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Microbe-disease association relationship mining is drawing more and more attention due
to its potential in capturing disease-related microbes. Hence, it is essential to develop new
tools or algorithms to study the complex pathogenic mechanism of microbe-related
diseases. However, previous research studies mainly focused on the paradigm of “one
disease, one microbe,” rarely investigated the cooperation and associations between
microbes, diseases or microbe-disease co-modules from system level. In this study, we
propose a novel two-level module identifying algorithm (MDNMF) based on nonnegative
matrix tri-factorization which integrates two similarity matrices (disease and microbe
similarity matrices) and one microbe-disease association matrix into the objective of
MDNMF. MDNMF can identify the modules from different levels and reveal the
connections between these modules. In order to improve the efficiency and
effectiveness of MDNMF, we also introduce human symptoms-disease network and
microbial phylogenetic distance into this model. Furthermore, we applied it to HMDAD
dataset and compared it with two NMF-based methods to demonstrate its effectiveness.
The experimental results show that MDNMF can obtain better performance in terms of
enrichment index (EI) and the number of significantly enriched taxon sets. This
demonstrates the potential of MDNMF in capturing microbial modules that have
significantly biological function implications.

Keywords: microbe-disease association, matrix factorization, phylogenetic distance, human microbiome,
co-modules
INTRODUCTION

With the development of high-throughput sequencing technology, such as 16S ribosomal RNA (16S
rRNA), more and more microbes were identified. Nearly 1014 bacterial cells are existed in human
internal gut and provide a wide variety of gene products which induce diverse metabolic activities
(Micah et al., 2007; Shah et al., 2016). The dynamic balance of human microbiome composition is
essential to maintain good health. Once such balance is broken, many closely related human disease
and disorders may be caused (Medzhitov, 2007; Thiele et al., 2013), such as colorectal cancer (CRC)
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(Boleij et al., 2014), obesity (Turnbaugh et al., 2009),
inflammatory bowel disease (IBD) (Qin et al., 2010), bacterial
vaginosis (Fredricks et al., 2005), and so on. For example, Jorth et
al. have reported that gene expression profiles of periodontitis-
related microbial communities have highly conserved changes,
relative to healthy samples (Jorth et al., 2014). It means that
microbiome composition changes in oral cavity could be
associated with pathogenesis of periodontitis. Furthermore,
Socransky et al. have found that subgingival plaque is
connected with several major microbial taxon including
Fusobacterium, Prevotella, and so on (Socransky et al., 1998).
Chen et al. have observed that the colonization with Helicobacter
pylori has negative correlation with the symptom of allergy
(pollens and molds), especially in the childhood (Chen and
Blaser, 2007; Blaser, 2014). All these reveal the potential
association between pathogenic microorganisms and complex
human diseases.

Considering the key role of microbes in health, many
important projects including the Human Microbiome Plan
(HMP) (Gevers et al., 2012), the Earth Microbiome Project
(EMP) (Gilbert et al., 2010), Metagenomics of the Human
Intestinal Tract (MetaHIT) (Ehrlich and Consortium, 2011)
were launched to investigate the relationships between
microbiota and diseases. Moreover, some related databases and
tools have been developed to analyze the increasing information
for disease-related microbes. A human microbe-disease
association database, called HMDAD (Ma et al., 2016a),
manually collected 483 microbe-disease association entries
from previously published literatures. These databases provide
a possibility for microbe-disease association relationship
prediction by computational approaches. Zhang et al. proposed
bidirection similarity integration method (BDSILP) for
predicting microbe-disease associations by integrating the
disease-disease semantic similarity and the microbe-microbe
functional similarity. Wang et al. proposed a semisupervised
computational model called LRLSHMDA to predict large-scale
microbe-disease association (Wang et al., 2017). Huang et al.
combined neighbor-based collaborative filtering and graph-
based model into a unified objective function to predict
microbe-disease relationship (Huang et al., 2017). He et al.
integrated symptom-based disease similarity network into
graph regularized nonnegative matrix factorization models
(GRNMF), meanwhile utilizing neighbor information to boost
the performance of GRNMF (He et al., 2018). Zhang et al.
utilized the advantages of ensemble learning to improve the
performance of association prediction, which provided a new
way for mining microbe-disease relationship (Zhang et al.,
2018a; Zhang et al., 2019). All these efforts pave the way for
further understanding complex regulatory mechanisms by
means of which disease-related microbiota get involved.

