passive eye
muscles. We describe here a new model that extends previous ones using principles derived from research on thixotropic
materials. This model is able to account reasonably well for our data, and could thus be incorporated into models of the eye
plant.
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Introduction

Mathematical models of muscles usually ignore the dynamic

properties of passive muscle tissues, and focus instead on the active

properties. Accordingly, the length-tension-innervation relation-

ship and the force-velocity relationship have received most of the

attention. In skeletal muscles this approach is easily justified,

because in natural conditions they operate in a length range over

which passive muscle forces are negligible. It has been known for a

long time [1] that the situation is vastly different in extraocular

muscles, as passive forces are significant well within the physiologic

eye position range (the so-called oculomotor range). In humans for

example, when the eye is deviated by just 10u from straight-ahead,

passive tissues already contribute 50% of the static force exerted by

the antagonist muscle. This fraction increases quickly with

eccentricity [2], and there is every reason to believe that dynamic

forces are similarly large [1]. Despite their importance, the

dynamic properties of passive eye muscles have not been

systematically measured.

To fill this experimental gap, in the first paper in this series [3]

we quantified the dynamic forces elicited by small step-wise

elongations applied to passive extraocular muscles in monkeys

(measured in vivo). We found that the peak forces are indeed quite

large, that the force can still be significant one second after the end

of the elongation, and that it tapers off slowly for a long time after

that. On average, it takes 4 s for the dynamic force to decay to

10% of its peak value. In the second paper in this series [4] we

attempted to fit standard nonlinear viscoelastic models to our data,

focusing in particular on Fung’s quasi-linear viscoelastic (QLV)

theory [5,6]. Under this theory, the nonlinear viscoelastic process

that produces a strain given a stress is interpreted as the cascade of

a static nonlinearity followed by a set of linear processes, whose

outputs are summed together. We found that Fung’s original

model could reproduce reasonably well the single-step data, but its

most recent extension, the so-called AQLV model [7], could do

even better. This model is more flexible, since it does not constrain

the post-elongation decay to be independent of length. However,

both models failed to reproduce sequences of two steps separated

by a short time interval. We showed that this failure was due to the

structure of the models, and hence could not be overcome by

adjusting their parameters.

Designing a model capable of reproducing the double-step data

is certainly a worthwhile effort per se. However, our main scientific

interest is to build a model of the eye plant able to reproduce the

eye movement deficits observed after muscle paralysis [8]. We are

thus mostly interested in the passive forces that are generated in

eye muscles during typical eye movements, what we call ‘‘natural

elongations’’. Accordingly, in this paper we describe two new sets

of experiments on passive extraocular muscles in anesthetized and

paralyzed monkeys. In one set of experiments we imposed on the

muscles elongation profiles that are similar to those experienced by

the antagonist muscle during saccadic eye movements (and the fast

phases of the vestibulo-ocular reflex). In another set of experiments

we continuously stretched the muscles at a constant speed,
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simulating the elongations experienced during smooth pursuit (and

the slow phases of the vestibulo-ocular reflex). These new data sets

directly estimate the force exerted by paretic eye muscles during

rotations of the eye in their off direction (i.e., in the direction in

which the muscle normally acts as an antagonist).

Besides reporting our measurements on natural elongations,

here we compare the force measured with the force predicted by

the models that we previously used [4] to fit the (single) step data.

The reader might wonder why we used models that we have

already shown to be inappropriate to fit sequences of steps. There

are actually two reasons. First, viscoelastic responses are quite

complex, and without a model that acts as a reference it is often

difficult to have an idea about what force to expect under an

elongation pattern given the response to another elongation

pattern. The models provide us with a sense of what is an

‘‘expected’’ response. The second reason is to test a speculation

made by Pipkin and Rogers [9]. They proposed a method to find

a non-parametric model capable of reproducing the viscoelastic

properties of nonlinear materials. They suggested that the force

elicited by elongation steps could be used to find a first order

approximation of the system under study. Sequences of two steps

could then be used to refine this approximation by adding

a second term to the model, and so on. This successive

approximation approach is standard in non-parametric, nonlin-

ear, system-identification (e.g., Volterra and Wiener series [10]).

Based on experimental measurements on man-made materials

(mostly plastics and polymers), they also noted: ‘‘We are

convinced that experiments involving continuously variable

loading are poor tests of the extrapolation from step data,

because the extrapolation makes such accurate predictions for

such experiments that nothing new is learned’’ (Pg. 70). If this

observation also applies to biological materials, the models we

previously described might provide a first order approximation

for the type of elongation patterns that we are interested in

simulating.

As we will show, the models did not pass this test, implying that

Pipkin and Roger’s assertion cannot be assumed to apply to

biological materials. Interestingly, we found that the force exerted

by a muscle following any elongation is largely independent of the

elongation speed profile or amplitude, and it is almost entirely

determined by the final muscle length. Coupled with our previous

finding that in a sequence of elongations only the last one

determines the force, this implies that the final muscle length by

itself largely determines the post-elongation decay of the force,

regardless (within limits) of the muscle’s length history. As far as we

know, this type of behavior has not been previously described in

either biological or man-made materials. Accordingly, even

though there are very general nonlinear viscoelastic theories that

yield models that can account for any stress-strain relationship, we

could not find any published viscoelastic model able to

accommodate this post-elongation behavior. A careful comparison

of the predictions of the QLV [5] and AQLV [7] models with the

data we recorded led us to formulate a new model, which uses

principles derived from the study of thixotropic materials to extend

those previous models. We show that this relatively simple

extension yields reasonably good fits to all the forces we measured,

making it a good candidate for inclusion in a model of the eye

plant.

Methods

The methods used to collect the data presented in this paper

have been described in great detail in the previous papers in this

series [3,4]. Here, only a brief summary is provided.

Ethics Statement
All procedures were in agreement with the USA Public Health

Service policy on the humane care and use of laboratory animals.

All protocols were approved by the Animal Care and Use

Committee of the National Eye Institute. All procedures were non-

recovery, and were carried out under deep anesthesia. Accord-

ingly, the experiments introduced no suffering beyond that

attributable to the injection of the inducing anesthetic. As

mandated by the aforementioned policy and committee, welfare

of the animals during their stay at our primate facility was

promoted by pair housing animals, providing regular access to a

large shared play room, and providing a variety of objects in their

home cage, specifically chosen for the purpose of enrichment.

Animals
Eye muscle forces were measured in three adult rhesus monkeys

(Macaca mulatta), ranging in weight from 8 to 14 Kg (identified as

m2, m3, and m4). None of the animals had been previously used

in any experiment, and their eyes and orbits were thus pristine.

Surgical Procedure
The animal was placed supine on the surgical table, intubated,

ventilated and anesthetized with isoflurane (2–4%) in oxygen.

Paralysis was induced with pancuronium bromide (0.05–0.10 mg/

Kg IV), and was maintained by administering a reduced dose

(0.025–0.050 mg/Kg IV) every 45 minutes until the end of the

procedure. The paralytic agent was used to ensure that the

muscles were completely passive. At the end of the procedure, and

while still deeply anesthetized, the animal was euthanized with an

overdose of sodium pentobarbital (150–250 mg/Kg IV).

Experimental Procedure
After the animal had been anesthetized, its head was fixed,

looking straight up, in a stereotaxic device. The conjunctiva was

then incised in correspondence with an eye muscle insertion on the

globe, and the muscle tendon was connected to the measuring

apparatus. The techniques and materials used to perform this

connection are described in great detail elsewhere [4]. The muscle

force was measured using an Aurora Scientific (Aurora, ON,

Canada) 305C Dual-Mode Muscle Lever System. In the

experiments described here we always imposed the muscle length,

and measured the corresponding change in force (the SI standard

unit of force is the newton (N), but muscle force is traditionally

measured in units of gram force: 1 gf<0.0098 N). The input/output

analog signals from this device were generated and acquired

through an A/D-D/A interface board (National Instruments, NI

USB-6211) connected to a laptop PC and controlled by LabView

(National Instruments, Austin, TX). The experiment was con-

trolled by a custom Java program that communicated with

LabView, displayed the data in real-time, and stored it for later

analysis.

The forces reported in this paper were elicited by imposing the

following elongation patterns:

N Saccade-like elongations (i.e., half-sinusoid velocity profiles),

having a range of amplitudes (between 1 and 4 mm), peak

speeds (between 60 and 160 mm/s) and starting from different

initial muscle lengths.

