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Bioinformatics may seem to be a scientific field processing primarily large string datasets, as nucleotides and
amino acids are represented with dedicated characters. On the other hand, many computational tasks that
bioinformatics challenges are mathematical problems understandable as operations with digits. In fact, many
computational tasks are solved this way in the background. One of the most widely used digital representations
is mapping of nucleotides and amino acids with integers 0–3 and 0–20, respectively. The limitation of this map-
ping occurs when the digital signal of nucleotides has to be translated into a digital signal of amino acids as the
genetic code is degenerated. This causes non-monotonies in a mapping function. Although map for reducing
this undesirable effect has already been proposed, it is defined theoretically and for standard genetic codes
only. In this study, we derived a novel optimal criterion for reducing the influence of degeneration by utilizing
a large dataset of real sequenceswith various genetic codes. As a result, we proposed a new robust global optimal
map suitable for any genetic code as well as specialized optimal maps for particular genetic codes.

© 2019 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Along with the development of an alternative bioinformatics field
referred to as ‘genomic signal processing’ [1], numerical representations
of biological sequences have become quite popular. One of the first
numerical representations for DNA sequences was the H-curve [2], pro-
posed in 1983. However, there has been a real boom in this field in the
last 20 years. Representationswhich allow visualization of the sequence
characteristic trend as a curve in two- or three-dimensional space pre-
dominate [3–7], but 4D [8] and 5D [9] representations are also used.
With the exception of dimensionality, the numerical representations
can be sorted according to their level of degeneration of genetic infor-
mation, which is caused by conversion from a symbolic representation
to the numerical representation [10]. Furthermore, there are represen-
tations suitable for DNA and RNA [11], codons [3,5,12], and protein
[13–15] sequences. In addition, many numerical representations utilize
only a part of the genetic or biochemical information carried by the se-
quence [12,16–19] and thus their classification is ambiguous. In general,
the standardization of numerical representations requirements is miss-
ing, e.g. information content, redundancy, convertibility, interpretation
etc. Despite that, the analyses based on numerically represented se-
quences are now well accepted in bioinformatics as described below.
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Processing of DNA sequences represented as signals is applicable to
many problems where symbolic sequences are used, e.g. sequence
alignment [20], phylogenetic analysis [21,22], or localization of replica-
tion origin [23,24]. Moreover, there are signal-based tools enabling
types of analyses that are impossible or highly ineffective for symbolic
sequences, especially analysis of periodic features [25–30]. Althoughpa-
pers attempting to systematize methods of numerical representations
[1,31–34] or normalize methods of conversion of biological sequences
[32,35,36] have been published, a conversion between most of the
numerical representations is not possible. Therefore, it is difficult to
compare results between analyses employing different numerical rep-
resentations. Moreover, many numerical representations are designed
only for a particular analysis and are never used again.

Instead of proposing another specific numerical representation, we
present an optimization that allows more precise and wider use of
knownnumerical representation. A very simple 1Dnumerical represen-
tation of nucleotides by integers (specifically 0, 1, 2, 3) was chosen for
optimization in a way preserving whole genetic information and
allowing the conversion of nucleotides to codons and then numerical
translation to amino acids. The numerical translation results in the
loss of information, caused by degeneration of the genetic code as well
as translation in symbolic form. The goal of the optimization is to
minimalize the information loss by using the ideal permutation of inte-
gers, referred to as the numerical map, assigned to sequence residues.
The only published optimal map [32] using permutation T = 0, C = 1,
A = 2, and G = 3 can be further refined for analysis of real sequences
as ourwork shows. Themapwas proposed only for the standard genetic
omputational and Structural Biotechnology. This is an open access article under the CC BY
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Table 1
A summary of all genetic codes.

Code Number Code Name

1 Standard
2 Vertebrate Mitochondrial
3 Yeast Mitochondrial
4 Mold, Protozoan, and Coelenterate Mitochondrial
5 Invertebrate Mitochondrial Code
6 Ciliate, Dasycladacean and Hexamita Nuclear
9 Echinoderm and Flatworm Mitochondrial
10 Euplotid Nuclear
11 Bacterial, Archaeal and Plant Plastid
12 Alternative Yeast Nuclear
13 Ascidian Mitochondrial
14 Alternative Flatworm
16 Chlorophycean Mitochondrial
21 Trematode Mitochondrial
22 Scenedesmus obliquus Mitochondrial
23 Thraustochytrium Mitochondrial
24 Pterobranchia Mitochondrial
25 Candidate Division SR1 and Gracilibacteria
26 Pachysolen tannophilus Nuclear
27 Karyorelict Nuclear
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code and its utilization with other codes is therefore problematic. Our
optimization, based on more biologically relevant criteria, chooses the
ideal numerical permutation for 24 known genetic codes according to
the National Center for Biotechnology Information (NCBI) and forms
one universal numerical map. The map is verified using real sequences.
Although it is a very simple numerical map, based on four real numbers,
its application is wide, starting from simple indexing residues in matri-
ces [33] to complex spectral analysis [28]. The simplicity allows to
speed-up calculations. Minimizing the influence of the genetic code de-
generacy will allow more effective connection in genomic-proteomic
analysis. The preservation of the similarity between genomic and prote-
omic signals after translation makes possible searching genes in whole
genome sequences based on protein query of closely-related species.
There is no whole genome translation requirement as is the case of
BLAST modification (basic local alignment search tool) – tblastn
[37,38]. This enables e.g. better detection of phenotypically related bac-
teria based on their expressed protein content or more effective
searching of conserved genes, orthologue genes and pseudogenes.
This leads to more accurate estimation of core or pan genome for diver-
sification of closely-related pathogenic bacteria [39–41].
28 Condylostoma Nuclear
29 Mesodinium Nuclear
30 Peritrich Nuclear
31 Blastocrithidia Nuclear
2. Materials and Methods

