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Abstract. The increasing prevalence of neurodegenerative conditions such as Parkinson’s disease (PD) and related mobility
issues places a serious burden on healthcare systems. The COVID-19 pandemic has reinforced the urgent need for better tools
to manage chronic conditions remotely, as regular access to clinics may be problematic. Digital health technology in the form
of remote monitoring with body-worn sensors offers significant opportunities for transforming research and revolutionizing
the clinical management of PD. Significant efforts are being invested in the development and validation of digital outcomes to
support diagnosis and track motor and mobility impairments “off-line”. Imagine being able to remotely assess your patient,
understand how well they are functioning, evaluate the impact of any recent medication/intervention, and identify the need for
urgent follow-up before overt, irreparable change takes place? This could offer new pragmatic solutions for personalized care
and clinical research. So the question remains: how close are we to achieving this? Here, we describe the state-of-the-art based
on representative papers published between 2017 and 2020. We focus on remote (i.e., real-world, daily-living) monitoring
of PD using body-worn sensors (e.g., accelerometers, inertial measurement units) for assessing motor symptoms and their
complications. Despite the tremendous potential, existing challenges exist (e.g., validity, regulatory) that are preventing the
widespread clinical adoption of body-worn sensors as a digital outcome. We propose a roadmap with clear recommendations
for addressing these challenges and future directions to bring us closer to the implementation and widespread adoption of
this important way of improving the clinical care, evaluation, and monitoring of PD.
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INTRODUCTION: THE “VISION”—ARE
WE THERE YET?

At the 2013 World Congress of the International
Society of Posture and Gait Research, a keynote
speaker predicted that digital health technology such
as body-worn sensors (BWS) would soon become
a routine, widely used tool to augment the clini-
cal examination of patients with Parkinson’s disease
(PD) and, more importantly, enhance patients’ qual-
ity of life [1]. Accumulating evidence at that time
demonstrated that low-cost, easy-to-use BWS could
be used in the clinic to provide new information
and add needed objectivity to the assessment of PD
motor symptoms, gait, and mobility. Use of BWS
could, therefore, help patients by enhancing their
therapeutic management, function and quality of life,
and offer them a personalized approach to their
symptoms. Moreover, an emerging, exciting set of
studies demonstrated that continuous, “24/7” remote
monitoring empowered by BWS had the potential
to measure, characterize, and quantify both sub-
tle and large changes in mobility and other critical
motor symptoms of a patient with PD, providing
a robust comprehensive map of the patient’s func-
tion and its changes over time. In this vision, a
patient would receive a small package in the mail
containing a BWS several weeks before a routine
clinical exam. After following simple instructions
and wearing the device continuously for one week,
the information collected would be uploaded to a
cloud, automatically analyzed, summarized, sent to
the clinician for review and provide feedback to the
patient. At the clinical exam, the healthcare pro-
fessional would read an objective, detailed report
on the patient’s motor function that could be com-
pared and contrasted to the results of previous years,
even before the patient took a single step into the
clinic. In this way, the clinical visit would be trans-
formed into a more productive and informed meeting,
enhancing clinical care in a truly personalized
manner.

This optimistic vision has not yet been realized
[2, 3]. Nonetheless, at a time when COVID-19 is
wreaking havoc throughout the globe, the need has
become even greater. In this short review, we provide
an overview of the current use of BWS (accelerom-
eters, inertial measurement units (IMUs)) for the
remote monitoring of PD motor symptoms, summa-
rize the challenges that must be overcome to achieve
that potential, and outline steps that should and are
being taken, in the long road ahead [2] to address this

important opportunity for improving the evaluation
and monitoring of PD motor symptoms.

STATE OF THE ART: WHERE ARE
WE AT?

