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Abstract: Strong evidence from studies on primates and rodents shows that changes in pupil
diameter may reflect neural activity in the locus coeruleus (LC). Pupillometry is the only available
non-invasive technique that could be used as a reliable and easily accessible real-time biomarker of
changes in the in vivo activity of the LC. However, the application of pupillometry to preclinical
research in rodents is not yet fully standardized. A lack of consensus on the technical specifications
of some of the components used for image recording or positioning of the animal and cameras have
been recorded in recent scientific literature. In this study, a novel pupillometry system to indirectly
assess, in real-time, the function of the LC in anesthetized rodents is presented. The system comprises
a deep learning SOLOv2 instance-based fast segmentation framework and a platform designed to
place the experimental subject, the video cameras for data acquisition, and the light source. The
performance of the proposed setup was assessed and compared to other baseline methods using
a validation and an external test set. In the latter, the calculated intersection over the union was
0.93 and the mean absolute percentage error was 1.89% for the selected method. The Bland–Altman
analysis depicted an excellent agreement. The results confirmed a high accuracy that makes the
system suitable for real-time pupil size tracking, regardless of the pupil’s size, light intensity, or
any features typical of the recording process in sedated mice. The framework could be used in any
neurophysiological study with sedated or fixed-head animals.

Keywords: pupillometry; locus coeruleus; pupil size; image processing; deep learning; machine
learning

1. Introduction

Strong evidence from studies in humans, primates, and rodents, indicates that varia-
tions in pupil size—not induced by changes in illumination—are correlated with arousal,
attention, and cognitive processing [1–5]. More specifically, recent evidence in primates
and rodents has shown that changes in pupil diameter can reflect neural activity of the
locus coeruleus (LC) [6–9].

The noradrenergic nucleus LC is a brainstem structure, being the main source of
norepinephrine/noradrenaline that participates in the modulation of arousal, attention,
memory formation, stress response, or pain among other brain processes [10–13]. Addi-
tionally, changes in LC functionality has been associated with several neurodegenerative
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and neuropsychiatric disorders, such as Alzheimer’s disease, Parkinson’s disease, and
chronic pain [12,14–17]. Particularly, in the pain field, LC involvement in the mechanisms
underlying the comorbidity between chronic pain and mood disorders have been shown
in animal models, stimulating the need to study the role of the LC as a critical center for
chronic pain-induced anxiodepressive disorders [12,18,19]. Regarding neurodegenerative
pathologies, LC is among the first brain structures to suffer degeneration. Thus, LC activity
assessment is of huge interest as a potential early biomarker of neurodegenerative diseases,
including Alzheimer’s and Parkinson’s diseases [15,20].

In this context, the study of LC using rodent models is a topic of current interest
under investigation. Nevertheless, the difficulty of recording electrophysiological signals
from a such small nucleus (1500 neurons per hemisphere in rodents) located deep in
the pontine brain region makes conducting studies a challenge, both in animals and
humans [11,21,22]. In this sense, pupil diameter monitoring could be a suitable assessment
of LC function, since LC activity changes measured by fMRI correlates with pupil size
fluctuations [9]. In fact, the cause–effect relationship between LC activation and pupil size
has been recently evidenced by findings that stimulation of the LC, by electrical impulses,
optogenetic techniques, or by designer receptors exclusively activated by designer drug
(DREADD)-based chemogenetic tools, causes pupil dilation [6,7,21,23,24]. In addition,
noxious stimulus was demonstrated to evoke pupil dilation, along with LC activation
[24], suggesting a possible clinical utility for patients suffering pain. Nevertheless, it
should be noted that pupil size is not only affected by noradrenergic, but also by other
neurotransmitter systems, such as the cholinergic system [6], and changes in pupil size
should be interpreted cautiously.

Therefore, pupillometry is the only available non-invasive technique that could be
used as a reliable and easily accessible real-time biomarker of changes in the in vivo
activity of the LC-noradrenergic system, with great potential for clinical translationality. As
such, several studies have evaluated pupil fluctuations as a reflex of an LC-noradrenergic
system activity, to study its involvement in cognitive tasks [25], memory performance [26],
Alzheimer’s disease [27], and post-traumatic stress disorder [28]. Nevertheless, while it
is common to find studies using pupillometry as a technique for the assessment of LC
activity in humans, the extension of this technique to preclinical research in rodents is not
yet widespread [21], despite the evidence that pupillometry can provide a useful in vivo
assessment of LC function in awake or anesthetized rodents [29,30].

Moreover, in recent scientific literature, there is a lack of consensus on the technical
specifications of some components used for image recording or positioning of the animal
and cameras, with studies using different vision technologies, image sizes, frame rates,
and light sources [6,21,23,24,30–32]. Recently, in attempts to propose common protocols,
procedures describing how to perform pupillometry recordings in darkness, to assess mod-
ulation of the LC-NA system in awake and anesthetized mice, have been presented [21].