2.1. The Genetic Codes and Data Used

The hitherto used optimal numerical map (T= 0, C= 1, A= 2, and
G= 3) [32] was constructed for the standard genetic code, which is rel-
evant for the majority of linear DNA of eukaryotic organisms. However,
the number of genome records utilizing alternative genetic codes is rap-
idly increasing in public databases as genome sequencing has become
an affordable and widely used technique in molecular biology. There-
fore, the genomic signal processing should take into account properties
of particular genetic codes when new numerical representations are
proposed. Although the differences in codon translations are in most
cases minimal, an inappropriately chosen numerical map can signifi-
cantly influence subsequent analyses. Here, we extended the definition
of the optimal numerical map by considering all genetic codes.We used
the latest systematics of genetic codes (last update: 7 January 2019)
according to the NCBI [42]. This systematics is based mainly on
reviews by Jukes and Osawa [43] and Osawa et al. [44]. In the last
year, it was extended by codes 24–31. On the other hand, seven code
numbers were eliminated (numbers 7, 8, 15, 17, 18, 19 and 20). These
genetic codes were updated (e.g. new taxonomy classification) and ob-
tained a new higher number. All up-to-date 24 genetic codes are listed
in Table 1.

In this paper, we report the construction of the optimal numerical
maps for genetic codes for which translational tables are available on
the afore mentioned NCBI website. Basic translational tables were
used; no special cases were incorporated. The theoretically derived nu-
merical maps were verified using real sequences. A verification dataset
was created for selected genetic codes. Each dataset was comprised of
DNA sequences for 50 genes from several organisms. The genetic
codes for which only few sequences, mostly from one species, are avail-
able in databaseswere excluded fromour study as their optimal numer-
ical maps cannot be reliably verified. Only records of sequences
containing a note of used translational tables were added to the
datasets. There was also a condition that the records annotations must
be verified (not only automatically annotated or predicted) and must
include CDS location, because identification of mRNA segments is not
enough. In total, datasets covering 13 different genetic codes were
used to verify the proposed versatile numerical map. A summary of
the used sequences in datasets for each of the 13 genetic codes is
shown in Table 2.
2.2. The Principle of Numerical Conversion

The construction of the optimal numerical map beginswith a simple
1D numerical map for DNA sequences, which assigns a scalar value
to each nucleotide. A numerical vector is obtained by sequential re-
placement of nucleotide symbols with their scalar representatives.
The resulting vector has the same length as the original symbolic se-
quence. A number of 1D numerical maps for nucleotides using real
numbers, which represent some of the physical or biochemical features
of the nucleobases, can be found. For example, numerical map A =
0.1260, C = 0.1340, G = 0.0806, and T = 0.1335, representing EIIP
values of the bases [45], while map A = 70, C = 58, G = 78, and T =
66, representing atomic numbers of the bases [46]. Another possibility
is to highlight the complementarity of the bases A = −1.5, T = 1.5,
C = 0.5, and G=−0.5 [47] or the general occurrence of purine/pyrim-
idine bases A or G = −1, C or T = 1 as a so-called DNA walk [24,48].

Some simple mathematical operations applied on these specific 1D
numerical maps, e.g. cumulative sum along the numerical vector, can
reveal a specific trend in the sequence [49], but its general utilization
is limited. Thus, finding a linkage between the DNA sequence and its
translation to protein in their numerical representations is not
straightforward.

The basic numerical map consisting of integers {0, 1, 2, 3}, which we
chose to optimize, carries the full information content, as does the orig-
inal symbolic sequence, and can be transformed into any other numer-
ical representation, which is not possible for every numerical
representation, e.g. the DNA walk mentioned above. An advantage of
themap lies in a simple conversion to codon representation and follow-
ing determination of the numerical map for translation into amino acids
numerical representation. As integers from interval 0–3 are used to rep-
resent nucleotides, similarly integers 0–63 and 0–20 are used for codons
and amino acids, respectively.

The codon representation is derived directly from the nucleotide
representation. One codon is coded by three nucleotides and in the nu-
merical form it corresponds to a three-digit number of the quaternary
numeral system. The transformation lies in the conversion of quater-
nary to decimal numbers. For example, amino acid methionine, which
is coded as ATG according to the standard genetic code, has the numer-
ical representation ATG= 203 in the quaternary system defined by the



Table 2
Numbers of sequences in datasets for each of the 13 genetic codes.