N Constant-speed stretches spanning the entire elongation range,

at various speeds (0.1, 1, 10, 80, and 160 mm/s).

N Sequences of double saccade-like elongations, separated by

variable time intervals (0.01, 0.1, 1, and 45s), from initial

lengths spanning the entire elongation range.

Passive EOMs Forces
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Only lengthening was tested, because it was technically not

possible for us to measure the forces during shortening (they

become negative for even relatively low shortening speeds).

Double-saccades were added toward the end of our experiment,

and so all the data for this condition comes from two muscles in

one monkey. Note that in all our experiments the speed and

acceleration applied to the muscles were chosen so that they never

exceeded those experienced by the muscles under normal

behavioral conditions.

The elongation range was determined separately for each

muscle. The range tested always covered the entire oculomotor

range (i.e., the set of lengths that are achieved in physiologic

conditions, which in monkeys correspond to approximately 645u
of rotation), but never exceeded it by more than one mm.

Accordingly, the elongation range tested was always about eight

mm. Before recording we preconditioned the muscles by

repeatedly (5–10 times) stretching and releasing them sinusoidally

over their entire range (which is standard procedure in tissue

rheology to guarantee repeatable results; the relatively low number

of cycles used here is justified by the in vivo condition we used). For

all muscles tested, we ran a block of three-four ramps at the

beginning and at the end of the experiment to test for any possible

deterioration of the muscle. We never observed any significant

change in these test trials.

In our experimental preparation, the raw force measures are

affected by a significant heartbeat and respiration-related noise. As

explained at length in the first paper in this series [3], we devised a

method to very effectively remove, post hoc, both of these noise

components. The residual measurement noise was extremely

small, at or below the level of our instrumentation accuracy.

The QLV Model
Rather than just showing the time course of the force elicited by

our experimental paradigm, which by itself cannot be easily put in

context, we present here the data we collected from monkey

extraocular muscles together with the output of model simulations.

The first model we use, described in the previous paper in this

series [4], is the QLV model proposed by Fung [5,6], slightly

reformulated (compare with Eq. 16 in [4]) for reasons that will

become clear later on[4]:

F tð Þ~T L tð Þð Þz 1{að Þ
X

gie
{t=ti

ðt

0

et=ti
LE Lð Þ

LL

LL

Lt
dt

zR Lð Þ dL

dt

ð1Þ

The model has 15 degrees of freedom (DOF). The first term in Eq.

1 is the length-tension relationship; it quantifies the elastic force,

and it is a function of length (4 DOF). It is an estimate of the force

exerted by the muscle when a length L is maintained for a very

long time (i.e., at equilibrium). The second term in Eq. 1

represents what we call the purely viscoelastic force, and it is a

functional of the speed of elongation. It is actually the sum of the

force generated by seven separate processes, each characterized by

a time constant ti. The number of processes and the value of the

time constants were selected based on the recording window and

the noise level [3], and are thus not DOF of the model (they were

not fit to the data). The moduli gi and a are thus the 8 DOF of this

part of the of model. The third term in Eq. 1 represents a pure

viscous force, and it is a product of a length-dependent viscosity (3

DOF) and the speed of elongation. As noted in the previous paper,

we have reasons to believe that this last term is in fact due to an

artifact, and should not be considered part of the muscle model.

The only difference between this model and the original QLV

model is the addition of this term.

The AQLV Model
The second model we use, also described previously [4], is based

on the AQLV model proposed by Nekouzadeh and colleagues [7].

The model (Eq. 20 in [4]) has 35 degrees of freedom (DOF), and

its equation is:

F tð Þ~T L tð Þð Þz
X

i

ki L tð Þð Þe{t=ti

ðt

0

et=ti
LL

Lt
dtzR Lð Þ dL

dt
ð2Þ

The first term in Eq. 2 is again the length-tension relationship (4

DOF). The second term is the purely viscoelastic force, and it is a

functional of the speed of elongation. Just like for the QLV model,

it is the sum of the force generated by seven separate processes,

each characterized by a time constant ti. The stiffness ki of each

process is a function of length (4 DOF for each process). The third

term in Eq. 2 is the viscous force (function of length, 3 DOF). The

only difference between this model and the original AQLV model

is the addition of this last term.

Simulations
The models presented in this article were simulated numerically

in Python (using the freely available packages weave, numpy,

scipy, and matplotlib). The scripts are available upon request.

Parameter optimization was carried out using a commercial

optimization package (modeFRONTIERTM, Esteco s.r.l., Trieste,

Italy).

Results

Force during Saccadic Elongations
We imposed on passive extraocular muscles (EOMs) large

elongations characterized by a half-sinusoidal velocity profile. The

amplitude of the elongations ranged between 1 and 4 mm, and the

peak speed varied between 60 and 160 mm/s. These patterns of

elongation are very similar to those experienced by the antagonist

eye muscle when a saccadic eye movement is executed (given the

radius of a monkey eye, they correspond to saccadic amplitudes

between 6u and 25u, and peak velocities between 360u/s and

1000u/s), and we thus refer to them as saccadic elongations. For

each elongation, speed and amplitude were selected to fall more or

less on the ‘‘main sequence’’ for saccades [11,12], and are thus

positively correlated. In the first monkey we also compared

saccadic elongations having the same amplitude but different peak

velocities; since this condition did not yield particularly interesting

results, we dropped it in the other animals.

In Fig. 1A we report the force generated under six such

elongations, all in the same muscle (the lateral rectus from m4). We

show elongations of three amplitudes, and for each amplitude we

used two different initial lengths. The force is plotted as a function

of muscle length. Comparing elongations that have different

amplitudes but the same final length, we see that the force

increases with the amplitude of the elongation. Comparing

elongations that have the same amplitude, but start from a

different initial length, we see that the force increases with the

starting length. Qualitatively speaking, this is what would be

expected from a nonlinear viscoelastic system. From a quantitative

point of view, the only point we would like to stress at this time is

that these forces can be quite large. For example, an 18u saccade

Passive EOMs Forces
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starting from 6u of eccentricity can be expected to induce 10 gf of

passive force in the antagonist EOM (approximately 6 gf above

the resting level force for the final elongation). Given the forces at

play in the oculomotor system, passive forces are indeed far from

negligible under natural conditions.

Force during Constant-Speed Elongations
We also measured the force generated when constant-velocity

stretches covering most of the length range are applied.

Throughout our experiments, the forces induced by these

elongations were used to verify whether there had been any tissue

deterioration during the experimental session (they were the first

and last sets of elongations applied). However, they also provide

important additional information about the viscoelastic properties

of muscle. In the first two monkeys, we tested speeds of 1 mm/s,

10 mm/s, 80 mm/s, and 160 mm/s. In the last monkey we also

imposed a slower stretch, with a 0.1 mm/s speed. Since the

elongation range was about 8 mm in all animals, the duration of

the stretches ranged between 50 ms and 80 s.

In Fig. 1B we report the data from a full set of constant-speed

elongations in one muscle (once again the lateral rectus from m4;

all other muscles tested exhibited the same behavior). The force

produced during each elongation is plotted as a function of the

instantaneous length; the static force, extrapolated from the

relaxation response to the step elongations [3], is also plotted. Not

surprisingly, the higher the speed the larger the force. This is very

similar to what was found by Collins, over a more restricted range

of speeds, in the cat passive lateral rectus [13] (his Fig. 8). Our data

contradicts, however, two of Collins observations. He suggested

(Pg. 290) that a stretch performed at 0.2 mm/s can be used as a

direct estimate of the static force. However, our data reveals that

stretches at even lower speeds (red trace in Fig. 1B) can induce a

considerable dynamic force. Because of the slow processes we have

previously described, with time constants of 40 seconds or more,

this behavior should not be considered surprising, and it is in fact

predicted by the various viscoelastic models that we have used to

simulate these elongations (shown below).

The second conclusion that Collins drew from his data is that

what he termed the ‘‘viscosity’’ of the muscle decreases with speed

(his Fig. 24). To understand what he meant it is useful to define as

‘‘dynamic force’’ the difference between the force measured during

a constant-speed stretch and the static force at the same length.