In this study, we present and assess a novel, robust, and reliable pupillometry system
and a deep learning (DL) pipeline that can be used to indirectly assess, in real-time, the
function of the LC-noradrenergic system in anesthetized rodents. The aim is three-fold.
First, we present a novel hardware platform to perform the laboratory experiments, which
allows positioning the animal, driving anesthesia, and adjusting the cameras for the
best binocular pupils recording. Second, we describe a software tool to acquire bilateral
recordings, optimizing parameters to minimize dropped frames and image quality. Finally,
we propose a DL instance-based fast segmentation framework to calculate pupil diameter
in mice in low-light settings. The performance of the proposed setup is assessed and
compared to other baseline methods using a validation and an external test set. The goal is
to provide an integrated and validated framework to enabling the non-invasive automatic
study of the correlation of the pupil size and LC activity in lightly anesthetized rodents.
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2. Recent Related Work

Pupil size is the result of the balanced action of two iris muscles: the sphincter and the
dilator. These muscles are innervated by sympathetic neurons from the superior cervical
ganglion and by parasympathetic neurons from the ciliary ganglion [33].

In rodents, pupillometry is conventionally applied as a non-invasive technique, with a
non-fully automated assessment of pupil size changes during the experiment. This analysis
is usually performed offline, frame-by-frame, making it time-consuming, labor-intensive,
and inefficient in the case of long recordings.

The application of digital image processing techniques has attempted to alleviate this
burden by transforming the annotation process into an automatic process. Conventional
algorithms have been used in recent years to segment the pupil into circular or elliptical
regions of interest. Table 1 summarizes the characteristics of some relevant studies carried
out in rodents in the last five years linking pupillometry and LC activity. In 2016, Reimer
et al. [6] explored the relationship among exploratory behaviors, cortical synchronization,
and pupil dilation in adult mice. Later, in 2017, Liu et al. [24] explored how sympathetic and
parasympathetic pathways contribute to pupil dilation induced by LC activation in adult
rats using a pupillometry system assembled in-house. Yüzgeç et al. [32] studied, in 2018,
the pupil size, coupling to cortical states and stability of deep-sleep in adult mice. In 2019,
Breton-Provencher and Sur [30] analyzed mice mechanisms that related LC-noradrenergic
activity and pupil dilation in awake head-restrained mice. Zerbi et al. [23], also in 2019,
studied the effect in adult mice of LC stimulation on large-scale functional connectivity,
assessing successful LC activation using pupillometry. In 2020, Hayat et al. [31] studied
if optogenetic LC excitation elicits behavioral, electrophysiological, and pupillary signs
of arousal in adult rats. Finally, and also in 2020, Privitera et al. [21] designed and imple-
mented a complete pupillometry toolbox for real-time monitoring of LC activity in rodent.
Their approach was two-fold. First, they described an image analysis pipeline using MAT-
LAB. As an alternative and novel approach, the authors also proposed an adaptation of the
motion-tracking software DeepLabCut (DLC), which included a deep neural network [34]
for pupil segmentation and tracking.

Table 1. Studies recently conducted to evaluate the function of the locus coeruleus using pupillometry recordings.

Authors Year Vision Hardware Light Source Binocular
System Method to Estimate the Pupil Size

Hayat et al. [31] 2020 Color cameras Infrared light No Image analysis pipeline using MATLAB

Privitera et al. [21] 2020 Raspberry Pi 3
Night vision camera Infrared light No

Image analysis pipeline using MATLAB
and, alternatively, a deep neural network
(DeepLabCut)

Zerbi et al. [23] 2019 Raspberry Pi 3
Night vision camera White and infrared light No Image analysis pipeline using MATLAB

Breton-Provencher
and Sur [30] 2019

High-resolution
CMOS camera
1.0× telecentric lens

Infrared light No Image analysis pipeline using MATLAB

Yüzgeç et al. [32] 2018
0.3 MP USB cameras
Micro-video lens
25.0 mm, f/2.5

Infrared-back illumination Yes Image analysis pipeline using MATLAB

Liu et al. [24] 2017 Pupillometry system as-
sembled in-house White light Yes Not detailed

Reimer et al. [6] 2016
High-resolution
CMOS camera
1.0× telecentric lens

Red and green light No Image analysis pipeline using LabVIEW
and MATLAB

Frequent features in most of the above-mentioned studies include the use of a con-
ventional image analysis pipeline, as well as the need for manual adjustment of some
parameters in some image processing stages, especially those related to thresholding,
whisking, and noise. The unavailability of a systematic assessment to provide the degree
of certainty on the performance of the pupil size detection algorithms was also a constant
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in the published studies. Only Breton-Provencher and Sur [30] provided a qualitative
assessment of the results.