The rapidly expanding field of remote monitor-
ing has been the subject of several recent systematic
reviews [4–7]. Here, we provide an overview of recent
representative work (2017–2020) on remote monitor-
ing of PD motor symptoms using BWS (Table 1).
We report studies using BWS for remote monitor-
ing (real-world, at-home and in the community) in
both unsupervised or scripted conditions, in order
to quantify digital outcomes, focusing on papers
related to motor symptoms and motor complications:
tremor, bradykinesia, dyskinesia, postural instability,
gait disturbances and turning, falls risk, freezing of
gait (FoG) and physical activity. Using a previously
proposed framework [8], in Table 1 we report:

(a) the clinical concept of interest;
(b) quantified digital outcomes;
(c) validity:

i. criterion validity: digital outcome vali-
dated against a reference system,

ii. construct validity: digital outcome vali-
dated against clinical scales (convergent
validity) and/or showed known groups
differences (discriminant validity));

(d) digital outcome regulatory/qualification sta-
tus assessed by regulatory bodies (e.g., EMA,
FDA) [9, 10].

Tremor, bradykinesia, dyskinesia, motor
fluctuations

BWS have been used to automatically detect and
evaluate tremor, bradykinesia, dyskinesia and on/
off medication state [11–17]. The main techniques
for identification of these symptoms are based on
machine learning (ML) models (e.g., support vec-
tor machines (SVM)). Models are usually fed with
digital outcomes that are signal-based features (e.g.,
frequency domain) extracted from the BWS.

In terms of criterion validity, studies tend to vali-
date the digital outcome against a reference system
(e.g., videos, self-report), using mainly ML tech-
niques, showing good accuracy (>90%) [13, 15, 17].
Construct validity is generally tested utilizing clinical
scales (e.g., Unified Parkinson’s disease Rating Scale
(UPDRS)), but is less explored.
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Table 1

Representative studies examining remote monitoring of Parkinson’s disease (PD) motor symptoms using body worn sensors (BWS), between 2017 and 2020. Validation of digital outcomes has
been classified ‘yes’ for each of the following criteria: 1. criterion validity: if digital outcome has been validated against a gold standard reference in the study cited, or in previous studies; 2.
construct validity: if digital outcome has been validated (e.g., correlated) against clinical scales (convergent validity) and/or it has shown significant differences between groups (discriminant
validity) in the study cited, or in previous studies. Digital outcome regulated/qualified has been classified ‘yes’ if BWS and/or digital outcome has received FDA (510K1) or EMA2 positive

decision/qualification

Study, Year Dataset Protocol BWS Type/Position Clinical Concept of Interest Digital Outcome Digital Outcome Validated
(1. criterion validity,
2. construct validity)

BWS and/
or Digital
Outcome
Regulated/
Qualified

Tremor, bradykinesia, dyskinesia, motor fluctuations

Samà et al.,
2017 [13]

12 PD 1 day∗ (40 min), scripted
tests ON and OFF state

IMUs (9 x 2)/Waist Bradykinesia Gait, frequency domain
features for SVM model

1. Yes, at home (SVM,
against videos)

No

2. Yes (convergent validity
(UPDRS, UPDRS-III))

Tsiouris et al.,
2017 [14]

20 PD Scripted tests PD manager: IMUs
(Microsoft Band), Sensor
insoles (Moticon), Smart
Pillbox (SimpleMed+,
Vaica), Smartphone/Wrist,
Feet

Tremor, dyskinesia,
bradykinesia, gait, FoG

Amplitude and constancy
of tremor/not detailed
features for ML techniques

1. No
2. Yes (convergent validity
(UPDRS))

No

Wagner et al.,
2017 [17]

19 PD 2 days Accelerometer
(GENEActiv)/Wrist

Tremor, bradykinesia,
dyskinesia

Wavelet features
(contribution and relative
energy of each scale)

1. Yes, in the lab (SVM,
against clinician scores)

No

2. No
Farzanehfar
et al., 2018
[12]

103 PD 6-7 days, unsupervised Accelerometer (PKG,
Global Kinetic
Corporation)/Wrist

Bradykinesia, dyskinesia Bradykinesia score
classified as movements
with lower acceleration and
amplitude. Dyskinesia
classified as movements of
normal amplitude and
acceleration, but shorter
periods without movement