Collins observed that, for example, the dynamic force generated

during a 100 mm/s stretch is much smaller than 10 times the

dynamic force generated during a 10 mm/s stretch. If the

stretches were applied to a system consisting of an elastic element

in parallel with a viscous element (a so-called Voigt element), the

dynamic force divided by the speed would indeed provide an

estimate of the viscosity of the system. However, viscoelastic

systems like the one we are studying are akin to a set of Maxwell

elements (the series connection of an elastic and a viscous element)

connected in parallel. In such models the dynamic force cannot be

attributed to a single viscous element, but it is instead distributed

across a set of different processes, characterized by different time

scales. Because the stretches tested have different durations,

covering the range of time constants of these processes, they drive

the processes differently. Accordingly, the relationship between the

dynamic force and the speed of the stretch says next to nothing

about the ‘‘viscosity’’ of the system. As we will show below, the

QLV model exhibits this same behavior without having to invoke

the shear thinning effect suggested by Collins [13].

Relaxation after Saccadic Elongations
Since vision is severely impaired when the eyes move, saccadic

eye movements must not only be performed quickly, but must also

come to an abrupt end. Hence, the forces at play after an eye

movement are just as important as those occurring during the

movement. Given our previous reports, it is to be expected that after

saccadic elongations the force will decrease over a long time,

following a multi-exponential (or power-law) time course. To get a

Figure 1. Force during natural elongations. This study focuses on the forces generated by passive eye muscles when subjected to elongations
similar to those experienced under physiologic conditions. We used elongations characterized by a half-sinusoidal velocity profile (like that induced
by saccadic eye movements), as well as constant-speed stretches. A: Forces induced by six different saccadic elongations. Elongations of 1.0 mm
(green), 2.0 mm (red), and 3.0 mm (black) are shown, ending either at an intermediate length or near the limit of the elongation range tested. The
force is plotted as a function of the instantaneous elongation. B: Forces induced by constant-velocity stretches, at different speeds and covering most
of the elongation range. Black: Static length-tension relationship. Because the elongation was not terminated abruptly, but rather decelerated
smoothly, the force started to drop a few ms before the actual end of the elongation. For clarity, this section of the force record is omitted from the
figure. All the data comes from the same muscle (LR in m4).
doi:10.1371/journal.pone.0009595.g001
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quantitative idea of how the kinematics of an elongation affect the

time course of the decay, we compared saccadic elongations with

different amplitudes and velocities, but all ending at the same

muscle length. Overall we collected six such sets of elongations, with

two or three elongations in each set; as noted above, larger

amplitudes were associated with larger peak speeds. What we found

is not in line with the behavior of traditional viscoelastic models. As

the amplitude and the speed increase, the force during the

elongation also increases, as expected (Fig. 2, bottom row).

However, after the elongation phase ends the force drops faster

for the larger/faster elongations than for the smaller/slower ones, so

that there is very little difference throughout most of the decay phase

(Fig. 2, top row). After about 100 ms the difference between traces is

very small, a fraction of one gf. Note that for large final elongations

(panels B and C) there is actually a small cross-over, so that larger

elongations are associated with smaller relaxation forces.

It thus appears that shortly after a saccadic elongation, the force

decorrelates from the elongation speed and amplitude, and

converges to a common value that is mostly determined by the

current muscle length and by the time elapsed since the end of the

elongation.

Relaxation after Constant-Speed Elongations
We also measured the force decay following constant-speed

elongations. In this case all of our elongations have a common final

muscle length, and thus we could directly compare all the

constant-speed elongations, separately for each muscle. We again

found (Fig. 3) that the force dropped faster after fast elongations

than after slow elongations. Even though the peak forces were

considerably different, within about 100 ms all the traces come

together. In this case the cross-over that we observed in some

saccadic elongations was pervasive and of a much larger

magnitude: in all cases, the higher the force at the end of the

elongation, the lower the force 1 s later. In the first two monkeys

we only recorded a short period after the end of the elongation

(Fig. 3C), and so we have long relaxation responses only in two

muscles (both shown). Nonetheless the pattern described is

consistent across all muscles tested.

Simulations: Current Models
As we noted in the Introduction, the complexity of nonlinear

viscoelastic systems defies most people’s intuition. Consequently,

although a careful inspection of the data is useful, having a

computational model as a reference for what to expect is necessary

for a deeper understanding. Accordingly, we will now use two

models to simulate the same elongations that we just described.

The first model is Fung’s original QLV model [5], slightly

modified to account for the purely viscous component we observed

in our measurements (see Methods, Eq. 1). The model parameters

are different for each muscle, and are listed in Table 2 in our

Figure 2. Force relaxation after saccadic elongations. Forces induced by saccadic elongations characterized by different amplitudes but with a
common final elongation. A: 1 (green), 2 (red), and 3 (black) mm elongations terminating at an intermediate elongation, applied to the lateral rectus
in m4. Note how the decay phase is almost independent of the elongation after 100 ms. B: 1.6 (red) and 4 (black) mm elongations terminating at the
largest elongation tested, applied to the superior rectus in m3. Note how during the decay phase the force for the larger elongation becomes lower
than that for the shorter elongation (the traces cross-over). C: Same as B, but in a different muscle (lateral rectus in m3). Also in this case the force
crosses-over. D–F: Here we show, for the same elongations represented in the top row, the force induced in the muscle as a function of length.
doi:10.1371/journal.pone.0009595.g002
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previous paper [4]. The second model we use is the AQLV model

proposed by Nekouzadeh and colleagues [7], again slightly

modified (see Methods, Eq. 2). Also in this case the model

parameters are different for each muscle, and are listed in Tables

3–6 in our previous paper [4]. For both models the parameters

were obtained fitting the response to 0.5 mm long step-wise

elongations, which are reproduced quite well by both models; the

QLV model used here is actually an average fit over the length of

the muscle, and so it does not fit the step data as well as the AQLV

model. However, the QLV has fewer parameters (15) than the

AQLV does (35).

For all saccadic elongations tested (22 over five muscles), both

models grossly overestimate the force exerted by the muscle, the

AQLV more so than the QLV (three representative examples are

shown in Fig. 4). [4] The discrepancy ensues shortly after the start

of the elongation, and lasts throughout the entire relaxation phase.

When the data and the simulations are plotted in the force-

elongation plane (bottom row in Fig. 4) it appears clear that the

models’ output matches the data only for the first 0.5 mm or so,

and then they diverge. We assume that there is nothing special

about this distance, since that was the length of our steps, to which

the models were fit. This data is thus consistent with our previous

observation that, for sequences of two steps, both models fit well

the force induced by the first step but during (and following) the

second step predict a force larger than that actually measured in

muscle, and the AQLV more so [4].

We obtained a very similar result when we simulated constant-

speed elongations. In Fig. 5 we report simulations of the same

elongations described in Fig. 1B. Clearly, both the QLV model

(Fig. 5A) and, to an even large extent (note different scales on the

ordinates), the AQLV model (Fig. 5B) dramatically overestimate

the force measured (cf. Fig. 1B). This discrepancy increases (in

absolute terms) with the speed of the elongation. However, the

models exhibit some of the same qualitative features observed in

the data. First of all, even for extremely slow elongations the force

predicted is considerably higher than the steady-state force.

Furthermore, the dynamic force grows less than proportionally

to the elongation speed (even though neither model contains any

shear thinning effect).

We next simulated the same saccadic elongations that we

described in Fig. 2, i.e., sets of elongations having different

amplitude and speed, but terminating at the same length. In Fig. 6

we plot the predictions of the QLV model (note that there is no

data in this figure, only simulation results). During the elongation

(bottom row), the simulations appear to be simply a scaled up

version of the data, which is not particularly surprising given our

previous simulations (Fig. 4). The behavior during the decay phase

is however qualitatively different: in the simulations the larger peak

forces are carried over to the decay phase, and the force difference

between the various elongations shrinks slowly. Unlike what we

observed in muscles, the relaxations do not quickly converge, and

there is never any force cross-over. With the AQLV model (not

shown) the differences are quantitatively even more dramatic, but

from a qualitative standpoint the AQLV behaves just like the QLV

model.

We also measured saccadic elongations having the same

amplitude and starting length, but different peak speeds. The

speed differences we used were not very large: 60 mm/s vs.

100 mm/s for 1.6mm elongations and 100 mm/s vs. 160 mm/s

for 4 mm elongations. When we simulated these elongations, both

models predicted small peak force differences, and convergence

between the traces within 100 ms. This was also observed in the

data, but since it is not very informative we are not showing it.

Finally, we used the models to simulate constant-speed

elongations. In the muscle we observed quick convergence of the

relaxation responses, and extensive cross-over of the traces (Fig. 3).