Organism Number of sequences Genetic code Source Organism Number of sequences Genetic code Source

Homo sapiens 15 1 nuc Oxytricha nova 6 6 nuc
Pongo abelii 15 1 nuc Paramecium tetraurelia 25 6 nuc
Pan troglodytes 20 1 nuc Stylonychia lemnaepartial 3 6 nuc
Pan troglodytes ellioti 13 2 mt Tetrahymena thermophila 3 6 nuc
Homo sapiens 12 2 mt Gyrodactylus brachymystacis 12 9 mt
Gorilla gorilla 13 2 mt Paragonimus ohirai 12 9 mt
Pongo abelii 12 2 mt Fasciola jacksoni 12 9 mt
Saccharomyces cerevisiae 8 3 mt Microstomum lineare 5 9 mt
Candida glabrata 9 3 mt Taenia asiatica 9 9 mt
Kluyveromyces thermotolerans 11 3 mt Euplotes nobilii 8 10 nuc
Eremothecium sinecaudum 7 3 mt Euplotes raikovi 2 10 nuc
Lachancea kluyveri 7 3 mt Euplotes charon 1 10 nuc
Saccharomyces pastorianus 8 3 mt Euplotes focardii 2 10 nuc
Tetrahymena pyriformis 18 4 mt Euplotes vannus 17 10 nuc
Leishmania tarentolae 4 4 mt Euplotes octocarinatus 20 10 nuc
Plasmodium gallinaceum 3 4 mt Escherichia coli 33 11 nuc
Chondrus crispus 13 4 mt Mycobacterium tuberculosis 17 11 nuc
Choreocolax polysiphoniae 7 4 mt Candida dubliniensis 30 12 nuc
Kappaphycus striatus 5 4 mt Candida albicans 20 12 nuc
Caenorhabditis elegans 12 5 mt Halocynthia roretzi 12 13 mt
Caenorhabditis briggsae 12 5 mt Ciona savignyi 12 13 mt
Ascaris suum 12 5 mt Clavelina phlegraea 13 13 mt
Ascaris lumbricoides 12 5 mt Ascidiella aspersa 13 13 mt
Katharina tunicata 2 5 mt Pediastrum duplex 12 22 mt
Euplotes petzi 6 6 nuc Scenedesmus obliquus 20 22 mt
Acetabularia cliftonii 3 6 nuc Tetradesmus obliquus 18 22 mt
Acetabularia acetabulum 3 6 nuc Candidate division 30 25 nuc
Acetabularia peniculus 1 6 nuc Candidatus Gracilibacteria 20 25 nuc

408 H. Skutkova et al. / Computational and Structural Biotechnology Journal 17 (2019) 406–414
numerical map T=0, C= 1, A= 2, and G= 3. The corresponding dec-
imal number is ATG=2034=3510. All triplets in the DNA sequence are
transformed to the codon representation in this manner. Therefore, a
resulting vector of values from interval 0–63 obtained during this sim-
ple transformation has one-third the length of the original sequence.

On the contrary, the following conversion to the amino acid numer-
ical representation is not so trivial and themethod of conversion has no
simple mathematical explanation. The reason can be found in degener-
ation of the genetic code, caused by 64 codons coding only 20
proteinogenic amino acids. The process of numerical translationwasde-
fined by Cristea [32]. Numerical translation beginswith the lowest value
of the codon numerical representatives TTT = 0004, as defined accord-
ing to the previously presented numerical map. The standard genetic
code translates codon TTT into phenylalanine. Therefore, phenylalanine
is assigned the numerical value Phe = 1. The next codon TTC = 0014
also translates into phenylalanine. Because phenylalanine has already
assigned a numerical representative, the process continues with
Fig. 1. Transformation function between decimal values of codons to decimal values of amino ac
assigned an integer from 1 to 20, while 0 values are reserved for terminators.
another codon which is TTA= 0024 for leucine. Therefore, the numeri-
cal representative is Leu = 2. The next five codons translating into leu-
cine are skipped as the numerical representative is assigned according
to the first codon for the same amino acid. This procedure creates a nu-
merical map for all 20 standard proteinogenic amino acids.

The amino acids reach values from1 to20. Value 0 is reserved for ter-
mination codons regardless of the order of the corresponding codon nu-
merical representative. This assignment to termination codons prevents
discontinuity in assignments to amino acids. The termination codon is
the last codon of a gene sequence and in most sequence analyses it is
not used. After the assignment of decimal values to all amino acids, the
transformational function can be visualized as depicted in Fig. 1.

2.3. The Optimization of Numerical Conversion

There are 24 (factorial 4) possible variants of the assignment when
converting the symbolic representation of nucleotides to the numerical
ids, using numericalmap for nucleotides T=0, C=1, A=2, andG=3. Each amino acid is



Table 3
The optimal numerical maps and their values of optimization criterion.