1. Yes, previous work [49]
2. Yes, (convergent validity
(UPDRS III))

Yes

Rodrı́guez-
Molinero
et al., 2018
[15]

23 PD 1–3 days IMUs (9 × 2)/Waist Bradykinetic gait,
dyskinesia, ON-OFF state

Bradykinesia fluidity
measure (frequency domain
measure, power spectra
1–10Hz for each stride),
dyskinesia (power spectra
1–4Hz for each stride)

1. Yes (SVM, against
diaries)
2. No

No

Rodrı́guez-
Molinero
et al., 2019
[16]

13 PD 30 min of scripted activities IMUs (9 × 2)/Waist Dyskinesia Power spectrum density in
the frequency band
comprised of harmonics of
1–4Hz

1. Yes, in home
environment using video
data

No

2. Yes, concurrent validity
against clinical scales

(Continued)
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(Continued)

Study, Year Dataset Protocol BWS Type/Position Clinical Concept of Interest Digital Outcome Digital Outcome Validated
(1. criterion validity,
2. construct validity)

BWS and/
or Digital
Outcome
Regulated/
Qualified

Coates et al.,
2020 [46]

5 PD, 5
OA

7 days, unsupervised Axivity AX3/Lower back Motor symptom severity
(MDS-UPDRS III)

Sample entropy (SampEnt) 1. No No
2. Yes (convergent validity
(against UPDRS III &
levodopa equivalent daily
dose (LEDD)) and
discriminant validity (PD
vs. CL))

Evers et al.,
2020 [11]

25 PD,
25 CL

1 day, scripted tests at home IMUs (Gait Up Physilog 4,
Android Wear smartwatch),
contextual (smartphone)
and physiological
(Empatica E4)
sensors/Lower back, wrists,
ankles, pocket

ON-OFF state, FoG Gait: Frequency domain
measures (power spectral
density (PSD), total power
in the 0.5–10 Hz band,
frequency, height and width
of PSD dominant
frequency)

1. No
2. Yes (convergent validity
(ON vs. OFF state) and
discriminant validity (PD
vs. CL))

No

Postural instability, gait disturbances, and turning

Rodrı́guez-
Molinero
et al., 2017
[26]

75 PD 1 day∗, clinical assessment
and scripted tests at home
in ON and OFF state

IMUs (9 × 3)/Waist UPDRS-III (axial function,
balance, and gait)

Scalar value for ON-OFF
state based on frequency
domain features (power
spectra 1–10Hz for each
stride).

1. Yes, in the lab, previous
work, SVM against videos
[50]
2. Yes (convergent validity
(UPDRS-III, UPDRS-III
factor 1: “axial function,
balance, and gait.”))

No

Haertner
et al., 2018
[27]

55 PD 12 days (median) IMUs (RehaGait®,
Hasomed)/Lower back

Turning, falls risk Duration, angle, average
angular velocity, starting,
middle and ending angular
velocity and maximum
angular velocity

1. Yes, in home-like
environment, previous
work [51]

No

2. Yes (discriminant
validity (various PD fallers
types))

Mancini et al.,
2018 [25]

94 PD
(25
freezers)

3 days, unsupervised,
clinical assessment and
scripted test at home

IMUs (Dynaport Hybrid,
McRoberts)/Lower back

Turning, FoG Mean and coefficient of
variation (CV) of: number
of turns per 30 min, turn
angle amplitude, turn
duration, mean and peak
turn velocity, turn jerkiness,
turn medio-lateral range of
acceleration.

1. Yes, in the lab for
turning, previous work [52]
2. Yes (convergent validity
(NFOG-Q) and
discriminant validity
(freezers vs. non-freezers)).