In addition to the need for manual adjustment of some parameters, the performance
of algorithms based on conventional image processing techniques is conditioned by the
low-light environment, common in these experimental settings. The limitations of such
approaches are accentuated by mice vibrissae, blinking, and by opacities caused by the
gel applied over the experimental subjects’ eyes to avoid corneal damage during light
anesthesia. An approach that overcomes these drawbacks and minimizes or eliminates
manual intervention is therefore required to reliably conduct experiments with rodents. In
this regard, the application of DL was proven to be an effective approach for real-time pupil
detection in humans [35–39]. These human studies are overwhelmingly oriented toward
estimating pupil centers to determine gaze. Furthermore, pupillometry in rodents presents
some challenges different from those encountered in humans. In rodents, the accuracy
in defining the pupil size is affected by scattering movements, low contrast difference
between the pupil and iris, blur, reflections, and noise [40].

Very recently, DL was applied in mice in LC studies [21]. However, although in
their work, the authors provide access to a pre-trained DLC network, their study does
not include the assessment of the algorithm accuracy for binding the average estimation
error made in calculating pupil size. While the average tracking performance of DLC, an
approach suited to track and locate arbitrary objects on an image, was evaluated in [34],
this evaluation focused on the ability of the method to detect the body parts of interest for
odor guided navigation and in demonstrating that deep architecture may achieve good
performance.

3. Materials and Methods

In accordance with the objectives stated in the introduction, the materials and methods
used in this study are described in this section.

3.1. Mechanical Framework and Hardware

Monitoring and evaluating changes in pupil dilation is necessary to keep the animal
in a certain position within the viewing area of the recording cameras. Different animal
fixation devices are used according to experimental needs. Existing systems are scarce and
of high cost. Non-invasive techniques, such as cranial fixation by means of stereotaxic
platforms [21,31] are commonly used. However, these devices are often not designed to
accommodate all of the necessary elements (cameras, lenses, connecting cables, etc.). In
the existing literature, there is no consensus on the arrangement of these elements, their
shape, or characteristics, which is why we prioritized parameters, such as the platform
flexibility, to have the greatest degree of freedom to comfortably arrange the equipment.
This flexibility facilitates the definition and subsequent refinement of the method for
acquiring experimental data.

Based on the functional specifications emanating from the research needs, a system
was designed to place the experimental subject, the video cameras for data acquisition,
and a light source. This system consists of a steel base plate in which were placed: (a) a
height-adjustable platform to place the lightly anesthetized rodent; (b) two cameras to
record the rodent’s eyes; and (c) a structure that allows the cameras to be positioned at any
spatial coordinate within the platform volume. The base support in which the rodent is
placed was designed specifically for the intended use. It was manufactured by 3D printing
in polyethylene terephthalate glycol (PETG). PETG was selected because of its biocompat-
ibility, considering that it can be sterilized after each test using disinfectants commonly
available in animal experimentation laboratories, such as acetone or isopropyl alcohol.

A CMOS camera (DCC1545M, Thorlabs, Germany) was selected for image recording.
It was a 1.3 megapixel monochrome camera that was used in recent studies [30]. This
camera is capable of capturing images at a rate of up to 25 fps, with a resolution of
1280 × 1024 pixels. A lens of 25.0 mm focal length (Edmund Optics, London, UK), without
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infrared filter and with an aperture of f/2.5 was used. This lens allows the animal’s eye
to be focused at a distance of approximately 2 cm, so that it occupies the entire camera
field of view. This positioning enables a higher resolution in the quantification of the
pupil diameter.

Low ambient illumination (white 15 lux at the rodent position) was used to avoid
pupil reactions. A infrared 50 W bulb was used to illuminate the eyes. The bulb was
placed at 80–100 cm in front of the rodent to get enough eye illumination, avoiding animal
heating. A moisturizing eye lubricant (Lubrithal™ eye gel, Dechra Pharmaceuticals PLC,
Northwich, UK) was used during the experiments to avoid corneal desiccation. An over
supplement of this lubricant can cause visual artifacts, such as pupil deformation, shadows,
or air bubbles that get trapped inside the gel. These artifacts must be mitigated by the
experimenter, ensuring that a thin layer of lubricant is applied.

3.2. Control and Data-Acquisition Software

A real-time control interface was designed to monitor the pupil of both eyes and to
save the video data for further processing. The control interface was developed using
LabVIEW (National Instruments, Austin, TX, USA), and was focused to solve two key
aspects: temporal coherence and simplicity. The interface provides the user with the
necessary controls and visual feedback from the camera images. The interface is paged in a
setting tab to isolate the camera configuration and the video recording controls, ensuring
a greater usability. Using this setting tab, the user can select the cameras and the gain
needed to center the intensity histogram. The gain had to be adjusted at the beginning of
the experiment to maximize the contrast of the acquired image in both cameras. Once the
cameras were adjusted, the user selected the path to save the video recording as well as
a name suffix to identify the experiment. The camera setting parameters selected for this
study are shown in Table 2.