Genetic
code

Proposed optimal
numerical map

Original optimal
numerical map
[ACGT] = [2 1 3 0]

Globally optimal
numerical map
[ACGT] = [1 0 3 2]

[A C G T] W N W N W N

1 1 0 3 2 33 3 50 3
2 3 1 0 2 20 4 40 2 23 3
3 1 0 3 2 20 3 56 3
4 1 0 3 2 34 4 50 3
5 1 0 3 2 23 3 64 2
6 3 2 0 1 45 4 62 4 51 4
9 1 0 3 2 21 3 64 2
10 1 0 3 2 33 4 50 3
11 1 0 3 2 33 4 50 3
12 3 2 0 1 34 4 49 4
13 3 0 2 1 44 4 56 3 62 4
14 1 0 3 2 21 3 64 2
16 3 2 0 1 38 5 52 4 41 5
21 1 0 3 2 22 3 64 2
22 3 2 0 1 38 4 52 4 41 5
23 1 0 3 2 24 4 50 3
24 1 0 3 2 25 4 52 2
25 3 2 0 1 42 4 112 4 54 5
26 3 2 0 1 41 4 88 4 79 5
27 3 2 0 1 46 4 62 4 52 4
28 3 2 0 1 46 5 62 4 52 4
29 1 0 3 2 33 3 50 3
30 1 0 3 2 45 4 84 4
31 1 0 3 2 46 5 84 4

Boldhighlighted text indicateswhere is the global optimalmap correspondwith localmap
for particular genetic code.
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representation using integers 0, 1, 2, and 3. The selection of a particular
variant of representation is not that important for simple purposes such
as indexing. On theother hand, for a complex analysis requiring the con-
version of geneCDS to codons and amino acids, thepreservation ofmax-
imum similarity of the signals in each step of the conversion is highly
desirable. The goal of the numerical map optimization therefore lies in
the maximization of the signal similarity. The afore mentioned numeri-
cal map T=0, C=1, A=2, and G=3was designed as the optimal nu-
merical map for the standard genetic code based on a simple optimizing
criterion, which is the smallest number of degenerated segments N in
the transformation function. As Fig. 1 shows, this map has N = 3
degenerated segments if termination codons are not considered. The
degenerated segments are caused by three amino acids (leucine, serine,
and arginine),which suffer fromdegenerescency six. Analyses of real se-
quences showed that the simple criterion based on the number of
degenerated segments was not sufficient for the following reason.

Let's assume that the genetic code is not degenerated or that the
level of degeneration is the same for all amino acids. The trend of
amino acid signal would then be identical with the codon signal but
three times smaller. However, there are different levels of degeneration
in the genetic code and this has to be taken into account when optimiz-
ing thenumericalmap. The optimal numericalmapprovides thehighest
similarity between signals for codons and amino acids. Higher similarity
can be obtained by a more sophisticated optimization criterion.

The original optimization criterion counts only the number of
degenerated segments. Here, we propose also to consider the weight
of degeneration. Theweight of degeneration is determined by the num-
ber of codons causing the degeneration and by the drop of transforma-
tion function during the degeneration. The weight of degeneration is
depicted in Fig. 1 as white columns in the positions of the degenerated
segments. The new optimization criterion is based on the length and
height of the degenerated segments. For example, the degenerated seg-
ment for leucine (see Fig. 1) has length L=4 and heightH=4, and the
degenerated segment for arginine has L = 2 and H = 5. The weight of
the degenerated segment for leucine iswL = L xH=4× 4=16, for ar-
gininewR= L xH=2×5=10and for serinewS= L xH=2×12=24.
The optimization criterionW is the sum of all degeneration weights ex-
cept the termination codons. The example in Fig. 1 hasW=wL +wS +
wR = 16 + 24 + 10= 50.

The optimal numerical map has the lowest value of optimization cri-
terion W from all 24 possible variants. This optimization ensures the
minimal divergence between numerical signals for codons and amino
acids; therefore, the signals representing real DNA and protein se-
quences are as similar as possible. Based on this new criterion, the opti-
mal numericalmapwas derived for each of the 24 genetic codes. Table 3
shows values of the optimization criterion W for the resulting optimal
numerical maps for all genetic codes. For comparison, the table also
shows optimization criterion value W for the original numerical map
T = 0, C = 1, A = 2, and G = 3 and the number of degenerations N
for all optimal numerical maps. It is evident that the original numerical
map has a lower or identical number of degenerations for all genetic
codes, but has a higherW value in all cases in comparison to the newop-
timal numerical maps. The previously published map minimized only
the number of changes in the signals. Our criterion minimizes also
their size. Therefore, it can be assumed that the new optimal numerical
maps will cause a smaller dissimilarity between signals for codons and
amino acids than the original numerical map.

In addition to the optimal numerical map for each of the known ge-
netic codes, a globally optimal numerical map was derived. The globally
optimal map can be used for sequences without a defined genetic code
or for applications where the same settings are needed. The global opti-
mumwaschosenaccording to theminimal suitability scoreof thenumer-
icalmapvariants. The suitability score of eachnumericalmapvariantwas
calculated as follows. Firstly, for each variant of numerical map,W values
were calculated for all 24 genetic codes. An order of suitability of numer-
ical maps for each genetic code was defined based on W values. The
suitability score of the given numerical map variant is the sum of its suit-
ability orders for all genetic codes. The suitability score eliminates the ef-
fect of very low or high W values and ensures that the chosen globally
optimal numerical map is not extremely unsuitable for some of the ge-
netic codes. The resulting globally optimal map is defined as A= 1, C =
0, G=3, and T=2. This map is also the optimalmap for 14 of the 24 ge-
netic codes. Table 3 also highlights valuesW andN of the globally optimal
map for genetic codes having a different optimal numericalmap than the
global one. In these cases, theglobally optimalmaphas a slightlyworseW
value than theoptimalmap.Yet,with theexceptionof genetic codenr. 13,
it is better than the original numerical map based only on N criterion.