However, cellular system is complicatedly organized and
biological functions are mainly performed in a highly modular
manner (Barabasi and Oltvai, 2004; Chen and Zhang, 2018). In
microbial ecosystems, microbes often cooperate with each other
to finish some biochemical activities. For example, ammonifiers
decompose nitrogen-containing organic compounds to release
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ammonia. Nitrous acid bacteria (also known as ammonia
oxidizing bacteria) oxidize ammonia to nitrous acid. Then,
nitric acid bacteria (also known as nitrous acid oxidizing
bacteria) oxidize nitrous acid to nitric acid. These two types of
bacteria can obtain the energy needed for growth from the above
oxidation process. Therefore, the mutualism relationship among
ammonifier, nitrous acid bacteria, and nitric acid bacteria forces
them to form a tight biological community. Guo et al. studied the
contributions of high-order metabolic interactions to the activity
of four-species microbial community and demonstrated that the
interactions between pairwise species play an important role in
predicting the complex cellular network behavior (Guo and
Boedicker, 2016). Although knowledge about microbe-disease
associations could provide helpful insights into understanding
complex disease mechanisms (Huang et al., 2017; He et al.,
2018), the “one-disease, many microbes” models ignore
interactions within microbial community composed of
several species.

Recently, multilayer interaction and modular organization
have attracted more and more attentions. Several studies
proposed co-module discovery methods to identify
combinatorial patterns using pairwise gene expression and
drug response data (Kutalik et al., 2008; Chen and Zhang,
2016). In addition, Chen et al. proposed a new method based
nonnegative matrix factorization (NMF) to reveal drug-gene
module connections from different molecular levels (Chen and
Zhang, 2018). Cai et al. proposed a new network-guided sparse
binary matching model to jointly analyze the gene-drug patterns
hidden in the pharmacological and genomic datasets with the
additional prior information of genes and drugs (Cai et al., 2018).
Chen et al. also proposed a higher order graph matching with
multiple network constraints (gene network and drug network)
to identify co-modules from different multiple data sources
(Chen et al., 2018).

All these have made great progresses to study the coordinate
regulatory mechanisms between two or more biological
molecular networks from a systematic view. However, as far as
we know, less work focuses on microbe-disease co-modules
discovering. Previous studies mainly aimed to microbe-disease
association prediction, and did not reveal within-module
interactions (microbe-microbe, disease-disease) from the same
level and cross-module interactions (microbe-disease) from
multiple molecular levels.

To this end, we design a new algorithm based on NMF to
construct the two-level microbe-disease module network by
Gaussian profile kernel similarity (MDNMF). In order to
improve efficiency and effectiveness of the proposed algorithm,
we introduce human symptoms-disease network (Zhou et al.,
2014) and microbial phylogenetic distance into this model,
which makes functionally similar microbes (diseases with
similar symptoms) tend to appear in the same microbial
module (disease module). We applied MDNMF to HMDAD
dataset and compared it with two classical NMF methods to
demonstrate its effectiveness. The experimental results show that
the majority of identified microbial modules have significant
functional implications [significantly enriched in taxon sets that
February 2020 | Volume 11 | Article 83
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refer to groups of microbes that has something in common
(Dhariwal et al., 2017)]. Figure 1 gives the illustrative example
of MDNMF.

The contribution of this paper lies in (1) an efficient two-level
module discovering algorithm (MDNMF) has been proposed to
reveal microbe-microbe, disease-disease and microbe-disease
modules association. (2) The phylogenetic distance of disease-
related microbes is introduced into the proposed MDNMF
model to make phylogenetically close microbes tend to
intertwine in the development of similar disease. To our
knowledge, this is the first attempt to link microbial
phylogenetic relatedness to NMF-based module identification.
(3) The proposed MDNMF algorithm is easily extended to other
multiple-level molecular network application, for example, virus-
host co-modules, microbe-drug co-modules discovering, and so
on. The rest of this paper is organized as: in the next section, we
give a brief overview of NMF and MDNMF. And then, followed
by the experimental results and the conclusions are provided in
the last section.
MATERIALS AND METHODS

Dataset
The dataset is downloaded from the Human Microbe-Disease
Association Database (HMDAD, http://www.cuilab.cn/hmdad)
(Ma et al., 2016a). It contains 483 microbe-disease associations,
which cover 292 microbes and 39 diseases. By 16S RNA
sequencing techniques, most microbe names was recorded at
the genus level. Based on these known microbe-disease relation,
Frontiers in Genetics | www.frontiersin.org 3
an adjacency matrix X∈R292×39 can be constructed where Xij=1 if
microbe i is related to disease j, and vice versa.