Table 2. Setup parameters used for image acquisition during the experimental sessions.

Setup Parameter Value

Pixel Clock 30 MHz
Frame rate 10 fps
Exposure time 79.085 ms
Image size 1280 × 1024 px
Format Mono 8 bits per pixel
Gain User adjustable

The selection of these parameters was made according to the results obtained from
the functional tests performed on the prototype. In these tests, nociceptive stimuli were
applied to the animal to induce responsive pupil diameter changes [24]. In the recording, a
timestamp is associated to each video frame. In addition, the interface includes buttons
to input actions commonly performed during a session, or to mark frames with custom
label stamps.

3.3. Animals and Experimental Design

Experiments were performed on adult male C57BL/6J mice that were housed under
standard laboratory conditions (22 °C, 12 h light/dark cycle, food and water ad libitum).
Animal handling and procedures were conducted according to the guidelines of the Eu-
ropean Commission’s directive (2010/63/EC) and Spanish law (RD 53/2013) regulating
animal research. Moreover, the experimental protocols were approved by the Committee
for Animal Experimentation of the University of Cadiz.

In order to monitor non-luminance-induced pupil fluctuations, the pupils of lightly
isoflurane-anesthetized animals were recorded under the above-mentioned lighting condi-
tions [24], using the CMOS camera and the micro video lens. As noxious paw compressions
(PCs) elicit a robust increase in LC activity [41], pupil diameter was measured in response
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to repeated noxious stimulation by consecutive hind PC, applied for 1 s between the ends
of a pair of surgical forceps. For each experiment, the baseline pupil size was recorded
for 60 s. Subsequently, mechanical stimuli were consecutively applied four times at 100 s
intervals.

Twenty mice were monitored in recording sessions to acquire images for the training
and validation datasets. Total monitoring time was 8 hours 19 minutes and 21 s. A
researcher marked, using a digitizing tablet, the pupil contours of a total of 1052 images. A
test dataset of 636 manually annotated images was built in additional sessions with a new
group of 20 animals. The rodents in this latter group were monitored, in total, for 8 hours
11 minutes and 22 s. The average time per manual frame labeling was 30 s.

3.4. Deep Learning-Based Method for Pupil Segmentation

Image segmentation has become a task ordinarily linked to the field of computer vision.
In recent years, the advent of DL, and more specifically of convolutional neural networks
(CNNs), has directly affected image segmentation, providing models with remarkable
performance [42]. Image segmentation can primarily be twofold: semantic segmentation
and instance segmentation [43]. While semantic image segmentation is based on the
image partitioning into regions to which a certain category is assigned, instance-based
segmentation allows to differentiate members of the same category through an exhaustive
description of the scene [44].

Segmentation in general, and instance segmentation in particular, has benefited
strongly from the adoption of CNNs to increase performance, which has led to the proposal
of multiple models in very recent years [45–51]. This study aims at mice pupil segmentation
in images acquired in a low-light environment. To this end, we opted for adapting the
SOLOv2 instance-based fast segmentation framework. This novel instance-based segmen-
tation technique was selected over semantic segmentation strategies for its outstanding
performance with standard image sets, its low computational burden, and its potential to
perform well while minimizing post processing [52]. Instance segmentation was revealed
to be especially advantageous in managing pupil occlusions (e.g., in the case of artifacts or
disproportionate brightness inside the pupil), given that the method segments the pupil as
a whole, providing a single instance.

As a first processing stage, SOLOv2 extracts relevant image information through
a ResNet-50 convolutional backbone network [53]. SOLOv2 is pipelined with a feature
pyramid network (FPN) [54]. The semantic categorization of potential image objects and
instance mask extraction is carried out on two processing subnetworks. Figure 1 illustrates
the model architecture. Comprehensive details on the implementation of the SOLOv2
DL-based framework can be accessed at [52].

When an experimental recording is completed by using the designed interface, an AVI
file is generated. The path to this file is used as an input parameter to a script that processes
the entire video using the trained DL pipeline. As output, the script provides a CSV file,
including the frame number, timestamp, coordinates of the centroid of the segmented area
(x, y), segmented area, pupil circularity, and distance between the farthest pixels of the
region of interest (defined as the pupil diameter). Circularity was defined as:

Circularity = 4π x
area

perimeter2 (1)

The comparison of the ground truth and predicted diameters is a major outcome of
this study, given that the pupillogram, defined as the curve of pupil diameter against time,
is the main output system variable [55].
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Figure 1. Deep learning model architecture.

3.4.1. Transfer Learning and Data Augmentation

A main problem encountered in the learning process of the DL algorithms consists of
setting a very large number of parameters in order to generalize or learn from the train
dataset. This task requires large datasets with images that feed the algorithms, but which
are often limited or scarce. Generating large labeled training sets by hand is often expensive,
and in many cases requires a domain expert. In this study, two techniques were used to
complete the training set by increasing the number of available images: data augmentation
and transfer learning.