When these same elongations are simulated using the QLV

model (Fig. 7A), some cross-over between the three fastest traces is

actually observed. This unexpected result is caused by small

numerical errors. Because these simulations were carried out using

the actual muscle length measured during the experiments, the

integral of the elongation speed was not always identical to the

change in muscle length. The difference was always less than

0.2%, but this was sufficient to produce the observed cross-over. In

Figure 3. Force relaxation after constant-speed elongations. Time course of the force decay after the completion of constant-velocity
stretches. Dashed black line: Static force predicted by the length-tension relationship. Different colors indicate different stretch speeds (see key). Each
panel contains data from a different muscle. Note the cross-over between 20 ms and 1 s after the end of the stretch. Before the cross-over higher
stretching rates are associated with higher forces, but after the cross-over higher stretching rates are associated with lower forces. Only in the last two
muscles (shown in A and B) do we have data long after the end of the stretch. But even when the record is short (panel C) the pattern is evident.
doi:10.1371/journal.pone.0009595.g003
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the inset in Fig. 7A we plot the results of the same simulations after

manually scaling the elongation speed so that its integral exactly

matches the change in muscle length. As expected, no cross-over

occurs. Note that this artifactual cross-over is much less extensive

than that observed in the data, where even the two slowest

elongations were involved. The AQLV model (Fig. 7B) instead

predicts no cross-over at all, in spite of the small numerical errors.

For both models it takes a very long time for the fastest trace to

converge with the slowest one.

Toward a New Model
What we have shown so far forces us to conclude that both the

QLV and the AQLV models cannot be used to predict the force

generated by passive eye muscles under natural conditions. A new

model is needed. Several methods can be used to identify a

nonlinear viscoelastic model, but given that the QLV and AQLV

models are capable of fitting step-wise elongations (admittedly with

a fairly large number of parameters), we decided to modify these

models to also fit the saccadic and constant-speed elongations.

Ideally an acceptable fit would be achieved without adding too

many parameters. To guide the design of such a model, a more

quantitative analysis of the failure of the current models can be

helpful. Accordingly, we defined as ‘‘purely viscoelastic force’’ the

difference between the force measured (or predicted by a model) at

the end of an elongation, and the elastic force predicted by the

static length-tension relationship at that length. We then computed

the ratio between the purely viscoelastic force measured and that

predicted by the model. We call this measure the Data/Model

viscoelastic ratio.

We first looked at how this ratio varies as a function of

elongation amplitude for saccadic elongations having different

amplitudes but the same final length (such as those shown in Figs. 2

and 6), separately for each muscle. For the AQLV model we found

(Fig. 8A) that in all cases this ratio decreases with the amplitude of

the elongation, i.e., the AQLV model becomes progressively less

accurate as the amplitude of a saccadic elongation increases. This

finding is not surprising given the results reported in Fig. 4;

however, this analysis also reveals that this ratio decreases less than

proportionally with elongation amplitude. This is obvious if we

posit (dashed lines) that this ratio is one for an amplitude of

0.5 mm (we did not actually induce saccadic elongations that

short). This assumption rests on the observation (Fig. 4) that the

model and the data agree remarkably well over the first 0.5 mm of

a larger saccadic elongation, and that the model fits very well the

force induced by 0.5 mm step-wise elongations. Even if we were to

disregard this inferred data point, our observation is also

supported by the (admittedly few) sets containing three saccades

(cyan, blue and magenta lines). When we apply this analysis to the

Figure 4. Saccadic elongations: model predictions. Forces induced by saccadic elongations. Data (black), and force predicted by the AQLV (red)
and QLV (cyan) models, which in our previous paper we fit to the step-wise elongations. A: Short elongation (1.6 mm) starting from a large initial
elongation, applied to the superior rectus in m3. B: Intermediate elongation (3.0 mm) starting from a small initial elongation, applied to the lateral
rectus in m4. C: Large elongation (4.0 mm) starting from an intermediate initial elongation, applied to the lateral rectus in m3. D–F: Here we show,
for the same elongations represented in the top row, the force induced in the muscle as a function of length. Note how in all cases the model fits the
data well for the first 0.5 mm of the elongations (the step size to which the parameters were fit), and then increasingly overestimates the force. This
overestimate lasts throughout the relaxation phase.
doi:10.1371/journal.pone.0009595.g004
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Figure 5. Constant-speed elongations: model predictions. Here we simulated a set of constant-speed elongations using the QLV and AQLV
models, using the parameters derived in our previous paper by fitting the small-step data recorded from the lateral rectus in m4. These simulations
should be compared with the data in Fig. 1B. Qualitatively the forces actually measured and those simulated are quite similar. Note in particular that
even very slow elongations can result in forces considerably higher than the static force, and that the force grows less than proportionally to the
elongation speed. However, both models grossly overestimate the force, and the AQLV more so (note the different ordinate scales).
doi:10.1371/journal.pone.0009595.g005

Figure 6. Force relaxation after saccadic elongations: model predictions. Simulations of the elongations described in Fig. 2 using the QLV
model. A–C: Simulations of the force decay after elongations having different amplitudes (and speed) but the same final length. D–F: For the same
simulated elongations, the force is plotted as a function of elongation. Larger elongations give rise to larger forces, as seen in the data. However, in the
simulations this difference persists throughout the decay phase: the traces do not come together quickly, and there is no cross-over. Unlike what was
seen in the data, the simulated forces are different not only during the elongation (bottom row), but also throughout the relaxation phase (top row).
doi:10.1371/journal.pone.0009595.g006
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QLV model, we obtain the same result, but there is overall less

attenuation, so that the lines are less steep and the lowest ratio is

0.5 (not shown).

Next we compared saccadic elongations having exactly the same

amplitude and velocity, but starting from different initial lengths

(three sets only, from one muscle). We found (Fig. 8B) that the

relative discrepancy between the AQLV model and data is larger

(i.e., the data/model viscoelastic ratio is lower) at small initial

elongations (this is not necessarily true for the absolute model

discrepancy, as the forces at play are higher at large lengths). This

effect of initial elongation seems to decrease with the amplitude of

the elongation, but because in these sets amplitude and initial

elongation are correlated we cannot be sure that this is actually

true. At any rate, it is clear that the viscoelastic ratio cannot simply

be a functional of the elongation rate/amplitude. We also

compared saccadic elongations starting from the same initial

length, with the same amplitude, but with different peak velocities

(Fig. 8C). As we noted above, the speed differences we used were

too small to induce large changes in either the data or the

simulations; this is reflected in the virtually constant viscoelastic

ratios. Finally, we compared different constant-speed elongations

(Fig. 8D), separately for each muscles tested (unfortunately the

slowest speed of elongation was only used in the last monkey). In

this case the discrepancy between model and data is always quite

large, and the model appears to do better at very low speeds. In all

these tests the QLV model behaves similarly (not shown).

Attenuated Nonlinear Viscoelastic Model (ANLV)
From the above described data, it appears clear that in all cases

the models overestimate the force generated by the muscle during

extensive elongations, and increasingly so as the amplitude

increases. Muscle behavior is thus reminiscent of the drop in

viscous force observed in thixotropic materials: in structured

liquids (e.g., gels, creams, paints, suspensions), externally imposed

stresses and strains can induce reversible microstructural changes,

which result in a temporarily reduced viscosity and possibly

elasticity [14]. This process is often called breakdown. Once at rest,

the microstructural changes are reversed, but the speed of this

process (often called rebuilding) can vary widely across materials.

The underlying cause of these phenomena has not been firmly

established. However, it is commonly assumed that within

thixotropic materials macromolecules spontaneously organize in

a sort of network, whose junctions (entanglements) can be fairly

easily destroyed by external actions, but also automatically reform

at rest. Importantly, in a thixotropic material during the

breakdown phase the viscosity decreases over time as a constant

shear rate is imposed, eventually reaching a constant value. In

contrast, in a shear thinning fluid viscosity is a function of the

current shear rate, decreasing as the shear rate is increased.

The reduction in viscous force over time at a constant shear rate

observed in thixotropic materials is analogous to the increasing

discrepancy between the data and the predictions of our fixed-

viscosity models observed during stretches. Also, the small

differences observed when saccadic elongations of different speed

but the same amplitude are applied (Fig. 8C), and to a large extent

during constant-speed ramps (Fig. 8D), point to the elongation rate

itself as not being particularly important. It would thus seem that

the discrepancy between the predictions of the models and the

forces recorded in muscle could be accounted for by an

attenuation analogous to that observed in thixotropic materials.