The NMF Model
NMF and its variants have been widely applied to various fields
including bioinformatics (Ma et al., 2016b; Ma et al., 2017; Chen
and Zhang, 2018). In NMF, given an original data matrix
X∈Rn×m, we seek to find two low-rank matrices W∈Rn×k (also
called basis matrix) and H∈Rk×m (coefficient matrix) to
approximate X, such that X≈WH, where k<<min(m,n). Here,
data X can be represented as the linear additional combination of
basis vectors. We can obtain such a decomposition by solving the
following least squares problem:

min
W ,H≥0

‖X −WH ‖2F , (1)

where ||•||F denotes Frobenius norm.

Gaussian Interaction Profile Kernel
Similarity for Microbes
Based on the hypothesis that functionally similar microbes could
be associated with more common human diseases, Gaussian
kernel interaction profiles can be used to calculate the inferred
microbe similarity (Wang et al., 2017; He et al., 2018). Given
microbe-disease association matrix X, the ith row of X indicates
the interaction profiles between microbe mi and all the diseases.
For any two microbes mi and mj, their similarity can be
computed as follows:

MS(mi,mj) = exp −g m‖Xi,* − Xj,* ‖
2� �
, (2)
FIGURE 1 | Illustrative example of MDNMF. First, based on Gaussian kernel function we can obtain microbe and disease similarity matrices from the original
microbe-disease association matrix. Then, these three matrices are served as the input of MDNMF. Simultaneously, in order to improve the accuracy of module
finding and biological interpretability of modules identified by MDNMF, human symptoms-disease network and microbial phylogenetic distance are also introduced
into the model. At last, microbe-disease co-modules from different levels can be obtained.
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where Xi,* denotes the ith row of matrix X. gm is bandwidth
parameter that needs to be normalized based on a novel
bandwidth parameter g′m and the interaction profile for each
microbe, i.e., the ith row of X:

g m = g
0
m=

1
nm

 o
nm

i=1
‖Xi,* ‖

2

 !
: (3)

Here, nm is the number of microbes related to all diseases
(here, nm=292). g′m was set as 1 according to the previous study
(Wang et al., 2017). In this way, microbe similarity matrix MS
can be constructed, the element of MS indicates the similarity
score between two arbitrary microbes.

Gaussian Interaction Profile Kernel
Similarity for Diseases
Similarly, Gaussian kernel based disease similarity matrix can be
inferred as follows:

DS(di, dj) = exp −g d‖X*,i − X*,j ‖
2� �

(4)

g d = g
0
d=

1
nd
o
nd

i=1
‖X*,i ‖

2

 !
, (5)

where X*,i denotes the ith column of X, nd is the number of
diseases related to all microbes (nd=39), g′d was also assigned to 1.

Phylogenetic Distance for Disease-Related
Microbes
Gaussian interaction profiles kernel similarity reflects the
intertwining between microbes in term of microbe-disease
association relationship. However, functionally similarity could
not be explained only by disease relatedness, homology and
phylogenetic correlation should be considered as side information
tomake the connectedmicrobes in themicrobe-disease association
matrix likely to be placed in the same co-modules.

We searched 91 nucleotide sequences of disease-related
microbes from NCBI, and imported them into MEGA to
compute the phylogenetic distance between pairwise sequences
by Kimura 2-parameter model. Other parameters are set in
default. Thus, we can obtain the final microbial phylogenetic
distance matrixM phy which is used to enforce microbe members
within identified modules likely to be near in phylogeny.

In order to demonstrate the role of phylogenetic information in
identifying disease-related microbe modules, we extract the top 10
largest and smallest phylogenetic distance pairs as illustrative
examples to further analyze whether closely related taxa tend to
associate with the same disease, or similar diseases. For each
microbe-microbe phylogenetic distance pair, we compute the
Jaccard coefficient (JC) between two microbe-related disease
profiles (rows of microbe-disease association matrix). The results
shows that top 10microbe pairs which are closely related in genetic
have the largest JCs in terms of disease profile similarities. Similarly,
we also compute the disease similarities between phylogenetically
distant microbes and find that 9 in 10 microbe pairs have the
Frontiers in Genetics | www.frontiersin.org 4
smallest JCs. This suggests that closely related taxa tend to associate
with the same disease or similar diseases, and phylogenetically
distant taxa usually have distinct disease profiles.