Data augmentation was used to increase the train dataset to improve accuracy, general-
ization, and control overfitting. This technique allowed us to increase the size and diversity
of the train dataset by generating new images from transformations of the original ones.
Resizing at six different fixed scales and flipping with a probability of 0.5 were applied.

Inductive transfer learning allows pre-training a model using large labeled datasets
from an unrelated problem, and then adapting it to the problem under study. This im-
plies minor retraining, avoiding data labeling work. Transfer Learning was used in this
work. All parameters of the ResNet-50 backbone network were previously pre-trained
using as dataset the images provided for the Common Objects in Context (COCO) 2015
challenge [53].

3.4.2. Comparison to Other State-of-the-Art Baseline Architectures

To evaluate our proposed architecture, we compared results against those of other
DL-based image segmentation frameworks and against a traditional image processing
pipeline not rooted in machine learning techniques. State-of-the-art methods based on
DL, belonging to both the fields of instance and semantic segmentation, were chosen as
reference algorithms for comparison. The selected semantic segmentation architectures
were based on DeepLabv3+, which uses atrous convolutions and spatial pyramid pool-
ing [56], and SegNet [57]. The DeepLabv3+ architecture was implemented considering four
different backbone networks, namely: Xception [58], ResNet-50, and ResNet-18 [53], and
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MobileNetV2 [59]. To compare with a state-of-the-art architecture in instance segmentation,
we implemented the Mask R-CNN architecture, a top-down approach of segmentation-
by-detection that includes a ResNet-50 backbone [45]. Finally, an additional baseline
experiment was conducted. To this purpose, a conventional image processing algorithm,
following common operations performed in state-of-the-arts LC studies was applied. This
segmentation algorithm included the manual selection, in the first video frame, of a bound-
ing box around the pupil area. The pupil detected inside this box served as an initial
reference for its location and its mean gray level (pixel intensity). In successive frames,
a thresholding segmentation was applied on the image using as threshold the average
intensity value of 13 pixels located inside the pupil detected just in the previous frame.
As a result, an image with different areas or regions of connected pixels was obtained.
In a post-processing step, small regions and those outside the initial bounding box were
removed. Finally, the pupil was segmented as that region whose centroid was closest to
the pupil centroid detected in the previous frame.

For a fair comparison, we retrained the DL-based image segmentation networks on
our datasets.

3.5. Validation, Testing, and Evaluation Metrics

A total of 1688 images were used for training, validation, and testing. The training
set included 737 images, the validation dataset had 315 images used for validation during
training, and the test dataset included 636 images. The training, validation, and testing
adopted strategy is depicted in Figure 2.

{Pupil Diameter

Circularity

Training Dataset
(737 images)

Validation Dataset
(315 images)

Testing DataSet
(636 images)

ResNet-50 
& FPN

Model

Results

Training and Validation Datasets from
a group of 20 mice

Testing Dataset from
a second group of 20 mice {Pupil Diameter, Circularity, Cx,Cy}

Figure 2. Training, validation, and testing strategy. FPN: feature pyramid network. Cx,Cy: coordi-
nates of the centroid of the segmented area.

Among the performance metrics broadly used in recently published segmentation
studies, Intersection over Union (IoU), mean Intersection over Union (mIoU), pixel accu-
racy, and mean accuracy were selected as candidates for this work. While Intersection over
Union (IoU) estimates the segmentation performance by calculating the intersection and
union between the ground truth and the prediction, mIoU takes the IoU over all of the
classes and averages them. Formally, these metrics are expressed as:

Pixel Accuracy =
∑i pii

∑i ti
, Mean Accuracy =

1
k ∑

i

pii
ti

(2)

mIoU =
1
k ∑

i

pii
ti + ∑j pji − pii

, IoU =
pii

∑j pij + ∑j pji − pii
(3)



Sensors 2021, 21, 7106 9 of 19

where k is the number of classes in ground truth segmentation (k = 2 in this study), pij
is the number of pixels that actually belong to class i and that have been classified as
belonging to class j, and ti is the total number of pixels of class i found in the ground
truth segmentation [60]. The values of mIoU and IoU are restricted to [0,1] interval, with 1
representing 100% accuracy, and 0 corresponding to 0% accuracy.

The main disadvantage of using pixel accuracy is that the result might look good if
one class overpowers the other. Indeed, this situation is encountered in the problem of
pupil detection from a whole image of the animal’s eye. The region of interest is small
compared to the image background. This also makes mIoU an ill-suited measure. However,
IoU applies an averaging across classes. Consequently, the model performance was verified
by calculating the IoU for the entire dataset [61].