3. Results and Discussion

3.1. Evaluation of Signal Distortion Caused by Translation

The goal of the proposed optimizationwas to achieveminimal diver-
gence from a linear trend of the transformation function, which leads to
theminimal difference between genomic and proteomic signal. The dif-
ference is caused by degeneration of the genetic code. The optimal
numerical map can minimalize distortion of the numerical representa-
tion of translated protein.We evaluated the influence of themap to sig-
nal distortion. Two frequently used parameters for evaluation of the
differences between two signals were used: Pearson correlation coeffi-
cient (corrcoef) and percentage deviation (D). Because the corrcoef pa-
rameter is not affected by mean value of the signals it can be used as a
quality criterion in its basic definition. On the contrary, the percentage
deviation needs adjustment of the signal ranges. Both signals have to
be normalized by their maximal possible value, which is 63 for codon
signal and 20 for amino acid signal. The percentage deviation D for the
normalized signals can be computed as

D ¼ ∑M
n¼1c n½ �=63−a n½ �=20

M
� 100;
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where c[n] is the codon signal and a[n] is the amino acid signal of the
translated protein. Both signals have the same length M, which is the
number of codons or amino acids.

Short protein dehydrogenase subunit 4 L (NADH) from the mito-
chondrial DNA sequence of the common chimpanzee (Pan troglodytes,
accession number AEQ36160) was used to demonstrate the influence
of various maps to signal distortion. The protein was translated from
theDNA sequence according to the genetic code nr. 2 – vertebratemito-
chondrial. The effect of the numerical map on signal distortion for four
different numerical maps is shown in Fig. 2. Fig. 2a) shows the codon
signal and the amino acid signal when the optimal numerical map for
genetic code nr. 2 was used. The map is A = 3, C = 1, G = 0, and T =
2. It is evident that both signals are very similar. Their percentage devi-
ation is less than 4% and corrcoef is over 0.98, which shows very high
mutual dependence of both signals. Subplot 2b) shows both signals
for the original optimal map A = 2, C = 1, G = 3, and T = 0, which
was proposed in [32], and subplot 2c) shows both signals for our glob-
ally optimal map A= 1, C = 0, G = 3, and T= 2. These two numerical
maps produced signals with a slightly higher dissimilarity than the op-
timal numericalmap for the given genetic code. Nonetheless, bothmaps
preserved a high level of similaritywith percentage deviation under 10%
and correlation coefficient over 0.95. It is notable that our globally opti-
malmap gave better results than previously published optimalmap. For
comparison, subplot 2d) shows signals for a randomly chosen numeri-
cal map that was not optimal for any of the genetic codes. As parameter
D indicates, the non-optimal map caused four times higher distortion
than the optimal map. The correlation parameter under 0.7 signifies
moderate dependence of the signals.

We evaluated signal distortion for the optimal numerical maps of
13 genetic codes. Each genetic code was represented by 50 real DNA
sequences. As the results differ for each sequence and genetic code,
a mean corrcoef and its standard deviation (STD) were calculated.
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Fig. 2.Comparison of codons and aminoacids signals for different numericalmaps: a) newoptim
map; c) new general numerical map; d) randomly chosen numerical map.
The results are summarized in Table 4. Similarly, a mean percentage
deviation was evaluated, as Table 5 shows. In both tables, the first col-
umn corresponds to the genetic code used, the second column sum-
marizes the results for our optimal numerical maps, the third
column is for previously published optimal map, and the fourth col-
umn shows the results for our globally optimal map in cases where
it is not identical to the proposed optimal map for a specific genetic
code. The last two columns show the best and the worst results
from all other variants of numerical map. The best results are shown
only in cases where they differ from the results of the proposed opti-
mal map. Our optimal numerical maps are not always the best possi-
ble maps for real sequences (e.g. genetic code 2) because these maps
were theoretically derived with the assumption of uniform codons
distribution in sequences. Cases where this theoretical assumption is
not satisfied are discussed below.

The results summarized in Table 4 and 5 suggest that optimization of
the numerical map is necessary as the signal distortion can be higher
than 20% (considering mean value and standard deviation of D). In
some extreme cases, the correlation coefficient dropped under 0.5,
which denies the assumption that the codon signal and the amino
acid signal are closely related. Our optimal maps gave, in most cases,
better than or at least comparable results to the original optimal map.
There were only three cases when the corrcoef was higher for another
variant of numerical map and two cases when the percentage deviation
was also lower. Thiswas caused by codon usage bias,which is a different
frequency of codons for one amino acid. The codon bias is quite com-
mon in bacterial [50] and viral [51] DNA or RNA and is also reported
in mitochondrial DNA of vertebrates [52]. For example, our optimal nu-
merical map for vertebrate mitochondrial DNA did not provide the fin-
est results for this genetic code. Its percentage deviation 4.39% was the
secondbest. In this case, the corrcoefwas also higher for the globally op-
timal map. Fig. 3 shows the frequencies of codons in total for 50
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al numericalmap for genetic codevertebratemitochondrial; b) original optimal numerical



Table 4
Evaluation of genomic signal distortion based on Pearson correlation coefficient.