The MDNMF Algorithm
Besides the typical NMF as Dataset described, tri-factor NMF (tri-
NMF,X≈FSG) is also an importantmatrix factorizationmethod for
clustering (Ding et al., 2006). In tri-NMF, factorized matrices F,G
provide an approach to perform biclustering of X, respectively.
Factorized matrix s not only provides an additional degree of
freedom to enforce the reconstruct error tiny, but also implicitly
denotes the relationship between clusters (Ding et al., 2005). In
particular, given the symmetric similarity matrix A, we can
decompose it into A≈HSH

T. The similarity matrix reflects the
intrinsic connection patterns within its original data matrix (Van
Dam et al., 2017). In this paper, we propose a novel algorithm
MDNMF to simultaneously factorize two similarity matrices
(microbe similarity matrix MS, disease similarity matrix DS) and
onemicrobe-disease associationmatrixX. The objective function is
formulated as follows:

min
H1,  H2,  S1,  S2

 ‖MS − H1S1H
T
1 ‖

2
F + l1‖X − H1H

T
2 ‖

2
F + l2

‖DS − H2S2H
T
2 ‖

2
F

s : t : H1,  H2,  S1,  S2 ≥ 0:

(6)

where MS ∈Rnm×nm, DS∈Rnd×nd are microbe-microbe and
disease-disease similarity matrices, respectively. H1∈Rnm×k,
H2∈Rnd×k are cluster indication matrices, S1∈Rk×k, S2∈Rk×k are
the symmetric matrices. Here, k is the number of clusters, and l1, l2
are the parameters to balance the weights of three terms in Eq.6. The
second term‖X − H1H

T
2 ‖

2
F establishes the one-to-one relationships

between identifiedmicrobemodules anddiseasemodules.Moreover,
it can be regarded as a tri-NMF‖X − H1IH

T
2 ‖

2
F , here I is the identity

matrixwhich enforce the ithmodule identified bymicrobe clustering
indicationmatrixH1 is only boundupwith the ithmodule byH2.The
other two terms respectively identify one type of modules at
individual levels and reveal the module associations within them
via S1 and S2.

In order to further improve the performance of the proposed
algorithm, we introduce symptoms-based disease similarity
network and microbial phylogenetic distance into MDNMF.
The symptoms-based disease similarity was previously studied
based on co-occurrence of disease/symptom terms (Zhou et al.,
2014). Here, we use DSsym to denote symptoms-based disease
similarity matrix. The objective function of MDNMF (Eq.6) can
be rewritten as follows:

min
H1,  H2,  S1,  S2

 ‖MS − H1S1H
T
1 ‖

2
F + l1‖X − H1H

T
2 ‖

2
F + l2

‖DS − H2S2H
T
2 ‖

2
F + m tr HT

1 L1H1

� �
+ tr HT

2 L2H2

� �� �
s : t : H1,  H2,  S1,  S2 ≥ 0:

(7)
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Where L1=D1-MSphy, L2=D2-DSsymp are Laplacian matrices,

(D1)i =o
j
(MSphy)ij,(D2)i =o

j
(DSsymp)ij are degree matrices,

respectively. MSphy=1-Mphym is the regularization parameter
and the whole last term in Eq.7 is used to exert a penalty for
violating the prior cognition about microbial phylogeny and
disease phenotype associations.

Note that disease symptoms dataset collected from PubMed
literatures contains diseases and symptoms terms. The
association between symptoms and diseases are quantified
using term co-occurrence (just like in the field of information
retrieval, if the document and keyword simultaneously appear,
the corresponding position of the word-document matrix is set
to the frequency of co-occurrence). And then, each disease can be
represented by a vector of symptoms. At last, the cosine
similarity function is used to quantify the similarity between
two diseases. The link weight between two diseases quantifies the
similarity of their respective symptoms. Thus, these two disease
similarities based on microbes and human symptoms are
different essentially in that HMDAD dataset describes the
binary relationships between microbes and diseases, however,
disease symptoms dataset describes the co-occurrence
relationships between symptoms and diseases. Integrating
them into the objective of MDNMF will simultaneously take
account of the diffusion and propagation of the information from
different source.