In addition to IoU, the mean absolute percentage errors (MAPE) of the pupil diameter,
circularity, and centroid coordinates were calculated. MAPE, a popular metric commonly
used to evaluate prediction performance, is given by:

MAPE =
1
N ∑

t
|Gt − Pt

Gt
| (4)

where Gt and Pt represent, respectively, the actual (ground truth) and predicted pupil
diameters in frame t, and N is the number of evaluated images.

3.6. System Configuration and Training Details

Training, validation, and testing of the segmentation model was accelerated with the
support of a NVIDIA® DGX station. An initial learning rate, weight decay, and momentum
of 0.001, 0.0001, and 0.8 were, respectively, selected. Hyperparameter tuning was not
applied in this study. The loss function used for training was the cross-entropy function
for semantic pixel-wise segmentation architectures. In the case of instance segmentation
methods, the training loss function was defined as follows:

L = Lcate + λLmask

where Lcate is the conventional Focal Loss [62] for semantic category classification and
Lmask is the dice loss for mask prediction [63]. Input images to the segmentation model
were previously scaled to 640× 512 pixels.

3.7. Statistical Analysis

In addition to estimating the performance metrics defined in the previous section
for both the proposed and baseline methods, a number of statistics was calculated for
the proposed SOLOv2-based approach. Concordance between measurements of pupil
diameter was assessed by correlation coefficient, regression analysis, scatter plots, and the
limits of agreement (LoA) on the Bland–Altman plot [64]. A probability of error <5% was
considered significant. The Bland–Altman method is a graphical method that describes
the agreement between two quantitative measurements quantifying the mean difference
between them (bias) and a confidence range, which is expected to include 95% of the
differences between two different measurement techniques.

4. Results and Discussion
4.1. Mechanical Framework, Hardware, and User Interface

The developed platform and user interface described in Section 3 were used to record
pupil images from 40 mice. Figure 3 illustrates the experimental setup during one of the
experiments developed in the laboratory environment from two viewing perspectives. The
picture shows the positioning of the two video cameras and the animal’s resting platform.
The rodent receives the anesthesia through a nasal mask. The light’s reddish hue is due to
infrared illumination.
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Figure 3. A close-up of the experimental setup during a pupil recording session.

4.2. Control and Data-Acquisition Software

The real-time control interface allows monitoring the pupil and recording video data
during the experiments. Figure 4 illustrates the implemented control interface during a
recording session. The camera setting page (bottom part of Figure 4) allows defining the
setting of the cameras while live-checking the intensity histogram. The video setting page
(top part of Figure 4) enables the user to access the recording controls, defining the path for
the recorded file and checking lost and recorded frames as well as the frame ratio. The user
can use the programmed buttons to include video stamps with predefined or personalized
labels. The interface is prepared to integrate other signals or to synchronously trigger
stimuli (e.g., optogenetic stimulation).

Figure 4. User interface developed to guide the monitoring and recording process. Top part: video
settings page. Bottom part: camera settings page.

4.3. Segmentation Assessment

We compared the proposed architecture to other baselines. For a fair comparison,
we trained the image segmentation networks detailed in Section 3.4.2 on our datasets.
The segmentation metrics considered in this study were calculated for the validation and
testing of the pupil segmentation models. MAPE of the predicted pupil size, circularity,
and centroid coordinates, as well as the IoU metrics are presented for both datasets. The
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IoU was determined to compare the ground truth and predicted pupil masks. A detailed
analysis of the results is given in Table 3.

Results show that our architecture achieves a superior segmentation performance
(higher IoU coefficient) with respect to the evaluated off-the-shelf instance (Mask R-CNN),
semantic (DeepLabv3+ and SegNet) and traditional segmentation models. These results
point out that pupil segmentation under the described experimental setting remains a
challenge.

The mean IoU values achieved by the proposed architecture on the validation and test
sets were 0.94 and 0.93, respectively. These IoU values outperformed those of the rest of
the methods. Only the Mask R-CNN instance segmentation method equaled this metric in
the test set (0.93).

The MAPE error for the pupil diameter estimated for our SOLO-2-based approach
was 1.70% in the validation set, and 1.89% in the test set. This error is substantially lower
than the errors measured with the other reference methods. An analogous situation occurs
with the pupil circularity measurement. In both cases, the methods based on instance
segmentation provided better performance than the others. The proposed method was
slightly outperformed in accuracy by the Mask R-CNN architecture in calculating the
coordinates of the pupil center point.

The purpose of this study is to provide a system for accurate quantification of the
pupil diameter rather than pupil position, which is more useful in studies focused on
gaze tracking. To this end, the proposed algorithm outperforms the reference methods in
our datasets. In addition, the mean pupil detection time using the trained SOLOv2-based
model, once the input image was scaled, was 0.03 s on average, while the mean processing
time using the Mask R-CNN model was 0.13 s. This makes the proposed method a more
effective approach from a computational perspective.