Genetic code Optimal numerical maps
for genetic codes

Original optimal
numerical map
[ACGT] = [2 1 3 0]

Globally optimal numerical
map [ACGT] = [1 0 3 2]

Best result Worst result

1 0.9647 ± 0.0273 0.9168 ± 0.0173 0.6224 ± 0.0901
2 0.9277 ± 0.0574 0.9180 ± 0.0770 0.9362 ± 0.0762 0.9567 ± 0.0831 0.5604 ± 0.1171
3 0.9544 ± 0.0315 0.9478 ± 0.0235 0.7123 ± 0.0782
4 0.9224 ± 0.0370 0.9210 ± 0.0297 0.4903 ± 0.1844
5 0.9217 ± 0.0443 0.8714 ± 0.0608 0.5195 ± 0.0871
6 0.9547 ± 0.0105 0.8895 ± 0.0532 0.9395 ± 0.0136 0.9689 ± 0.0129 0.6267 ± 0.0423
9 0.9396 ± 0.0194 0.8984 ± 0.0393 0.5761 ± 0.1060
10 0.9518 ± 0.0182 0.9478 ± 0.0197 0.7839 ± 0.0633
11 0.9550 ± 0.0216 0.9400 ± 0.0249 0.6384 ± 0.0883
12 0.9244 ± 0.0454 0.9176 ± 0.0401 0.9105 ± 0.0455 0.9388 ± 0.0348 0.6015 ± 0.0813
13 0.9288 ± 0.0219 0.9029 ± 0.0232 0.8898 ± 0.0339 0.5560 ± 0.1209
22 0.9456 ± 0.0226 0.9121 ± 0.0376 0.8893 ± 0.0670 0.6297 ± 0.1017
25 0.9410 ± 0.0470 0.7905 ± 0.0681 0.8454 ± 0.0763 0.6649 ± 0.0970
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vertebrate mitochondrial sequences that we used to evaluate the pro-
posed optimal numerical maps.

Our optimization criterion tries to minimalize the influences of ex-
tensive degeneration of amino acids. For example, amino acid leucine
is coded by six codons. Four of them are mapped next to each other
by the transformational function as they differ only by one nucleotide
in the third position within the codon (CTA, CTC, CTG, CTT) that has
the smallest informational weight. The remaining two codons (TTA,
TTG) differ in the first position. During the optimization, we attempted
to minimize the difference in assigned values between these two and
the remaining four codons as the difference causes non-monotony (oc-
currence of degenerated segment) in the transformation function, lead-
ing to distortions in the signals. The more codons used to assign a value
to the amino acid, the lower theweight of degenerated segment. There-
fore, a value for leucine should be assigned according to the four neigh-
boring codons rather than the remaining two. Although the proposed
optimization minimalizes these issues, there is a certain loss of signal
resolution as several different codons have the same value for amino
acid and therefore the amino acid signal differs from the codon signal.
If the codon distribution in sequence is uniform, the signal distortion
is minimal. On the other hand, if a single overrepresented codon such
as CTA in our vertebrate mitochondrial dataset shown in Fig. 3 is pres-
ent, the signal distortion is noticeable. The codon CTA forms more
than one-fifteenth of the sequences (1119CTAout of all 14,942 codons).
The proposed optimal map A = 3, C = 1, G = 0, and T = 2 assigns the
value 1234= 2710 to the codon CTA, which is three more than assigned
to another leucine codon, CTG, with value 1204 = 2410. The CTG codon
had frequency 167 in the dataset. A similar issue applies to codons ACA
(freq. 536) and ACG (freq. 36) for the amino acid threonine, and codons
TCA (freq. 333) and TCG (freq. 26) for serine. That is the reason why the
Table 5
Evaluation of genomic signal distortion based on percentage deviation D.

Genetic code Optimal numerical maps
for genetic codes

Original optimal numerical
map [ACGT] = [2 1 3 0]

1 4.74 ± 0.88 6.83 ± 0.66
2 4.39 ± 1.96 7.12 ± 1.13
3 3.47 ± 0.94 7.66 ± 0.95
4 7.55 ± 1.33 8.04 ± 2.20
5 7.63 ± 1.50 8.93 ± 1.74
6 5.38 ± 0.65 8.82 ± 1.91
9 7.00 ± 0.92 8.03 ± 1.37
10 4.93 ± 0.61 5.79 ± 0.65
11 4.04 ± 1.45 5.78 ± 1.04
12 6.79 ± 1.66 7.08 ± 1.42
13 7.72 ± 1.40 8.44 ± 0.95
22 6.60 ± 0.86 7.53 ± 0.93
25 6.73 ± 1.89 12.54 ± 1.41
globally optimal map A = 1, C = 0, G = 3, and T = 2 is slightly better
than the optimal map as the difference in numerical values for adenine
and guanine is only 2.

For these reasons, the proposed optimization criterionwas not suffi-
cient and the results strongly depended on features of the particular an-
alyzed sequences. For example, Fig. 2 shows signals for vertebrate
mitochondrial sequence for which the optimal numerical map was
also the best variant.