We used the multiplicative update rules to solve MDNMF
problem and can find a local minimal solution by alternately
updating matrices H1, H2, S1, S2.

(1) Fix H1,H2, S2 and update S1 with

S1ð Þij ← S1ð Þij
HT

1MSH1

� �
ij

HT
1H1S1H

T
1H1

� �
ij

(8)

(2) Fix H1, H2, S1 and update S2 with

S2ð Þij ← S2ð Þij
HT

2DSH2

� �
ij

HT
2H2S2H

T
2H2

� �
ij

(9)

(3) Fix S1, S2, H2 and update H1 with

H1ð Þij ← H1ð Þij
2MSH1S1  +  l1XH2 + mD1H1ð Þij

2H1S1H
T
1H1S1 + l1H1H

T
2H2 + mMSphyH1

� �
ij

(10)

(4) Fix S1, S2, H1 and update H2 with

H2ð Þij ← H2ð Þij
2l2DSH2S2  +  l1X

TH1 + mD2H2

� �
ij

2l2H2S2H
T
2H2S2  +  l1H2H

T
1H1  +  mDSsympH2

� �
ij

(11)

Determination of Modules
In fact, the same microbe may play different roles in the
development of diseases. Therefore, the idea of soft clustering
is more suitable to model the function associations among
Frontiers in Genetics | www.frontiersin.org 5
microbes. The factorized matrices H1, H2 can be used to
identify two types of modules, respectively. The elements with
relatively large values of each column of H1 (H2) is assigned to
the members of corresponding module. We calculate the
threshold for each feature (each rowh1i,*of H1 (h

2
i,*of H2)) with

Th fð Þ = m fð Þ + ts fð Þ, (12)

where m(f ) = 1
kokhfk, s (f ) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n−1ok(hfk − m(f ))2
q

, t is a given
threshold. Based on this rule, we determined the ith module
members if the entries of h∗fi are larger than Th (f). In
Experimental Results and Discussion section, we set t=1.5 for
two clustering indication matricesH1 andH2 to identify modules
with proper resolution.

Determination of Module Links
Given the symmetric similarity matrix A, tri-NMF factorizes it to
be A ≈ HSHT =ok

i=1ok
j=1sijhih

T
j . Here, hi denotes the ith

column of H, sij is the corresponding element of s. The latent
clustering indication vector hi can reconstruct the original
similarity matrix A, and sij can be viewed as the weight of hih

T
j

. It means that the larger sij is, the stronger the connection
between the modules identified by hi and hj is. Therefore, the
diagonal elements of s can be used to evaluate the quality of
clustering, and the off-diagonal elements can be used to establish
the possible connections between different modules.

Functional Enrichment Analysis for
Co-Modules
We use MicrobiomeAnalyst (Dhariwal et al., 2017) tools to
conduct functional enrichment analysis for microbe modules,
and select the significantly enriched taxon set terms if P-value <
0.005 and FDR < 0.05 (hypergeometric tests). Because
MicrobiomeAnalyst provides 229 taxon sets associated with
host-intrinsic factors such as diseases. For microbe-disease co-
modules we define the enrichment indices between significantly
enriched taxon set terms and diseases within the same co-module
to evaluate the performance of different algorithms. The
enrichment index (EI) is formulated as follows:

EI =
significantly enriched taxon setf g ∩ diseasesf gj j
significantly enriched taxon setf g ∪ diseasesf gj j , (13)

where |{significantly enriched taxon set}| denotes the number of
significantly enriched taxon sets, |{diseases}| denotes the number
of diseases which is related to microbes within the same co-
module. Generally speaking, higher EIs indicates good clustering
quality of identified co-modules.
EXPERIMENTAL RESULTS
AND DISCUSSION

Results and Comparison
We compared MDNMF with typical NMF and NetNMF (Chen
and Zhang, 2018) (without considering microbial phylogenetic
February 2020 | Volume 11 | Article 83
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information and symptoms-based disease similarity) by
applying them to HMDAD dataset. Since NMF-based
algorithms cannot guarantee a global optimal solution, we run
50 times with different initializations and selected the
factorization with minimal objective function value as the
downstream analysis.