No
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Shah et al.,
2020 [22]

29 PD,
20 OA

7 days, unsupervised∗ IMUs (Opal,
APDM)/Lower back, Feet

Gait Gait speed, stride length,
cadence, double-support,
swing duration, pitch of
feet at initial ground
contact, frequency of bout
length (number of strides)
over a week

1. Yes, in the lab, previous
work [53]

No

2. Yes (convergent validity
(UPDRS-III, PIGD,
previous work) and
discriminant validity (PD
vs. OA))

Shah et al.,
2020 [24]

29 PD,
27 CL

7 days, unsupervised∗ IMUs (Opal,
APDM)/Lower back, Feet

Gait, turning 43 digital mobility
characteristics (lower body,
upper body, turning,
activity, variability)

1. Yes, in the lab, previous
work [52, 53]
2. Yes (discriminant
validity (PD vs. CL))

No

Shah et al.,
2020 [23]

29 PD,
20 CL,
13 MS,
21 CL

7 days, unsupervised∗ IMUs (Opal,
APDM)/Lower back, Feet

Gait, turning 46 digital mobility
characteristics (lower body,
upper body, turning,
activity, variability)

1. Yes, in the lab, previous
work [52, 53]

No

2. Yes (convergent validity
(UPDRS-III, PIGD) and
discriminant validity (PD
vs. CL))

Falls risk, freezing of gait (FoG)

Rodrı́guez-
Martı́n et al.,
2017 [36]

21 PD 1 day∗ (40 mins), scripted
tests ON and OFF state

IMUs (9 × 2)/Waist FoG 55 features for real-time
SVM model

1. Yes, at home (against
videos)
2. No

No

Rodrı́guez-
Martı́n et al.,
2017 [37]

12 PD 3 days∗, unsupervised, and
in-lab scripted tests

IMUs (9 × 3)/Waist FoG, bradykinetic gait 55 features for real-time
SVM model, frequency
domain measures (strides)

1. Yes, at home (against
videos)
2. No

No

Mancini et al.,
2018 [54]

24 PD 7 days∗, unsupervised,
clinical assessment and
scripted test at home

IMUs (Opal,
APDM)/Lower back,
Ankles

FoG Average of time spent
freezing per hour (Total %
time with Freezing ratio > 1
normalised on recording
time), variability of % time
spent freezing, turning and
walking features

1. Yes, in the lab, for
turning, previous work [52]
No for FoG and walking

No

2. Yes for FoG, turning,
and walking (convergent
validity (NFOG-Q and
ABC) and known group
differences (freezers vs.
non-freezers)).

(Continued)
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Table 1
(Continued)

Study, Year Dataset Protocol BWS Type/Position Clinical Concept of Interest Digital Outcome Digital Outcome Validated
(1. criterion validity,
2. construct validity)

BWS and/
or Digital
Outcome
Regulated/
Qualified

Del Din et al.,
2019 [29]

155 PD
F, 122
OA F, 15
PD NF,
50 OA
NF

7 days, unsupervised Accelerometer, (AX3,
Axivity)/Lower back

Falls risk, ambulatory
activity

14 Micro gait
characteristics (pace,
rhythm, variability,
asymmetry, postural
control), 7 Macro gait
characteristics (volume,
pattern, variability)

1. Yes, in the laboratory for
Micro gait characteristics,
previous work [55]. In
real-world for Macro gait
characteristics in YA,
previous work [56]

No

2. Yes (convergent validity
(FES-I), and discriminant
validity (PD vs. OA, F vs.
NF))

Del Din et al.,
2020 [30]

128 PD
F,109
OA F,38
MCI F

7 days, unsupervised Accelerometer, (AX3,
Axivity)/Lower back

Falls risk, ambulatory
activity

7 Macro gait characteristics
(volume, pattern,
variability), fall rates
relative to activity exposure
(FRA) index

1. Yes, in real-world for
Macro gait characteristics
in YA, previous work [56]

No

2. Yes (convergent validity
(FES-I), previous work,
and discriminant validity
(PD vs. OA))

Reches et al.,
2020 [38]

71 PD FoG provoking test in the
lab in ON and OFF states

IMUs (Opal,
APDM)/Lower back, Feet

FoG 86 features from previous
work for SVM model.