With this in mind, we adopt an equation often used [14,15] in

thixotropy research:

dl

dt
~{kdvnlzkr 1{lð Þvm ð3Þ

In this equation, based on the so-called indirect microstructural

approach, l is a time-varying structural parameter: it is equal to

one when the structure is completely built-up (maximum viscosity),

and it becomes zero when it is completely broken-down (zero

Figure 7. Force relaxation after constant-speed elongations: model predictions. Simulations of the same elongations described in Fig. 3A
using the QLV and AQLV models. The extensive cross-over observed in the data is not present in the simulations. A: An unexpected partial cross-over
is produced by the QLV model. It is caused by numerical errors, and more precisely by small (less that 0.2%) differences between the integral of the
elongation speed and the change in muscle length. Such differences are not surprising since these simulations were carried out using the length
measurements from the experiments. In the inset we plot the results of the same simulations after manually scaling the elongation speed so that its
integral matches the change in muscle length. As expected, no cross-over occurs. In both cases, the traces for the fastest and slowest elongations
only converge very late. B: No cross-over is observed in the AQLV simulations, and convergence occurs even later than with the QLV model.
doi:10.1371/journal.pone.0009595.g007
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viscosity). The first addend on the right side measures how quickly

the structure breaks down; the second term measures how quickly

it builds back up. v is the shear rate (the speed of elongation in our

experiments). kd and n control the break-down’s speed; kr and m

control the build-up’s speed. Frequently m is equal to zero, and the

build-up is thus only a function of time.

Because in our experiments we did not measure sequences of

elongations (with the exception of some series of two elongations

separated by small time intervals), we do not have any hard data to

constrain the build-up side of the equation, and we thus drop it.

Accordingly, we end up with the following, very simple, equation:

dl

dt
~{kdvnl ð4Þ

where v is the elongation speed.

At this point we depart from the classic treatment of thixotropic

materials, as we do not use l to control a viscosity. Rather, we use

l to attenuate the purely viscoelastic component of the models.

This is an important distinction, and we will address its

implications at some length in the Discussion section.

For the QLV model (see Eq. 1) we then have:

F tð Þ~T L tð Þð Þzl tð Þ 1{að Þ
X

gie
{t=ti

ðt

0

et=ti
LE Lð Þ

LL

LL

Lt
dt

zR Lð Þ dL

dt

ð5Þ

and for the AQLV model (see Eq. 2) we have:

F tð Þ~T L tð Þð Þzl tð Þ
X

i

ki L tð Þð Þe{t=ti

ðt

0

et=ti
LL

Lt
dt

zR Lð Þ dL

dt

ð6Þ

Of course it would be great if we could account for all the data

by adding only two DOF (kd and n) to the original model.

However, it is obvious that this simple formulation cannot possibly

Figure 8. Data/model viscoelastic ratio. Ratio between the purely viscoelastic force measured at the end of an actual elongation, and the purely
viscoelastic force predicted by the AQLV model at the same time. This is an index of how much the AQLV model overestimates the actual force, once
purely elastic and viscous forces have been removed (see text for details). A: The index is plotted as a function of saccadic elongation amplitude, and
each dot represents a different saccadic elongation. Saccadic elongations sharing the same final elongation (applied to the same muscle) have the
same color and are joined by a solid line. The dashed lines indicate that this ratio should approach unity for 0.5 mm elongations (the length of our
step-wise elongations; we never actually tested 0.5 mm saccadic elongations). B: The index is plotted as a function of initial elongation, for three
different amplitudes. Black: 1 mm. Red: 2 mm. Green: 3 mm. Initial elongation affects the viscoelastic ratio in otherwise identical saccadic
elongations. Data from lateral rectus in m4. C: Viscoelastic ratio as a function of peak elongation rate, for three different sets of saccadic elongations.
Black: 1.6 mm starting from a short initial elongation. Red: 1.6 mm starting from a large initial elongation. Green: 4 mm starting from an intermediate
initial elongation. Data from superior rectus in m2. D: Viscoelastic ratio as a function of elongation rate for constant-speed elongations.
doi:10.1371/journal.pone.0009595.g008
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be sufficient. First of all, we saw that the initial phase

(approximately 0.5 mm) of each smooth elongation is already fit

by the models, without requiring any modification. However,

according to Eq. 4, other things being equal l drops faster at the

beginning of an elongation (when l is larger) than at the end.

There is a simple way to get around this problem: we can initialize

l to a value larger than one, which we will indicate with l0, and

then use for the attenuation the smaller of l and one. This adds

another degree of freedom to the model.

Another limit of this model is that, since elongation speed is the

only variable in Eq. 4, it cannot account for the different

attenuation observed when we compare the model estimate and

muscle recording for elongations with the same amplitude and

speed, but starting from a different initial length (Fig. 8B). As noted

above the attenuation decreases as length (and thus force)

increases. Because this behavior appeared to be a nonlinear

function of length, we guessed that it might be more or less linearly

proportional to force (we do not have enough data to prove it

either way). To account for this relationship, we thus made the

break-down a function of the overall muscle force:

dl

dt
~{kd 1{kf F

� �
vnl ð7Þ

This brings the number of DOF in this part of the model to four.

A third limit with this model is that it implicitly assumes that all

of the viscoelastic processes are equally attenuated. That seems to

be a pretty strong constraint, and in fact a detailed analysis of the

data (not shown) rules it out. Rather than using a separate

attenuation factor l for each time constant, which would bring the

number of DOF to 28 (7 by 4), we picked a different scaling factor

ci for each time constant ti. This is accomplished by multiplying

the force prediction generated by each purely viscoelastic process

in Eqs. 5 and 6 by a factor bi:

bi~1{ci 1{min 1,lð Þ½ � ð8Þ

Because we impose that the ci factors are bounded between zero

and one, the gain factors bi are also so bounded, and l thus

represents the maximum attenuation (i.e., lowest gain) across the

viscoelastic processes. Because of this constraint, introducing the ci

factors adds six, not seven, DOF, bringing the total to ten for the

attenuation part of the model. The need to independently

attenuate each viscoelastic process was the basis of our use of

Eq. 1 to implement the QLV model, as opposed to its more usual

formulation (Eq. 13 in our previous paper [4]).

Putting it all together, from the QLV model we derive:

F tð Þ~T L tð Þð Þz 1{að Þ
X

bi tð Þgie
{t=ti

ðt

0

et=ti
LE Lð Þ

LL

LL

Lt
dt

zR Lð Þ dL

dt

ð9Þ

and from the AQLV model we derive:

F tð Þ~T L tð Þð Þz
X

i

bi tð Þki L tð Þð Þe{t=ti

ðt

0

et=ti
LL

Lt
dt

zR Lð Þ dL

dt

ð10Þ

Note that no attenuation is applied to either the asymptotic length-

tension relationship or the purely viscous component. We refer to

our model as the attenuated nonlinear viscoelastic model (ANLV);

whether it is based on the QLV or on the AQLV model is

conceptually irrelevant, and we thus do not adopt different names.

System Identification
Now that we have derived a new set of models, with ten

additional DOF, the next step is to use the forces we recorded in

monkey EOMs to fit these additional DOF. Given the complexity

of the fitness landscape, it is virtually impossible to achieve this

using local optimization methods. We thus turned to a genetic

algorithm. The optimization tool used the model to simulate

quick-steps, saccadic elongations, and constant-speed elongations,

looking for the set of parameters that yielded the best overall fit.

When fitting this type of model to multiple data sets the choice of

the error function to be minimized is crucial, since an incorrect

choice can very easily push the algorithm to optimize one

parameter at the expense of the others. To avoid falling into this

trap, for each elongation the model-data error was computed as

the sum of the mean squared error during the elongation phase

plus a set of seven mean squared errors computed over seven

intervals of the relaxation phase (for each time constant in the

model, we picked the interval that started with the end of the

elongation and lasted three times the time constant). Note that

these are mean squared errors, so that the duration or number of

data points in each interval becomes irrelevant; a simple sum of

squared errors would strongly favor the slowest processes. Finally,

the errors for each elongation tested are summed together. The

algorithm ran through 50 generations, with a population size of 75

designs. The seed population was determined using a Sobol DOE

algorithm. The best overall solution (i.e., the one with the lowest

error) was then selected. This procedure was repeated for each

muscle, and separately for the QLV and the AQLV based models.