In addition, an average value of correlation coefficient exceeded 0.9,
which is sufficient formost of the commonanalyses, e.g.motif searching
or comparative analysis. For more precise results, an additional optimi-
zation based on features of analyzed sequences such as codon bias is
necessary. Many of the genetic codes are newly discovered and thus
public repositories lack a sufficient number of sequences for reliable op-
timization. Frequently, only a single sequence is available. For these in-
sufficiently represented genetic codes, it is convenient to use a
numerical map based on a simple, clear and general optimization crite-
rion. Another possibility is to use a globally optimal numerical map in-
dependent of the genetic code.

To conclude, the proposed globally optimal map provides better re-
sults than the original optimal map in 10 out of 13 cases. In the remain-
ing three cases, the results are slightly worse. There was even a single
case in which the original optimal map was significantly worse than
our maps. It was the case of genetic code nr. 25 for which the average
percentage deviation was above 10% and the correlation coefficient
was under 0.8. The globally optimal map was identical to the proposed
optimal maps for seven out of 13 tested genetic codes. Additionally, for
six of these seven codes, thismap gave the best results, with a single ex-
ception in genetic code nr. 10,where amapwith slightly better percent-
age deviation could be found.
Globally optimal numerical
map [ACGT] = [1 0 3 2]

Best result Worst result

16.52 ± 1.76
5.72 ± 1.27 3.9853 ± 2.0414 16.50 ± 2.57

15.83 ± 1.47
16.58 ± 1.99
14.20 ± 1.24

5.80 ± 0.53 18.53 ± 0.56
13.81 ± 2.53

4.6911 ± 0.6924 13.87 ± 1.03
17.46 ± 1.66

7.45 ± 1.23 16.45 ± 1.61
9.02 ± 1.14 15.72 ± 2.23
8.63 ± 1.40 15.03 ± 1.27
8.63 ± 1.09 16.79 ± 2.53



Fig. 3. Codon frequencies for 50 vertebrate mitochondrial coding sequences. Termination
codons are marked red and initiation codons green.
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3.2. Phylogenetic Example

In addition to the analysis of signal distortion caused by translation,
an influence of signal distortion on the topology of phylogenetic tree
was tested. A dataset covering eight protein coding sequences of HBB
(beta globin) genes of mammals from GenBank was used; see Table 6.
All sequences have the same length of 444 nucleotides, 148 codons/
amino acids, respectively. Therefore, no signal alignment was needed.
The close phylogenetic relationship of some species allowed us to exam-
ine the resolution of phylogenetic classification using the signals. A ref-
erence taxonomic tree was constructed according to taxonomy
published at NCBI [53,54] and is shown in Fig. 4.

The phylogenetic analysis was conducted on numerical representa-
tions of protein sequences, while employing three different numerical
maps. These maps were derived from numerical maps for nucleotides,
as previously described. A mutual distance of two protein signals was
calculated as proportional deviation d:

d ¼ ∑M
n¼1 a1 n½ �=20−a2 n½ �=20j j

M

where a1[n] and a2[n] are protein signals of length M.
Although the signal normalization was not necessary as both com-

pared signals had the same value range, it was preserved to maintain
consistency with the previous evaluation of signal distortion. The pro-
portional deviation was calculated for all pairs of signals to compile
the distance matrix, and the phylogenetic tree was constructed using
neighbor-joining [55]. The resulting phylogenetic trees, using three dif-
ferent maps for the standard genetic code, are shown in Fig. 5. The first
map is the newly proposed optimal map A = 1, C = 0, G = 3, T = 2,
which is also the globally optimal map for all genetic codes. The second
Table 6
Overview of tested organisms.

Accession no. Organism

KR818803 Panthera leo
KR818801 Panthera uncia
KR818802 Panthera tigris
NM_001278161 Mus musculus
KJ677213 Myodes glareolus
KJ725788 Peromyscus maniculatus
M17084 Rattus norvegicus
KU350152 Homo sapiens
is the original optimal map A= 2, C = 1, G = 3, T= 0, and the third is
the non-optimal assignment of nucleotides A= 2, C = 3, G= 1, T=0.

The trees of all numerical maps were compared to reference tree by
calculating Robinson-Foulds distance (RFdist) [56] for rooted trees
using R software (packages phytools and phangorn). The robustness
of the phylogenetic trees was evaluated by the bootstrapping statistical
test [57]. The implementation of this standard statistical test for sym-
bolic sequence based phylogenetic trees is practically identical for geno-
mic signal based trees. However, it must be taken into account that each
mutation in numerical representation have different influence to result
tree. The variability of bootstrap replications is therefore much higher
than for symbolic sequences. While symbolic sequence based methods
need at least 100 bootstrap replications for reliable statistical verifica-
tion, the genomic signal based implementation requires 1000.

Despite this being a very simple classification task, only our optimal
map led to the phylogenetic tree being similar to the reference treewith
RFdist equal to 0. The original numerical map caused a split in the
Cricetidae family (RFdist = 0.167) and the random numerical map
caused disorder in the internal arrangement of theMuroidea superfam-
ily cluster. Moreover, the non-optimal map classified humans as being
closer to carnivorans than to rodents (RFdist=0.5) and caused an over-
all decrease in proportional deviation. This suggests that the non-
optimal numerical map decreases the classification resolution of signal
representations. This fact is also confirmed by the robustness of thephy-
logenetic tree, where the bootstrap supports of nodes in non-optimal
map tree are lower than in other two.