1. Yes, in the lab against
labelled video

No

2. Yes (convergent validity
(NFOG, UPDRS-III and
TUG time), discriminant
validity (OFF vs. ON
state))

Sigcha et al.,
2020 [57]

21 PD 20 minutes at home,
scripted ADLs in ON and
OFF states

IMUs (9 × 2)/Waist FoG Mean, standard deviation,
variance, frequency,
entropy, energy, freeze
index, sum of freeze index,
locomotion band and
variables related to FFT.
ML and DL models from
previous work.

1. Yes, at-home against
labelled video
2. No

No
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Physical activity

Cai et al.,
2017 [42]

21 PD,
20 CL

5 days, unsupervised Bong Smart Sports
bracelet/Wrist

Physical activity Average daily physical
activity amount and
calories

1. Yes, using self-report
diaries
2. Yes (convergent validity
(UPDRS –III, H&Y,
Levodopa) and
discriminant validity (PD
vs. CL))

No

Silva de Lima
et al., 2018
[41]

304 PD 13 weeks Pebble watch/Wrist Physical activity/motor
fluctuations (ON/OFF
state)

Mean time spent walking 1. No No
2. Yes (convergent validity
(UPDRS item 4.4))

Galperin
et al., 2019
[43]

125 PD 7 days, unsupervised Accelerometer, Axivity
(AX3)/Lower back

Physical activity Acceleration derived
features: Number of steps,
number of walking bouts,
step length, step regularity,
amplitude of dominant
frequency, SD of the peaks
amplitude CV) and signal
vector magnitude (SVM)

1. Yes, in the laboratory
against another BWS
(GENEActiv which has
been validated in previous
work [58]
2. Yes (convergent validity
(UPDRS-III))

No

Pradhan et al.,
2019 [40]

30 PD,
30 OA

14 days, unsupervised Fitbit Charge HR/Wrist Physical activity Daily step count and METs 1. Yes, in the laboratory
and outdoor, previous work
[59]

Yes (only
ECG App)

2. No
Ito et al., 2020
[44]

13 PD 1–7 days∗ Accelerometer (Active
Style Pro HJA 750C,
OMRON)/Waist

Physical activity and motor
symptoms (ON state,
dyskinesia)

MET, PAL 1. Yes in the laboratory,
previous work [60]

No

2. Yes (convergent validity
(UPDRS-III, ON state,
dyskinesia))

∗Night excluded. ABC, Activity specific Balance Confidence scale; ADLs, Activities of Daily Living; CL, Controls; DL, Deep Learning; ECG, Electrocardiogram; F, Fallers; FES, Falls Effi-
cacy Scale; H&Y, Hoehn and Yahr; MET, Metabolic Equivalent; ML, Machine Learning; MS, People with Multiple Sclerosis; NF, Non-fallers; NFOG-Q, New freezing of gait questionnaire;
MDS-UPDRS, Movement Disorder Society Unified Parkinson’s disease Rating Scale; OA, Older Adults; PAL, Physical Activity Level; PD, People with Parkinson’s disease; PKG, Parkinson’s
KinetiGraph; SVM, Super Vector Machine; TUG, Timed Up and Go; UPDRS-III, Unified Parkinson’s disease Rating Scale, Part III. 1https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.
cfm. 2https://www.ema.europa.eu/en/human-regulatory/research-development/scientific-advice-protocol-assistance/novel-methodologies-biomarkers/opinions-letters-support-qualification-nove
l-methodologies-medicine-development

https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm
https://www.ema.europa.eu/en/human-regulatory/research-development/scientific-advice-protocol-assistance/novel-methodologies-biomarkers/opinions-letters-support-qualification-novel-methodologies-medicine-development
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Although preliminary results are promising for
some digital outcomes, excluding Farzanehfar et al.
[12], these studies include a limited number of sub-
jects (≤25) and, therefore, the generalizability of ML
models and related validity for clinical adoption is
problematic. We note using BWS to study rigidity,
one of the cardinal symptoms of PD, is especially
challenging [18].