In Table 1 we report the values of the parameters that were found

following this procedure for the QLV-based model. In Table 2 the

values for the AQLV-based model are listed.

New Models Performance
The attenuation introduced in the ANLV model rectified, at

least qualitatively, all the failures of the models it is based on. For

the QLV model the overall error was reduced to between 1/20th

Table 1. Parameters for the ANLV model based on the QLV
model.

m2SR m3LR m3SR m4LR

kd 0.200 0.240 0.310 0.320

n 1.490 1.410 1.450 1.290

l0 3.000 2.060 3.000 1.930

kf 0.001 0.001 0.001 0.001

c1 0.980 0.000 0.000 0.000

c2 0.110 0.000 0.000 0.000

c3 0.810 0.020 0.000 0.180

c4 0.210 0.680 0.580 0.730

c5 0.860 0.850 0.630 0.530

c6 0.300 0.240 0.470 0.580

c7 0.370 0.660 0.760 0.830

doi:10.1371/journal.pone.0009595.t001
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and 1/100th of the original error. For the AQLV model the overall

error was reduced to between 1/1000th and 1/2000th of the

original error (which of course was much larger than for the QLV

model). In all cases the model based on the AQLV model ended

up providing a slightly better fit, but for all practical purposes the

final models are equally good.

In Fig. 9 we plot the same elongations shown in Fig. 4; the

ANLV model prediction (based on the AQLV model) is shown in

green. The improvement over the AQLV model is obviously

significant, and it is difficult to expect anything better since the

parameters of the models where not optimized for these individual

traces, but over a large number of elongations in each muscle. The

ANLV extension of the QLV model reproduces these traces

almost as well, with only a slight overestimation in the second trace

during the first 3 s of the relaxation phase.

In Fig. 10 we show the force predicted during a set of constant-

speed ramps, as we did in Fig. 5 for the original models. Here we

chose a different format for the figure to make it easier to compare

the model predictions to the data. The ANLV model produces

virtually identical simulations regardless of whether based on the

QLV or the AQLV model, and so only one of them is shown. The

improvement is again very obvious, even though there is still a bit

of force overestimation between 5 and 7 mm of elongation, and a

slight undershoot at the final length.

In Fig. 11 we report simulations of both ANLV models for the

same elongations that were simulated with the QLV model in

Fig. 6 (cf. data in Fig. 2). Again, here we are comparing saccadic

elongations characterized by different amplitudes but a common

final elongation. The improvement is again clear; the ANLV

Table 2. Parameters for the ANLV model based on the AQLV
model.

m2SR m3LR m3SR m4LR

kd 0.270 0.280 0.600 0.450

n 1.260 1.210 1.070 1.180

l0 1.620 1.410 1.510 1.640

kf 0.001 0.001 0.001 0.006

c1 0.270 0.000 0.200 0.000

c2 0.040 0.000 0.000 0.000

c3 0.740 0.420 0.420 0.510

c4 0.800 0.990 0.850 0.990

c5 0.860 0.670 1.000 0.740

c6 0.990 0.950 0.960 0.860

c7 0.880 0.980 0.880 1.000

doi:10.1371/journal.pone.0009595.t002

Figure 9. Saccadic elongations: ANLV predictions. Forces induced by saccadic elongations (same elongations shown in Fig. 4). Data (black),
force predicted by the AQLV model (red) and force predicted by the ANLV model based on the AQLV model (green). A: Short elongation (1.6 mm)
starting from a large initial elongation, applied to the superior rectus in m3. B: Intermediate elongation (3.0 mm) starting from a small initial
elongation, applied to the lateral rectus in m4. C: Large elongation (4.0 mm) starting from an intermediate initial elongation, applied to the lateral
rectus in m3. D–F: Here we show, for the same elongations represented in the top row, the force induced in the muscle as a function of length.
Whereas the AQLV model fits the data well only for the first 0.5 mm of the elongations, the ANLV provides a good fit throughout.
doi:10.1371/journal.pone.0009595.g009
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model based on the QLV captures particularly well the two

aspects of the data that were not captured by the previous models,

namely the traces coming together within about 100 ms from the

end of the elongation (Fig. 11A), and a slight cross-over at larger

final elongations (Fig. 11B–C). The ANLV model based on the

AQLV does also considerably better than previous models, but it

does not match the data as well, as the cross-over in Fig. 11E&F is

considerably more extensive, and it is mostly due to an under-

attenuation of the shorter movement (red trace).

To complete this comparison of the ANLV model with the two

models that we described above, in Fig. 12 we simulate the

relaxation response following constant-speed elongations. Here we

show the results obtained with both versions of the ANLV model,

and they should be compared to the data reported in Fig. 3A.

Obviously it is not a perfect match, but the magnitude of the forces

and the crossing-over of the traces are well captured. The

improvement over the previous models (Fig. 7) is considerable,

both quantitatively and qualitatively.

So far all the comparisons between data and model simulations

have been based on a model that was fit to the data (albeit to a

large data set, not to individual elongations). Needless to say, any

model so built cannot be considered anything more than a

compact description of the data. To verify whether our model

actually has any predictive power, we also checked how the model

behaves when it is applied to elongations that were not part of

the optimization set. Rather than excluding individual saccadic

elongations or constant-speed stretches from the optimization set,

as is usually done in cross-validation, we tested the model on

two completely different paradigms: sequences of two step-wise

elongations (0.5 mm each), and sequences of two saccadic

elongations (1.6 mm each). Note that neither the sequences nor

the individual elongations making up each sequence were part of

the training set, and thus are bona fide predictions of the model.

In Fig. 13 we plot the double-step data. Each panel represents a

different inter-step interval (ISI). At the largest ISI (panel A) the

AQLV model (red line) and the ANLV model based on it (green

line) are essentially identical, and reproduce the measured force

(black line) well. The response of the two models is identical because

the attenuation variable l was reset to its initial value l0 before the

second step, and by design there was no attenuation during a

0.5 mm step (that was why we introduced l0). At shorter ISIs both

models predict the force induced by the first step; however, the force

elicited by the second step is grossly overestimated by the AQLV

model. We described this phenomenon at length in the previous

paper in this series [4]. The ANLV model instead does quite a good

job at predicting the force, especially during the decay (note that the

peak force is somewhat underestimated, though). The ANLV model

based on the QLV model does also a fairly good job, but not as

Figure 10. Constant-speed elongations: ANLV predictions. Blue: Static length-tension relationship. Black: Force measured in muscle. Cyan: force
predicted by the QLV model. Red: force predicted by the AQLV model. Green: ANLV (based on the QLV) model prediction. A: Stretch at 0.1 mm/s. B:
Stretch at 1 mm/s. C: Stretch at 10 mm/s. D: Stretch at 80 mm/s. In all cases the ANLV model predicts the generated force quite well, vastly
outperforming the AQLV model. Note very different ordinate scales.
doi:10.1371/journal.pone.0009595.g010
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Figure 11. Force relaxation after saccadic elongations: ANLV predictions. Simulations of the same elongations described in Figs. 2 and 6
using the ANLV model. In each panel in the top row we plot simulations of elongations having different amplitudes but the same final length, all
done with the ANLV model based on the QLV model. In the bottom row simulations of the same elongations with the ANLV model based on the
AQLV model are shown. In all cases the ANLV model performs better than either the QLV and the AQLV model. However, in this case the model based
on the QLV model does a better job, as the simulations in B & C match the data much better than those in E & F. More precisely, the cross-over
observed in E and F is considerably larger than the slight one observed in the data (Fig. 2).
doi:10.1371/journal.pone.0009595.g011

Figure 12. Force relaxation after constant-speed elongations: ANLV predictions. Simulations of the same elongations described in Fig. 7
using the ANLV models. The cross-over of the traces observed in the data (Fig. 3) is captured by the ANLV model, whether based on the QLV or AQLV
model. In the data this cross-over is more orderly than in the model, and the model does not perfectly capture the peak force, but this is nonetheless
quite an improvement over previous models (compare with Fig. 7).
doi:10.1371/journal.pone.0009595.g012
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good: the second step in the series is usually over-attenuated by

approximately 1 gf (not shown).