We adopted EI (as described in Functional Enrichment
Analysis for Co-Modules) and the number of significantly
enriched microbe taxon set (TSsig) as metrics to evaluate the
performance of different algorithms. Other taxon sets (OTS=|
{significantly enriched taxon set}|=|identified disease-related
taxon sets|) indicate the significantly enriched taxon sets that
are not considered by EI. To some extent, the number of other
taxon sets reflects the identified ability of different methods in
potential microbe function modules discovering. Extensive
Frontiers in Genetics | www.frontiersin.org 6
comparison experiments are conducted and the results are
shown in Table 1.

As Table 1 shown, compared with other two NMF-based
algorithms, MDNMF achieves the best performance in terms of
EI and TSsig, indicating that MDNMF could potentially discover
the meaningful function modules as much as possible by
introducing symptoms-based disease network and microbe
phylogenetic distance.
Comparison of All the Significantly
Enriched Taxon Sets of Modules Identified
by MDNMF, NMF, and NetNMF
To demonstrate the effectiveness of MDNMF, we compared the
microbe modules identified by these three approaches in terms
of biologically functional enrichment. We performed microbe
taxon set enrichment analysis for these three groups of modules
and reserved the taxon set (TS) terms (FDR < 0.05,
hypergeometric test) which are significantly enriched by two
modules derived of MDNMF and NetNMF (or NMF). Then, for
each TS term, we calculated enrichment scores (-log10(p-
value)) and took the highest scores among all modules as the
final score of this TS for each method. Note that the co-modules
identified by MDNMF cover about 20 microbes and 3 diseases
on average. There is only one co-module which contains no
TABLE 1 | The performance of three co-model discovering algorithms in term of
EI and TSsig.

(#) identified co-modules EI (#) TSsig OTS

NMF 12 0.08676 39 29
NetNMF 13 0.11563 49 36
MDNMF 14 0.30182 62 48
*(P-value < 0.005 and FDR < 0.05). # represents the number of identified co-modules or
significantly enriched taxon sets.
FIGURE 2 | Comparison of all the enriched TS terms of microbe modules detected by MDNMF, NMF, and NetNMF using HMDAD dataset.
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https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Ma et al. Microbe-Disease Co-Modules Identifying
diseases. This is consistent with the average size of each microbe
or disease module (see Parameter Analysis).

Applying MDNMF to HMDAD dataset, many TS terms are
above the diagonal line (see Figure 2). Specifically, the enriched
TS terms obtained by MDNMF have more significant Q-value
(FDR < 0.05) than those of NMF and NetNMF. For microbe
modules, 58.33% (MDNMF versus NMF, P < 0.005 and FDR <
0.05, hypergeometric test) and 47.06% (MDNMF versus
NetNMF, P < 0.005 and FDR < 0.05, hypergeometric test) TS
terms are above the central diagonal line, respectively.

As Figure 2 shown, compared to NetNMF, microbe modules
identified by MDNMF had lower significance for 52.94%
modules. One of the possible reasons is that when selecting
microbes, NetNMF just concerns the relationships among
microbes from the original microbe-disease association matrix,
whereas MDNMF has to take their phylogenetic relationships
into account. This kind of extra constrains of MDNMF might
affect the selected microbe subsets and their enriched functions.
Despite that, MDNMF still identified more significantly enriched
taxon sets than NetNMF (62 vs. 49, Table 1).

Parameter Analysis
In MDNMF, there are three parameters:l1, l2, and µ. We set

l1 =
nm
nd

, l1 =
n2m
n2d

according to the previous study (Chen and

Zhang, 2018). When applying these three NMF-based algorithms
to HMDAD data, the reduced dimension k is needed to be pre-
determined. Here, we selected k=15 from the candidate set
{10,15,20}, and µ=0.001 from {0.001,0.01,0.1}, respectively.
Under this setting, the number of identified microbe modules
with significantly enriched taxon sets terms is highest
(hypergeometric tests, P-value < 0.005 and FDR < 0.05). Mode
selection is demonstrated in Figure 3.
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Case Studies
To further validate the performance of MDNMF, we select
several microbe-disease co-modules identified by MDNMF to
analyze their biological functions and inner connections. In total,
60% microbe modules are enriched in at least one TS term. In
these identified microbe-disease co-modules, the diseases caused
FIGURE 3 | Model selection of parameters: m and k.
TABLE 2 | The identified microbe-disease co-modules by MDNMF.