4. Conclusion

The aim of this paper is to contribute to the standardization of basic
operations in genomic signal processing, which is a rapidly developing
new branch of bioinformatics. The proposed optimization sets new
rules for the first step of genomic signal processing, which is the trans-
formation of symbolic sequences to numerical representation. In com-
parison with other authors, we are not proposing a new type of
sophisticated numerical transformations, which are frequently suitable
only for one type of analysis, but we optimize the known conversion of
nucleotides to integers 0, 1, 2, and 3. This numerical mapping is simple,
versatile and currently widely used. Many users of bioinformatics soft-
ware are using it unknowingly. Computational functions prefer process-
ing of numbers rather than symbols. This simple numerical map and its
variations, based on different assignments of values to nucleotides, can
be optimized for the purposes of complex analyses of DNA sequences
and proteins, e.g. genome mapping or comparative genomics. For this
purpose, it is necessary to minimalize the loss of genetic information
caused by translation in the numerical form.

Although the numerical map was already optimized [32], the opti-
mization criterion was set simply as a number of amino acids degener-
ations and the resulting numerical map is not robust enough for the
processing of real data. We proposed optimization according to a new
optimization criterion that is focused on minimizing information loss
between genomic and proteomic signals. The optimal numerical map
ensures maximal similarity of the numerical representation of nucleo-
tides and amino acids despite the degeneration of the genetic code.
The basis of optimization criterion lies in minimizing the divergence
of numerical values of codons representing multiple degenerated
amino acids, e.g. leucine with six codons. This optimization takes
into account not only a number of degenerated amino acids but
also the weight of introduced errors. Another disadvantage of the
original optimal numerical map comes from its exclusive definition
only for the standard genetic code. Therefore, the selected variant
of value assignment is not optimal for alternative genetic codes and
its general utilization is limited.

We applied the new optimization criterion to all known genetic
codes to derive particular optimal maps. Moreover, we were able to
propose the globally optimal map based on complex analysis of



Fig. 4. Reference taxonomic tree of tested organisms according to NCBI taxonomy.
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optimization criterion results for all 24 variants of numerical map for
each of 24 genetic codes.

The proposed optimal maps for specific genetic codes as well as the
globally optimal map were verified using 650 gene sequences of differ-
ent organisms and different types of DNA, e.g. nuclear, mitochondrial
etc. Results of verification were compared to results for the original op-
timal map and to the worst and the best cases of all numerical maps.
Two parameters, correlation coefficient and percentage deviation,
were used to evaluate dissimilarity between codon and amino acid sig-
nal. While the first of them quantifies dependence between signals be-
fore and after translation, the latter evaluates dissimilarity of these
signals. For most of the genetic codes, the best results were obtained
using our newly proposed optimal maps. Three cases of slightly better
results of percentage deviation and only two cases of correlation coeffi-
cient were recorded when using other maps. In these cases, the results
depended heavily on sequences used for verification due to their
codon bias, which manifests differently for various organisms. An addi-
tional optimization is needed for more precise analysis using sequences
with a high level of codon bias. Unfortunately, current databases do not
contain a sufficient number of sequences for many of the genetic codes.

Althoughourproposed optimalmapsdidnot provide thebest results
for all scenarios, the correlation coefficient always exceeded 0.9 and the
a b

d [ - ] d [ -

[A C G T] = [1 0 3 2] [A C G T] 

Fig. 5. Phylogenetic trees constructed from protein signals based on three numerical maps: a) ne
labels of branch nodes represent results of statistical verification by bootstrapping test (percen
maximal percentage deviationwas kept under 8%. The value of percent-
agedeviationmay seemquitehigh,but the translation itself fromcodons
to amino acids causes loss of signal resolution as the value range of
amino acid signal is one-third of the codon signal and the range reduc-
tion is not linear because of the genetic code degeneration.

In addition to the verification of proposed optimal numerical maps
for particular genetic codes, the globally optimal map was verified.
Such a map can be applied for general use in analyses without a speci-
fied genetic code or not permitting a change of settings. The globally op-
timal map was the best possible solution for 15 of the 24 genetic codes
based on our optimization criterion and for eight of the 13 sets of real
sequences. Moreover, our globally optimal map was, for 10 of 13 real
datasets, better than the original optimal map.

Theworst result from all variants of numerical maps suffered from a
percentage deviation of over 20%, which is more than two times worse
than the worst result of the proposed optimal maps. In such cases, it is
not possible to differentiate between the deviation caused by transla-
tion and realmutations in sequences. Conclusively, usage of the optimal
numerical map is important and the random assignment of numbers to
nucleotides is not reliable.

An example of phylogenetic analysis based on comparison of signals
was conducted to demonstrate the effect of usage of different variants of
c

] d [ - ]

= [2 1 3 0] [A C G T] = [2 3 1 0]

woptimal numerical map; b) original numericalmap; and c) random numericalmap. Red
tage values from 1000 replications).
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the numerical maps. Three phylogenetic trees were constructed from
the coding sequences of mammalian HBB genes. Only the tree based
on the proposed optimal numerical map had comparable topology
with the reference taxonomy. As the analysis demonstrates, even such
a simple task is highly dependent on the utilized numerical map,
while poor results are obtained for non-optimal maps.
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