In Fig. 14 we plot the double-saccade data, again with different

ISIs in each panel. In this case the AQLV model does a very poor

job of predicting the force induced by either saccadic elongation,

regardless of ISI. This is not surprising. The ANLV model does a

fair job of estimating the force induced by either saccade at the

largest ISI (again, l was reset to its initial value l0 before the

second step). However, at shorter ISI the model invariably

underestimated the force induced by the second elongation. The

ANLV model based on the QLV model behaved similarly (not

shown). We do not have any explanation for this failure; we can

only speculate that maybe there is some recovery from the

attenuation during the ISI (i.e., some rebuilding occurs during the

ISI), which we have not modeled. Additional data will be needed

to clarify this issue.

Discussion

Force during Natural Elongations
In the set of experiments described here we measured forces

under elongations that mimic those experienced by muscles during

saccadic eye movements, the most common kind of eye movement

(performed about three times per second). In addition, we imposed

constant-speed elongations. These were only partially physiologic,

because smooth movement are not usually performed at very high

speeds (our 10 mm/s elongation is the fastest that could be

considered physiologic) and do not usually cover the entire

oculomotor range.

In general, we found that these forces are significantly lower

than those predicted by standard viscoelastic models fitted to small

elongation steps. Importantly, we noted that during the elongation

phase the forces positively correlated with the speed and amplitude

of the elongation; however, during the post-elongation relaxation

phase these differences tended to die down quite quickly, so that

the major determinant of the force became the final muscle length.

This finding is reminiscent of what we previously reported [4]

about the forces induced by sequences of two elongations.

Taken together these two findings could have important

implications for the oculomotor neural controller. They seem to

suggest that the brain might not need to ‘‘compute’’ the passive

force generated by a muscle following an eye movement, which

would require some sort of internal model of the muscle itself,

driven by an efference copy of the motor commands. Instead, it

Figure 13. Double-steps: Data and ANLV predictions. Prediction of the force induced by sequences of step-wise (0.5 mm) elongations. Black:
Force measured in muscle. Red: force predicted by the AQLV model. Green: ANLV model prediction. In each panel a different time separation (ISI) is
shown. A: Here the ISI is 45 s, and the attenuation is reset before the second step. There is thus virtually no difference between the AQLV and the
ANLV model, and they both reproduce the data quite well. B: Same as in A, but with a 10 ms ISI. There is no difference between the models after the
first elongation, but the ANLV model is considerably better at predicting the force after the second elongation. C: Same as in B, but with a 100 ms ISI.
D: Same as in C, but with a 1 s ISI. For clarity, the maximum force recorded is indicated using a small horizontal black bar.
doi:10.1371/journal.pone.0009595.g013
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could learn to simply associate a final eye position with a post-

elongation force template, or, more specifically, it could learn to

simply generate a patterned motor output that is a function of the

post-movement position of the eye. Strong experimental evidence

indicates that, at least in primates, the brain is indeed capable of

generating such a motor output, and that the post-movement eye

drift (which is exactly what would ensue if the passive forces we

described were not compensated) is a sufficient driver [16,17].

At this stage this must be considered a speculation, since we

have not collected enough data to make a stronger statement.

Importantly, at the end of our constant-speed ramps we observed a

systematic cross-over of the force traces, so that faster elongations

result in higher peak forces, but lower relaxation forces. In one

case (Fig. 3B) the force difference between the fastest and slowest

trace ended up being a few grams force, certainly enough to

induce eye drift. Because the forces do not even seem to converge

to the same value, this raises the possibility that a true static length-

tension relationship might not even exist. We derived [3] this

relationship by extrapolating the asymptotic force following small

and fast step-wise elongations, and all the other fast elongations

that we applied did in fact relax to this curve. However, this is not

enough to rule out that slower elongations might relax to higher

forces, as is suggested by the decay observed after slow constant-

speed elongations. Internal static friction (also referred to as

stiction) could, for example, have such an effect. While this

possibility is intriguing, it should be noticed that the cross-over

always occurred at the limit of our stretching range (this was the

case also in the two saccadic traces show in Fig. 2B&C), where the

forces are highest. It is thus entirely possible that the cross-over

between traces is a phenomenon that occurs only when the forces

at play are very large, and might occur never, or extremely rarely,

in physiologic conditions. Unfortunately, we did not test constant-

speed elongations that terminated well before the limit of our

stretching range. Further experimental work is thus necessary.

Limits of Our Experimental Approach
As we noted in the preceding papers in this series, our in vivo

preparation imposed several experimental constraints. Important-

ly, since some of the muscles that we pulled on were partially

wrapped around the eyeball, the elongation of the passive muscle

could be somewhat smaller than the motion of its tendon.

Unfortunately, there was no feasible way to verify whether or how

Figure 14. Double-saccades: Data and ANLV predictions. Prediction of the force induced by sequences of saccadic elongations (1.6 mm each).
Black: Force measured in muscle. Red: force predicted by the AQLV model. Green: ANLV model prediction. In each panel a different time separation
(ISI) is shown. A: Here the ISI is 45 s, and the attenuation is reset before the second elongation. Not surprisingly, the AQLV does a very poor job of
fitting both elongations. Even the ANLV model is not perfect, overestimating the force during the second elongation. B: Same as in A, but with a
10 ms ISI. Again, the ANLV model is much better at predicting the force after the second elongation than the AQLV model, but it now underestimates
the force. C: Same as in B, but with a 100 ms ISI. D: Same as in C, but with a 1 s ISI. (Note: these saccadic elongations were not used to fit the ANLV
model, and are thus genuine predictions).
doi:10.1371/journal.pone.0009595.g014
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the posterior pole of the eyeball was deformed. Strictly speaking,

the force we report here is thus the force that would be applied on

the eyeball by a passive antagonist muscle when it is extended by

the action on the globe of a shortening agonist muscle.

Nonetheless, it has hard to see how this could have affected

qualitatively the findings here reported. In particular, it would be

very hard to explain how the force after a large elongation is

higher at the end of the elongation, but then becomes lower during

the relaxation phase. Importantly, this result has been observed

also, and possibly even more clearly, in a medial rectus muscle (cf.

Fig. 3B), which does not wrap around the globe at all, and thus

cannot induce translations or deformations of the eyeball.

Other experiments will be needed to quantify how the presence

of the globe affects the forces generated in eye muscles.

Comparison with Other Studies of Biological Materials
Rheological studies of biological materials have traditionally

relied on simpler elongation patterns than those used here, with

fast steps and small vibrations being the most widely used. There

are however exceptions. First of all, it is commonly reported that

biological tissues are strain-rate insensitive, meaning that the force

induced by large elongations (like our constant-speed elongations)

depends only weakly on the strain-rate. It was actually this

observation that led Fung [6] to propose Neubert’s continuous

relaxation spectrum [18] as the reference implementation for the

reduced relaxation function in the QLV model. Obviously, this is

not what we found (cf. Fig. 2). It should however be noted that the

strain rates usually tested are much lower than those used here. It

is entirely possible that if we had restricted our range of rates from,

say, 0.001 mm/s to 1 mm/s we would have also observed an

approximate rate independence.

An exception to this common observation comes from a study

on aortic valve tissue [19]. Here the authors used the QLV model

with Neubert’s continuous spectrum relaxation function to fit the

data, separately for each strain rate. They found that indeed the

strain rate affects the parameters of the model, but in essentially

the opposite direction reported here, leading them to propose a

shear-thickening effect. In other words, in their experiment following

a constant-speed elongation the force dropped faster after slow

elongations than after fast elongations (relative to the prediction of

the QLV model). We have no explanation for this difference, other

than that the tissues under examination are considerably different.

In another study on reconstituted collagen [20] the authors

measured the force induced by small step-wise elongations

followed by a hold period, and by slower elongations of the same

amplitude followed by a return to the initial length. It was found

that a standard viscoelastic model could fit all the data. However,

the problems that we had in fitting the data with a standard model

were contingent upon testing large elongations, which were not

part of that study.

A phenomenon similar to the one described here has been

recently reported in contractile fibroblasts [21]. Nekouzadeh and

colleagues measured the force induced in contractile fibroblasts

embedded in reconstituted collagen when they are subjected to

large constant-speed elongations. They noted that during the post-

elongation relaxation phase the force dropped faster after a fast

stretch (equivalent to about 200 mm/s in our experiment) than

after a slow stretch (equivalent to about 2.5 mm/s in our

experiment). They determined that this force shedding is due to

the depolymerization of the actin cytoskeleton; they suggested that

this mechanism might be self-protecting, releasing mechanical

stress. It should be noted however that in their preparation higher

stretch rates did not yield higher peak forces, unlike what we found

in EOMs.