Co-
module_id

Disease
module

Microbe
module

Taxon sets
(matched disease,
descending order

by FDR)

Associated
co-module

9 Bacterial
Vaginosis
Clostridium
difficile
infection
(CDI)
Ileal
Crohn's
disease(CD)
Irritable
bowel
syndrome
(IBS)
Liver
cirrhosis
Necrotizing
Enterocolitis
Periodontal
Type 1
diabetes

Actinobacteria
Bacteroidaceae
Bacteroides
Bacteroides
uniformis
Bacteroidetes
Firmicutes
Fusobacteria
Fusobacterium
Haemophilus
Lachnospiraceae
Lactobacillus
Prevotella
Proteobacteria
Streptococcus
Veillonella

Liver Cirrhosis
Chronic Obstructive
Pulmonary Disease
Bacterial Vaginosis
(increase)
Asthma
Colorectal
Carcinoma
Resistance to
Immune
Checkpoint
Inhibitors (increase)
Type I Diabetes
Diarrhea Irritable
Bowel Syndrome
(IBS)
Parkinsons
(increased)
Third Trimester (vs
First Trimester,
increase)
Crohn's Disease

10,4,7
Febr
uary 2020 | Volume 1
* Colors indicate different diseases or enriched taxon sets.
TABLE 3 | The detailed information of identified microbe-disease co-module 4.

Co-
module_id

Disease
module

Microbe
module

Taxon sets
(matched disease,
descending order

by FDR)

Associated
co-module

4 Allergic
sensitization

Acinetobacter
Bacteroides
ovatus
Bacteroides
vulgatus
Burkholderia
Clostridium
coccoides
Clostridium
difficile
Clostridium
leptum
Dietzia maris
Escherichia
coli
Lysobacter

Cystic Fibrosis
Atopic dermatitis
Aging (decrease)
Dandruff
Crohn's Disease
(increase)
Head and neck
squamous cell
carcinoma (increase)

9,7

Constipation
IBS
COPD
Cystic
fibrosis
Eczema
IBD
New-onset
untreated
rheumatoid
arthrits
Psoriasis
Rheumatoid
arthrits
Ulcerative
colitis
*Colors indicate different diseases or enriched taxon sets.
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by microbes also exist in their matched disease modules. Tables 2
and 3 show two of the identified microbe-disease co-modules
and the associations between different disease (microbe) modules
(according to S2). As The MDNMF Algorithm shown, in tri-
factor NMF X≈HSH

T, the matrix S has a special meaning. To see
this, let us assume thatHTH=I. Setting the derivative ∂min ‖X −
HS

HT ‖2 = ∂ S to be 0, we can obtain:

S = HTXH,  or Slk = hTl Xhk =
oi∈ Cloj∈ Ck

xijffiffiffiffiffiffiffiffiffi
nlnk

p : (14)

S indicates proper normalized within-cluster sum of weights
(l = k) and between-cluster sum of weights (l ≠ k). Therefore, S
provides a good representation for the clustering quality. If the
clusters are separated well, respectively the diagonal elements of
S will be much larger than the off-diagonal elements. We conduct
extensive experiments, and find that some off-diagonal elements
are large, for example co-modules 4 and 9. According to Eq.14,
this case may reflect a close connection between these two
modules. The connections can provide some insights to further
understand the relationships between microbe and disease,
disease and disease, and microbe and microbe.

As Table 2 shown, in co-module 9, 5 of 8 diseases (62.5%,
same color from disease module and taxon sets columns
indicates matched or associated disease) are in accord with
significantly enriched microbe TS terms (FDR < 0.05). Besides,
several TS such as “Chronic Obstructive Pulmonary Disease,”
“Asthma,” “Colorectal Carcinoma,” “Resistance to Immune
Checkpoint Inhibitors (increase)” which have no matched
diseases are also identified. This could provide potential
associations among diseases or microbes. Figure 4 shows top
biological terms enriched in the microbe module 9.
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In order to demonstrate that MDNMF can indeed cluster
similar diseases to the same co-module, we retrieval each disease
existed in co-module 9 from the MeSH website (https://meshb.
nlm.nih.gov) and find that most of the diseases belong to the
same MeSH disease category. For example, Ileal Crohn's disease
(CD), Irritable bowel syndrome (IBS), Liver cirrhosis and
Necrotizing enterocolitis are clustered together and they are all
divided into the same MeSH disease category C06 (Digestive
System Diseases). Interestingly, Clostridium infections and
Bacterial vaginosis which belong to C01 (Bacterial Infections
and Mycoses) are also divided into the co-module. A detailed
analysis of these related diseases may yield novel insights into the
more and more widely recognized the associations between
microbes and human diseases.

