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Abstract

Recent studies have demonstrated that the excessive inflammatory response is an important factor of death in coronavirus

disease 2019 (COVID-19) patients. In this study, we propose a deep representation on heterogeneous drug networks, termed

DeepR2cov, to discover potential agents for treating the excessive inflammatory response in COVID-19 patients. This work

explores the multi-hub characteristic of a heterogeneous drug network integrating eight unique networks. Inspired by the

multi-hub characteristic, we design 3 billion special meta paths to train a deep representation model for learning

low-dimensional vectors that integrate long-range structure dependency and complex semantic relation among network

nodes. Based on the representation vectors and transcriptomics data, we predict 22 drugs that bind to tumor necrosis

factor-α or interleukin-6, whose therapeutic associations with the inflammation storm in COVID-19 patients, and molecular

binding model are further validated via data from PubMed publications, ongoing clinical trials and a docking program. In

addition, the results on five biomedical applications suggest that DeepR2cov significantly outperforms five existing

representation approaches. In summary, DeepR2cov is a powerful network representation approach and holds the potential

to accelerate treatment of the inflammatory responses in COVID-19 patients. The source code and data can be downloaded

from https://github.com/pengsl-lab/DeepR2cov.git.

https://academic.oup.com/
https://github.com/pengsl-lab/DeepR2cov.git
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Introduction

The emergence and rapid expansion of the coronavirus disease

2019 (COVID-19) has posed a global health threat. Studies have

suggested that the development of severe disease does not

seem to be solely related to viral load [1–2] but also that the

excessive inflammatory response induced by severe acute res-

piratory syndrome coronavirus 2 (SARS-CoV-2) is a main cause

of death in infected patients [3–4]. The discovery of potential

drugs for preventing the excessive inflammatory response in

COVID-19 patients is urgently needed [5]. Nevertheless, the new

drug development is a complex, lengthy and expensive process

that generally takes 0.8–15 billion dollars and 10–15 years [6].

Compared with de novo drug development, drug repositioning [7]

that is aimed at discovering potential drugs from existing ones

can significantly reduce the cost and period of drug development

[8] and offers a promising way for the development of treatment

of the excessive inflammatory response in COVID-19 patients.

Since the COVID-19 outbreak, numerous studies have

suggested that cytokines [e.g. tumor necrosis factor (TNF)-

α and interleukin (IL)-6] play key roles in the inflammatory

storms of patients with COVID-19 [3–4]. Therefore, there are

an increasing number of researchers that used appropriate

immunosuppressive agents to treat the excessive inflammation

in COVID-19 patients, such as IL-6R antagonists, IL-1 antagonists,

TNF inhibitors and Janus kinase inhibitors. Many existing

anti-inflammatory drugs have been applied to treat COVID-19

patients and tested in clinical trials. In particular, tocilizumab,

an IL-6R antagonist, has been proved to be effective in treating

severe ill patients with COVID-19 by small-sample clinical stud-

ies from China (clinical trial registration ID: ChiCTR2000029765).

However, the side effect associated with tocilizumab (e.g.

thrombocytopenia, severe infections and liver damage) should

be noted [9]. In addition, the clinical data of these drugs in the

treatment of COVID-19 are limited, and the efficacy of these

agents in treatment of patients with COVID-19 deserves further

exploration. Therefore, in the absence of specific drugs for

cytokine storm in COVID-19 patients, it is significant to develop

drug repositioning approaches to discover anti-inflammatory

agents for patients with COVID-19.

However, the development of promising drug repositioning

approaches for the effective treatment of inflammatory

response in COVID-19 patients is challenging, because the

action mechanisms and biological processes are complex

and elusive. Fortunately, with the rapid development of

systems biology and network pharmacology, the drug research

paradigm has been changed from the linear mode ‘one drug,

one target, one disease’ to the network mode ‘multi-drugs,

multi-targets, multi diseases’ [10]. Intuitively, the integration

of multiple type of data contributes to understanding and

analysis of molecular action mechanisms [11–13]. Among

the advances, network-based methods provide an effective

and potential paradigm to accelerate the drug development

[14–16]. Inmost of network-based drug repositioning approaches,

network representation technology, which aims to learn a

low-dimensional representation vector of vertices, plays a key

role. Therefore, many network-based methods integrate the

promising network representation technologies to boost the

treatment of COVID-19 patients [17]. Zeng et al. [18] reported

a network-based deep representation learning methodology to

identify drugs for COVID-19. Ge et al. [19] proposed a data-driven

drug repositioning framework, which applied representation

learning and statistical analysis approaches to systematically

integrate large-scale available coronavirus-related network data

to identify the potential drug candidates against SARS-CoV-2.