Table 3. Comparison of prediction performance of the proposed architecture and baselines in the validation and test sets. IoU:
Intersection over Union. MAPE PD: mean absolute percentage error of pupil diameter. MAPE PC: mean absolute percentage error of
pupil circularity. MAPE Cx: mean absolute percentage error of X-Centroid coordinate. MAPE Cy: mean absolute percentage error of
Y-Centroid coordinate.

Validation Set/Test Set
Method

IoU MAPE PD (%) MAPE PC (%) MAPE Cx (%) MAPE Cy (%)

Mask R-CNN 0.92/0.93 4.13/2.98 2.11/3.28 0.30/0.18 0.30/0.23
DeepLabv3+ ResNet-50 0.90/0.86 4.25/5.28 2.72/4.45 0.45/0.73 0.57/0.91
DeepLabV3+ ResNet-18 0.84/0.79 7.80/7.94 11.95/13.19 0.86/1.05 0.82/1.14

DeepLabv3+ MobileNetV2 0.87/0.87 5.87/5.88 7.28/4.94 0.70/0.51 0.62/0.52
DeepLabV3+ Xception 0.80/0.77 11.71/10.06 11.14/9.41 1.30/0.94 1.19/1.36

SegNet 0.74/0.70 16.85/22.24 80.15/76.62 1.77/0.76 1.49/0.72
Traditional Algorithm 0.70/0.80 13.43/8.38 24.55/10.46 2.18/1.50 2.42/1.05

Proposed method 0.94/0.93 1.70/1.89 1.89/2.56 0.26/0.26 0.36/0.38

Figure 5 illustrates the result of using our approach for automatic segmentation for a
set of six frames, ordered from largest (a) to smallest (d) pupil size, captured under different
conditions, some of them considered particularly challenging to process automatically.
Figure 5a,b show the results obtained in two images of dilated pupils. The presence of
vibrissae and moisturizing gel in addition to a recording viewing perspective that accentu-
ates the sphericity of the ocular globe make automatic segmentation using conventional
techniques particularly troublesome. However, the proposed DL-based framework oper-
ates fairly well in both cases, showing a high IoU and a small mean absolute percentage
error (MAPE) when estimating the pupil size. The processing of contracted pupil images is
equally challenging. In these cases, a little deviation in the contour estimate translates into
a larger percentage error. In addition, we may also take into account potential bias during
the annotation process by the human experimenter in such small regions for what it is likely
to deviate some pixels from the perfect segmentation. This situation is consistent with the
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findings in [55]. Figure 5e illustrates an example of such a scenario. The differences in the
automatically segmented region, with respect to the ground truth segmentation, leads to a
greater error in the pupil size estimate.

Figure 5. Comparison between automatic and manual pupil segmentation. The red color shows the
result of the manual segmentation (ground truth) and the blue color shows the result of the proposed
deep learning-based architecture. The intersection of both regions is shown in the green color. The
Intersection over union (IoU) for the predicted segmented region and mean absolute percentage error
(MAPE) for the pupil diameter estimation are shown in each case.

Figure 6 presents the predicted pupillogram and the circularity diagram in one of the
pupil recording experiments.

Figure 6. Time series of pupil diameter (pupillogram) and circularity over the course of a pupil record-
ing session. Times t = PCi point out the onset of consecutive hind paw compression (PC) events.

In Figures 7 and 8, the relationship between the IoU and MAPE of pupil diameter and
pupil circularity in the validation and test sets can be observed.
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Figure 7. Scatter plot of the intersection over union (IoU) versus the mean relative percentage error
(MAPE) of predicted pupil diameters in the validation (a) and test (b) sets.

Figure 8. Scatter plot of the intersection over Union (IoU) versus the mean relative percentage error
(MAPE) of predicted pupil circularity in the validation (a) and test (b) sets.
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It can be noticed that small IoU values do not lead to considerable MAPE values of
the predicted pupil diameter. Lower IoU values correspond to cases in which the pupil
region has been segmented partially. However, it may happen that the missing region in
the resulting segmentation does not affect the estimation of the so-defined pupil diameter,
as can be recognized in Figure 5b.

It can be appreciated how the proposed method is effective for the generation of the
pupillogram in long-duration experiments, enabling the detection of the changes in the
pupil diameter in response to the different stimuli presented to the animal. The system also
allows the recording of the observed changes in the circularity of the detected region. In
addition, the processing time per video frame is lower than the frame rate during recording,
which allows to display the segmentation results in real-time, allowing the experimenter to
know, in situ, the results by synchronously observing changes in the pupil diameter and
circularity under different experimental conditions.

4.4. Statistical Analysis

This subsection includes a more in-depth statistical analysis of the diameter and
circularity data provided by the proposed method, in order to corroborate the validity of
the measurements provided and to delimit the LoA.

Normal distribution of data (pupil diameter and circularity) was evaluated using the
D’Agostino and Pearson test and the Kolmogorov–Smirnov test. No normality tests were
passed and consequently, non-parametric rank correlation coefficients (Spearman’s rho
and Kendall’s tau) were estimated.