Based on the factorized matrix s2, we identified the
connections among microbe modules 9 and 4, 7, 10. For
example, microbe modules 9 and 4 share the “Crohn's Disease”
and “Head and neck squamous cell carcinoma”microbe sets, but
focus opposite aspects. In microbe module 9, the enriched
microbe TS term “Crohn's Disease” is decreased, but is
increased in module 4. These two microbe modules may afford
us an opportunity to further investigate the complicated
pathogenic mechanism in system level.

Without loss of generality, we also analyzed another microbe-
disease co-module 4, the detailed information is shown in Table 3.

From Table 3, we can see that 7 of 10 diseases (70%, same color
from the “disease module” and “taxon sets” columns indicates
matched or associated disease) are in accord with significantly
enriched microbe TS terms (FDR < 0.05). Especially, for enriched
microbe TS term “Atopic dermatitis,” three diseases (“Allergic
sensitization,” “Eczema,” and “Psoriasis”) in matched disease
module are associated with it. This demonstrates the ability of
FIGURE 4 | Top enriched biological terms in microbe module 9.
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the proposed MDNMF algorithm in finding correlation among
diseases and microbes. Figure 5 shows top biological terms
enriched in microbe module 4.

Similarly, we retrieval each diseasemember in co-module 4 from
the MeSH website and find that a few similar diseases belong to the
same MeSH disease category. For example, Eczema, Psoriasis,
Rheumatoid arthritis, and New-onset untreated rheumatoid
arthritis are all from the same MeSH disease category C17 (Skin
and Connective Tissue Diseases). In addition, we also find that
Chronic Obstructive Pulmonary Disease (COPD), Cystic Fibrosis,
Allergic sensitization, and Intestinal diseases (IBS, Irritable bowel
disease, and Ulcerative colitis) have also been clustered together.
Several diseases belong to two or more MeSH categories, which
indicates the pathological connections between the human genetic
susceptibility to infectious diseases and inflammatory diseases.

Based on factorized matrix s2, we can find that co-module 4
has more links to co-module 7(s4.7=2.72). Matched disease
modules 4 and 7 own the similar disease members, such as
“Allergic sensitization” (from module 4) and “Asthma” (from
module 7) induced by “Atopic dermatitis.” Besides, two
corresponding microbe modules 4 and 7 share TS term “Aging.”

Note that in Tables 2 and 3 some related diseases and
microbes are divided into different co-modules. One possible
of reasons is that the connection weight between these co-
modules is large, MDNMF as a soft clustering approach,
cannot well separately these related microbes or disease. In the
future, we will design more robust threshold selecting method to
assign each diseases or microbes to accurate modules.

In summary, for the identified module pairs by MDNMF,
especially for microbe modules, some of them share a few
biological functions (TS), but also have their special roles.
Simultaneously, some associations between microbe modules,
disease modules can be also detected by MDNMF.
Frontiers in Genetics | www.frontiersin.org 9
CONCLUSIONS

The association between microbes and human diseases has been
verified by more and more researches. However, previous studies
mainly focused on detecting the relationship such as “one
microbe, one disease,” rarely analyzed the pathogenesis of
microbial-related complex diseases from a modular perspective.
In this paper, we propose a novel microbe-disease co-module
detecting algorithm MDNMF to construct a two-level module
network by integrating two similarity matrices (microbe-microbe,
disease-disease similarity matrices) and one microbe-disease
bipartite network. Using the identified individual modules from
different levels (microbe, disease levels) and their links, we are able
tofind a few disease-relatedmicrobes (taxon sets) which provide an
opportunity to further understand the microbe high-order
relationship and their potential functions.

Meanwhile, in order to improve the accuracy of module
finding and biological interpretability of modules identified by
MDNMF, we introduce human symptoms-disease network and
microbial phylogenetic distance into the model. Compared with
other two NMF-based approaches, MDNMF can achieve better
performance in terms of EI and the number of significantly
enriched taxon sets. The proposed MDNMF is also easily
extended to other multiple-level molecular network
application, for example, virus-host co-modules, microbe-drug
co-modules discovering, and so on.
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