Postural instability, gait disturbances, and
turning

The importance of postural instability, gait, and
turning as diagnostic, prognostic, and progression
markers in PD is well recognized [19–21]. Nonethe-
less, static balance tests are usually confined to
laboratory environments. Difficulty in identifying
and discriminating periods of static, “quiet” stand-
ing balance from sedentary behavior during everyday
activities (especially using single BWS on the trunk)
and achieving a “totally unsupervised” postural insta-
bility assessment is challenging.

Evaluations of digital outcomes are based on:
first identification in the BWS signal of the clinical
concept of interest (e.g., gait, turning) using either
ML methods or previously validated signal-based
methods (e.g., methods developed from lab-based
validation against gold standards); and second on
the quantification of digital outcomes in the identi-
fied segments of the signals. Digital outcomes often
include signal-based features (e.g., extracted from the
BWS signal – frequency domain) or clinically rele-
vant and “translatable” features (e.g., walking speed).

Recent studies on the construct validity of turning
and gait corroborated that real-world gait and turn-
ing performances of PD were impaired (e.g., slower,
more variable, and with lower cadence), compared
with older adults [22–24] and reported moderate cor-
relations with clinical scales (e.g., UPDRS) [25, 26].
Only a few studies have reported criterion validity for
digital outcomes, and this was limited to in laboratory
or home-like environments [25, 27, 28]. Real-world
validation remains challenging and relies mainly on
videos as a reference.

Falls risk, freezing of gait

BWS can help advance our understanding of fall
risk. For these concepts of interest, the main tech-
niques are again use of ML models to identify relevant
segments of the BWS signals, and then quantification
of digital outcomes by using signal-based features or

validated clinically relevant digital outcomes (e.g.,
walking speed, variability).

Results show that quality (micro) and quantity
(macro) digital outcomes describing gait and turn-
ing are associated not only with falls status (fallers
vs. non-fallers) but also with PD specific charac-
teristics (e.g., PD fallers showing higher variability
than older adult fallers) [27, 29]. Real-world digital
outcomes show promising results to quantify novel
composite indexes (e.g., combining information on
falls rate with walking activity) sensitive to change
in fall risk in intervention studies [30–32]. Despite
the availability of real-world falls repositories [33],
methodologies for real-world automatic fall detec-
tion remain challenging, prone to the detection of
false positives [34], and not thoroughly addressed in
PD [35].

FoG is also notoriously difficult to fully repli-
cate and detect, increasing the potential value of
remote monitoring. To elicit FoG episodes, studies
have tested participants in both ON and OFF condi-
tions during scripted tests in the lab and home and
used ML models [36–38]. The sensitivity and speci-
ficity for FoG detection both increase (88.09% and
88.01% respectively) when personalized (BWS data
labeled by the participant, so user-dependent) rather
than generic (automatic, user-independent) models
are used [36, 37]. Comparisons between freezers and
non-freezers indicate that the “quality of turning”
digital outcome (e.g., turning angle smaller), rather
than quantity of mobility, was impaired in PD freez-
ers [25].

While construct validity is often reported (in terms
of moderate relationship with clinical scales and dis-
criminant validity) for fall risk and FoG, criterion
validity is often limited to testing in the labora-
tory, rather than real-world environments for falls
risk. Videos and ML techniques are mainly devoted
to FoG.

Physical activity

Daily-living physical activity is one of the more
mature applications of BWS. Outcomes such as the
intensity of movement (e.g., energy expenditure,
METs, step count) and temporal periods (bouts) of
physical activity can be quantified [39]. Quantifica-
tion of physical activity DMOs are based on features
that describe the “magnitude” of BWS signals (e.g.,
counts, METs) or walking related features (based on
identification of events—e.g., steps in the BWS signal
for step count).
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Commercial devices are widely utilized in PD for
quantifying physical activity [40–42]. Although peo-
ple with PD have lower levels of physical activity
compared to older adults (discriminant validity), con-
struct validity provides contrasting results with either
no [42], moderate [43] or strong [44] relationships
with clinical scales (e.g., UPDRS, Hoehn and Yahr
staging) [40]. Criterion validity was again limited to
laboratory-based tests (e.g., MET) rather than real-
world environments [44], where the use of self-report
diaries limit validity assessment due to subjectivity
and recall issues [42].