Spearman and Kendall coefficients of rank correlation showed a strong positive
association between the values obtained manually and by the proposed automatic frame-
work. The result demonstrated excellent correlation between the methodologies: ρ = 0.997,
τ = 0.951, p-value < 0.0001.

Data were inspected through the representation of a scatter diagram. The regression
lines and the coefficients of determination were calculated. Figure 9 shows a scatter plot of
the manual labeled pupil diameters versus values estimated from the DL-based approach.
The fitted line was y = 0.961x + 3.04, the R2 value was 0.994, and the Pearson correlation
coefficient was 0.997.

Figure 9. Scatter plot of the ground truth pupil diameter versus the estimates of our proposed
approach.

The regression line have a slope of 0.961, which could be evaluated as a very good
agreement between methods. In this case the slope indicates that the proposed DL-based
approach slightly underestimates the manual estimation. However, a high correlation
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is not necessarily synonymous with agreement between methods, since it evaluates the
relationship and not the difference. Since Bland Altman analysis may overcome this
limitation, this methodology was also applied. The performed Bland–Altman concordance
analysis demonstrated relatively small dispersion for the manual procedure compared
with the DL-approach (Figure 10). The Bland–Altman plot depicts an excellent agreement.
The relative bias was 0.182% being the 95% confidence interval (CI) of (–0.007%, –0.371%).
The lower and upper 95% LoA were (–4.90%, –4.26%), and (4.62%, 5.27%), respectively.

Figure 10. Scatter plot of the ground truth pupil diameter versus the estimates of our proposed deep
learning-based approach.

The obtained statistical measures confirm that the performance of the proposed frame-
work is suitable for real-time pupil size tracking. The system has demonstrated excellent
robustness in mice with low pupil–iris contrast. Published studies describing systems
with a similar purpose scarcely present the obtained performance by reporting common
accepted segmentation metrics. As an exception, and very recently, an average relative
diameter error of 12% and a median relative error of 4% has been reported for a machine
learning algorithm applied to rat pupil images [55].

Additionally, a major advantage of our approach is the lack of need for any manual
adjustment. In [6,21,30,31], the user is required to make, at some point, or even repeatedly
throughout the process, manual adjustments to the parameters of the detection algorithms.
In contrast, the method proposed in this study can operate fully automatically.

5. Conclusions

In this work, a pupillometry system, including a novel DL-based tool to detect and
measure real-time changes in pupil size in lightly anesthetized mice, was described, dis-
cussed, and evaluated. The system performance was assessed using an external test set,
resulting in an IoU of 0.93 and a MAPE of the predicted pupil diameter of 1.89%. These
results demonstrate the ability of the proposed architecture to outperform other state-of-
the-art reference methods, whether based on instance segmentation, such as Mask R-CNN,
semantic segmentation, such as SegNet and DeepLabv3+ with different backbones (Xcep-
tion, ResNet-50, ResNet-18, and MobileNetV2), or classical image processing techniques.
In addition, the Bland–Altman analysis showed a great level of agreement. Furthermore,
the resulting processing time per frame was lower than the frame rate, which ensures the
real-time system capability.
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The evaluated segmentation model showed good performance regarding widely used
similarity segmentation metrics and success rates. This is of particular relevance given
that the datasets included pupil images with high variability in sizes, light intensity, and
eye artifacts. In this regard, preprocessing stages were not performed to grayscale color
images before the segmentation process, meaning that the trained DL-based segmentation
model appears to be consistent to non-uniformities that can arise among images, such as
intensity variations or distance to the animal during the recording process. These results
indicate that both the combined use of the designed mechanical setup, the user interface,
and the method based on artificial intelligence and supported by DL, enable the detection
of spontaneously and elicited pupillary changes and, therefore, can be used to monitor the
mouse’s LC activity state during experiments with lightly anesthetized animals.

This work has limitations. System robustness could potentially be improved by
adding preprocessing steps or enriching the training set so that the system can manage
events, such as vibrissae, unfocused areas, or light reflection. The search for optimal
hyperparameters for the proposed DL network remains to be explored for its potential
to improve results. In addition, images used in this research were acquired under the
same experimental conditions, by the same experimenter, and using the same acquisition
parameters. Augmenting the training set with additional images from other sources could
contribute to achieve an improved results generalization.

In conclusion, the outcomes of the proposed hardware and software tools reveal that
the presented strategy provides direct instance segmentation and offers state-of-art results
with a lower computational burden, independently from the pupil’s size, light intensity,
or any other features typical of the recording process in anesthetized mice. Although this
study was performed to assess indirectly the function of the LC-noradrenergic system
in anesthetized rodents, the presented framework could be used as an accurate analysis
tool in any neurophysiological study in which the animal is lightly anesthetized or has its
head fixed.

6. Patents

The mechanical framework presented hereby is currently patent pending.
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