The QLV/AQLV Models for Eye Muscles
The identification of a nonlinear dynamic model from

experimental observations is one of the most challenging system

identification problems. Unless the model structure is known, so

that only a small set of parameters needs to be estimated, acquiring

the necessary data is usually a monumental task. Furthermore, the

type of experiments to be carried out and the model formulation

are heavily intertwined, so that one essentially determines the

other. Fung’s quasi-linear theory [5,6], proposed almost 40 years

ago, has represented the most successful framework to study

nonlinear viscoelastic behavior. It has been used to model the

mechanical behavior of countless viscoelastic materials.

In the previous paper in this series [4] we showed that the

AQLV model proposed by Nekouzadeh and colleagues [7], and to

a lesser extent Fung’s original QLV model, can be used to

reproduce the forces induced in passive muscles by small step-wise

elongations. However, they fail to reproduce the force induced by

sequences of two steps. As we explained, this failure was not just

quantitative, but rather structural.

That failure was however not necessarily catastrophic. In many

applications what matters most for these types of models is

whether they are capable of predicting the forces likely to be

experienced in physiologic conditions. For eye muscles this

requires testing smooth elongations considerably larger than the

steps previously used. Since Pipkin and Rogers [9] argued that in

man-made materials the extrapolation from small steps to smooth

elongations is quite straightforward, we looked forward to the

possibility that at least one of the models might in fact behave

quite well.

Our measurements of the force generated during these

‘‘natural’’ elongations indicate that it is consistently, and often

egregiously, overestimated by previous models. This proves

conclusively that the QLV theory fails to capture some

fundamental property of passive eye muscles, and consequently

cannot be used to model them. In spite of their large number of

parameters, these models simply cannot reproduce the behavior of

extra-ocular muscles under the wide range of conditions that are

encountered in everyday life.

One point that needs to be stressed is that this failure occurs not

only at the extreme edges of the oculomotor range, but involves

also the central region where the eyes spend most of their time.

In our first paper [3] we had shown that in this region (up to

approximately 3 mm of elongation, corresponding to 18u of eye

rotation) the static length-tension relationship was essentially

linear. Since in the QLV model the elastic response (i.e., the

nonlinear component of the model) is directly proportional to the

static length-tension relationship [4], this implies that our QLV

implementation is essentially a linear model in this range. In our

previous paper we had already shown that this model failed to

predict the response of sequences of two steps, thus ruling out the

ability of a linear model to approximate an eye muscle, even in this

range. What we have shown here further reinforces this

conclusion. While unfortunately we have not measured saccadic

elongations that are wholly contained in this range, it is easy to

ascertain from Fig. 4 (panels B and E) that the QLV model is

incapable of reproducing movements larger than those used to fit

its parameters, even in this range (note in particular the large

deviation between the blue and black traces at the 3 mm

elongation point in Fig. 4E). To summarize, if a linear model

were fit to small elongations (say equivalent to 3u saccades) it

would grossly overestimate the passive force generated during

larger elongations; if instead it were fit to large elongations, it

would grossly underestimate the passive force generated during

smaller elongations.
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After our previous paper was accepted for publication, another

study dealing with the viscoelasticity of EOMs was published [22].

The conclusion of that study was that the QLV model is able to

reproduce the mechanical properties of eye muscles, the opposite of

what we have concluded. The apparently contradictory conclusions

drawn in our and their study can be resolved quite easily. First of all,

their preparation was quite different (they used post-mortem

sections of bovine EOMs). Second, and most important, Yoo and

colleagues applied to their specimens only the classic fast step-wise

elongations and slow (equivalent to less than 0.5 mm/s in our

experiment) cyclical elongations. Had we applied their criterion to

our fast-step data, we would also have concluded that the QLV

model was appropriate. We did not, and argued instead in favor of

the AQLV model, because we used a stricter criterion. It could be

argued that our criterion was too strict, but it was in line with the

criteria used in other studies that rejected the QLV model. Our

strongest rationale for rejecting the QLV theory came however

from sequences of two elongations, and from the large smooth

elongations described in this paper; neither of these were part of

their study. Our studies are thus not contradictory. In some respects

they are actually complementary, since their preparation allowed

them to investigate the behavior of EOMs over larger time scales

(they measured the relaxation response over 1500 s).

The ANLV Model
One of the goals of our experimental inquiry was to identify a

model of the passive eye muscle that we could then incorporate in

our model of the eye plant [23,24]. The model would not need to

be particularly elegant or insightful, but would have to generate

reasonable predictions. We had hoped that this could have been

accomplished by simply finding the appropriate parameter values

for an existing model, but this was not possible. Of course, proving

a model wrong is an important accomplishment in itself [25], but

we felt that not providing an alternative would have been

unsatisfactory on many levels.

Unfortunately, coming up with an entirely new model of a highly

nonlinear system is not an easy endeavor. Furthermore, our

experiments were designed with the QLV theory in mind, and a

different type of model might very well require a different set of

experiments for proper identification. Accordingly, we looked for an

enhancement to the existing models that would be parsimonious

and would yield a reasonably good model of passive eye muscles.

The solution we found, inspired by studies of thixotropic materials,

meets both criteria. Because the failure of the previous model tested

boiled down to an overestimation of the force measured in muscles

during large, smooth, elongations, it seemed natural to us to retrofit

that model with a variable attenuator. A careful analysis of the data

revealed that the attenuation had to be a functional of length and

speed. Also, the various processes that are part of the QLV model,

each characterized by a different time constant, needed to be

attenuated somewhat differently. It quickly became clear to us that,

with some small modifications, the structural parameter used in

thixotropy research behaves a lot like the attenuation parameter

that we needed. This observation led to our ten DOF extension of

the QLV/AQLV models, which we called the attenuated nonlinear

viscoelastic model (ANLV). This model is conceptually similar to

models of viscoelastic thixotropic materials, the most influential

being the one proposed by Acierno and colleagues in 1976 [26].

We have shown here that the ANLV model, while far from perfect,

represents a significant improvement over the currently available

models, and might be used with a fair amount of confidence in

simulating the response of passive extraocular muscles to arbitrary

elongations. Our attempt at predicting the outcome of experiments

that were not used to fit the model was only partly successful. The

double-step data was fit remarkably well, better than we expected.

Our predictions of the force induced by sequences of two saccadic

elongations, which of course is much more interesting as it mimics

more physiologic conditions, were instead only marginal. While

previous models predicted forces much larger than those observed,

the ANLV model underestimated the forces. Since our attenuation

function did not incorporate a recovery term, it is possible that the

lack of this process is to be blamed for this failure. Because the data

collected does not allow us to constrain this putative process, more

experiments are necessary. One point that must be remarked,

though, is that implementing such a recovery process is not trivial,

and certainly cannot be accomplished by simply introducing in Eq. 4

the build-up term that we dropped from Eq. 3. In thixotropic

research, the structural parameter l scales the viscosity of the

material; in contrast, in the ANLV model l scales the purely

viscoelastic force (i.e., both the viscosity and the stiffness, so that the

time constant does not change). Thus, if this scaling parameter were

to change during the decay phase after an elongation, the decay force

would no longer decay exponentially, and it could actually become

non-monotonic, a phenomenon that we never observed.

We want to stress that we make no claim that this model has any

physiologic basis. Consequently, we have made no attempt to

interpret the values of its parameters, or to compare them across

muscles. The only observation that we’d like to make is that the

following pattern seems to hold: processes associated with long

time constants are attenuated more than those associated with

short time constants. This is reminiscent of the model of polymer

melts by Acierno et al. [26], in which a continuous relaxation

spectrum is progressively truncated under steady shearing. We

believe that this can be rationalized in the following way: in a

viscoelastic model, during an extended elongation the force builds

up much more in elements that are associated with a long time

constant, since each element can be seen as a leaky integrator of

the elongation rate, with shorter time constants indicating larger

leaks. If all processes can only ‘‘support’’ a certain force, processes

with longer time constants will then need to be attenuated more.

To make an analogy based on the theory of structured fluids, we

could then visualize our model as a network of macromolecules, in

which different sub-networks exhibit different viscoelastic behav-

iors, but in which the entanglements break with a probability that

is mostly a function of the stress to which they are subjected.
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