Current limitations

Across the clinical concepts of interests pre-
sented, the vast majority of studies use a single or
combination of BWS for data logging and off-line
analysis with developed analytics. Only a few exam-
ples developed connected systems (e.g., multiple
sensors systems, smartphones) and online/m-health
(“cloud”) platforms to achieve true remote monitor-
ing in real-time (e.g., REMPARK, PD Monitoring)
[14, 45]. These m-health platforms have been used in
small studies [45], focusing on selective aspects (e.g.,
ON-OFF state). Although good usability and user
satisfaction results were reported, feasibility aspects
(e.g., limited sensor battery time of 20 hours) for
clinical adoption were not thoroughly investigated.

Generally, studies using BWS are cross-sectional,
with only a few examples assessing the ability to
detect change and responsiveness in longitudinal or
interventional studies [30, 46]. This aspect needs to be
better explored. Only when digital outcomes derived
from BWS demonstrate robust criterion and construct
validity and equal or superior clinimetric properties
(e.g., sensitivity to change, prediction of outcomes)
compared to conventional clinical outcomes will their
application become widespread.

Importantly, except for the Parkinson’s Kineti-
graph for motor symptoms (tremor, bradykinesia and
dyskinesia) [12] and Fitbit for electrocardiogram App
[40], another common characteristic across clinical
concepts of interest and BWS is the lack of qualifi-
cation reports accepted for a PD context of use by
regulatory bodies (e.g., EMA, FDA). This absence
precludes the widespread clinical adoption of BWS
and their related digital outcomes [2]. Therefore,
despite the promise of BWS for remote monitoring,
technical, validity, and regulatory limitations remain
significant barriers to their uptake.

FUTURE PERSPECTIVES: HOW CAN WE
MOVE FORWARD?

This brief review of the state-of-the-art shows that,
although promising, widespread adoption of BWS
in clinical settings is yet to transpire, likely because
of several factors. To date, there has been no com-
prehensive demonstration of criterion (“technical”)
and construct (“clinical”) validity, with differences
in BWS and measurement techniques accounting for
differences in reporting of results of the same mobil-
ity variables [7]. As highlighted earlier, the majority
of algorithms that have been developed have not been
validated in real-world conditions, which may be due
in part to a lack of gold-standard references against
which to test. Establishing technical and clinical
validity, in addition to the demonstration of feasi-
bility and usability of BWS in patients is essential
to obtain qualification approval by regulatory bodies,
and, as a consequence, more widespread use of BWS
by clinicians [3].

Moreover, to truly transform clinical and research
conventions, there needs to be sufficient evidence to
show that remote monitoring is clearly “better” in
some way (e.g., cost, discriminative and predictive
value, clinimetric properties, healthcare economics)
than traditional scales and methods. Last year, the
Movement Disorder Society (MDS) Task Force on
technology published concrete steps to facilitate
adoption of BWS in clinical practice [3]. Nonethe-
less, although there are many examples and attempts
in the growing literature to address selective aspects
of the Task Force recommendations (e.g., validity
and utility), definitive prospective and comprehensive
studies are lacking. To move this field forward sig-
nificantly, previous suggestions included the need to
improve cross-discipline communication and larger
collaborative efforts. Recent Innovative Medicines
Initiative projects (e.g., Mobilise-D (https://www.
mobilise-d.eu/), IDEA-FAST (https://idea-fast.eu/))
are paving the way to achieve this.

To address this need, we tried to summarize pre-
vious recommendations [2, 3, 47, 48] by proposing
a roadmap with clear milestones to guide the prac-
tical clinical adoption of BWS and digital outcomes
(Fig. 1):

1a. A joint effort between clinicians and end-users
(e.g., patient groups [47]) should identify crit-
ical relevant clinical concepts of interest (e.g.,
gait), related digital outcomes (e.g., real-world
walking speed), the context of use, and clinical
endpoints (e.g., falls risk).

https://www.mobilise-d.eu/
https://idea-fast.eu/
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Fig. 1. Roadmap for adoption of body worn sensors (BWS) and digital outcomes in clinical practice.

1b. Select or develop appropriate technology
(BWS) with key stakeholders (industry, res-
earchers, clinicians, end-users) for quantifica-
tion of identified digital outcomes.

2. If not already established, demonstrate crite-
rion (technical, e.g., cross-sectional studies)
validity of the digital outcome against a gold-
standard reference, in real-world conditions,
feasibility, and usability of the BWS for the
end-users. This could be achieved, for exam-
ple, by selecting a digital outcome (e.g.,
walking speed) and collecting data under
controlled conditions with BWS and a gold
standard that can quantify the same digital out-
come and that can then be used also in real-
world conditions.

3. Demonstrate at least equivalent, but preferably
superior construct (“clinical”, e.g., longitudi-
nal studies) validity of the digital outcome with
respect to traditional measures. This could
be done, for example, by demonstrating, in
a longitudinal study, that the selected digital
outcome at baseline (e.g., real walking speed)
has stronger correlation (or predictive power)
with the clinical endpoint of interest (e.g., per-
spective number of falls) than clinical scales
or questionnaires (e.g., UPDRS III).

4. Describe the context of use and valida-
tion work for submission to qualification/
regulatory bodies for approval (EMA, FDA).

5. Demonstrate cost-effectiveness (e.g., saving
time of the clinician, improving the quality of

life of patients). The barrier for adoption of
low-cost solutions is lower than that of solu-
tions that require large monetary investments.
This could be demonstrated by carrying out
a cost-effectiveness analysis, for example, by
quantifying the cost of the BWS (both in mone-
tary and time/effort terms) versus that of a gold
standard or clinical assessment and showing
evidence of a lower healthcare expenditures
and better outcomes achieved with BWS (e.g.,
as described in recommendation 3).

CONCLUSIONS

Although BWS and digital outcomes have shown
potential for clinical management, they have not yet
achieved widespread clinical adoption. We can imag-
ine a future where true remote monitoring of digital
outcomes is used to enhance PD diagnosis, moni-
tor progression, and facilitate clinical management.
We hope that the recommendations and practical
roadmap that are outlined in Fig. 1 will help to move
the field forward toward that vision and to better care
and monitoring of people with PD.
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chiarico R, Counihan T, Laighin G, Cabestany J (2017)
Analysis of correlation between an accelerometer-based
algorithm for detecting parkinsonian gait and UPDRS
subscales. Front Neurol 8, 431.

[27] Haertner L, Elshehabi M, Zaunbrecher L, Pham MH, Maet-
zler C, van Uem JMT, Hobert MA, Hucker S, Nussbaum
S, Berg D, Liepelt-Scarfone I, Maetzler W (2018) Effect of
fear of falling on turning performance in Parkinson’s disease
in the lab and at home. Front Aging Neurosci 10, 78.

[28] Pham MH, Elshehabi M, Haertner L, Del Din S, Srulijes
K, Heger T, Synofzik M, Hobert MA, Faber GS, Hansen
C, Salkovic D, Ferreira JJ, Berg D, Sanchez-Ferro Á, van
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Quinlan LR, ÓLaighin G, Sweeney D, Lewy H, Azuri
J, Vainstein G, Annicchiarico R, Costa A, Rodrı́guez-
Molinero A (2017) Home detection of freezing of gait using
support vector machines through a single waist-worn triaxial
accelerometer. PLoS One 12, e0171764.

[37] Rodrı́guez-Martı́n D, Pérez-López C, Samà A, Català A,
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