Zhou et al. [20] proposed network-based drug repurposing for

novel coronavirus SARS-CoV-2. However, these network-based

drugs repurposing for COVID-19 focused on identifying antiviral

drugs that are able to suppress the activity and life cycle of

SARS-CoV-2 to a certain extent. Unfortunately, the efficacy of

existing antiviral agents might be unsatisfactory or insufficient

for patients suffering from immune imbalance in COVID-19

patients, and the mechanisms of action of these drugs in this

disease are uncertain [21]. On the other hand, most of previous

network representation models for drug repurposing are only

focused on capture the network structure information and failed

to integrate semantic feature among nodes. In other words,

these network representation models to discover therapeutics

for COVID-19 cannot take into account the heterogeneous types

and relations defined in drug networks. Furthermore, it is fairly

challenging to consider the long-range dependency and relation

among nodes in heterogeneous drug networks.

To address these key issues, we propose a deep representa-

tion on heterogeneous drug network, termed DeepR2cov, to dis-

cover potential anti-inflammatory agents for COVID-19 patients.

We construct a heterogeneous drug network by integrating eight

biomedical networks and explore the multi-hub characteristic

of this drug network. Specifically, the multi-hub characteristic

inspires us to design a meta path-driven deep representation

model for automatically learning low-dimensional vectors that

can integrate long-range structure dependency and complex

semantic relation among network nodes. Using these represen-

tation vectors and transcriptomics data, DeepR2cov identifies 22

drugs binding to TNF-α or IL-6.Meanwhile,we future validate the

therapeutic associations of the inflammation storm in COVID-

19 patients via data from PubMed publications and explore the

possible binding modes between drugs and TNF-α/IL-6. In addi-

tion, we integrate five biomedical tasks, and the results demon-

strate that DeepR2cov significantly outperforms five other net-

work representation approaches. In summary, DeepR2cov is a

practically useful tool for accelerating COVID-19 therapeutic

development.

Materials and methods

Overview

In this study, we propose DeepR2cov, which is a deep repre-

sentation on heterogeneous drug network, to discover poten-

tial agents for treating the excessive inflammatory response

in COVID-19, as shown in Figure 1. First, we construct a het-

erogeneous drug network integrating the information of drugs,

diseases, proteins and side effects. Second, we extract 3 billion

meta paths from the heterogeneous drug network, which are

used to train a deep bidirectional Transformer encoder for learn-

ing low-dimensional representation vectors of network nodes.



DeepR2cov 3

Figure 1. Overall workflow of this study. There is a network pharmacology-based drug discovery platform. (A) Constructing a heterogeneous drug network by integrating

drugs, diseases, proteins and side effects. (B) Extracting 3 billion meta paths from the drug networks, which are used to drive a deep bidirectional Transformer encoder

for learning representation vectors of network nodes. (C) Using the IMC model to predict the interaction confidence among nodes. (D) Selecting 20 high-confidence

drugs binding to TNF-α and IL-6, respectively. (E) Filtering seven drugs via CMap analysis. (F) Filtering 10 drugs increasing release of TNF-α or IL-6 based on PubMed

publications. (G) Identifying 22 potential anti-inflammatory agents for COVID-19 patients where acarbose is treated as an agent that binds to both TNF-α and IL-6. (H)

Analyzing mechanisms of action based on PubMed publications. (I) Exploring the possible binding modes via docking program. Based on the representation of nodes,

(L) performing three bio-link predictions including DisPA, PDI and DSA; (K) performing ATC classification and (J) performing DDI network reconstruction.

Then, these vectors of nodes are fed into an inductive matrix

completion (IMC) model [22] to predict 20 high-confidence drugs

binding to TNF-α and IL-6, respectively. Next, DeepR2cov per-

forms Connectivity Map (CMap) [23] analysis based on transcrip-

tome data and experiment verification by PubMed literature to

further filter unsatisfactory drugs. Finally, this study predicts 22

agents that bind to TNF-α or IL-6 to prevent cytokine storms

in patients with COVID-19. Meanwhile, we analyze the mech-

anisms of action based on PubMed publications and ongoing

clinical trials and explore the possible binding modes between

the new predicted drugs and TNF-α/IL-6 via docking program

DOCK6.8 [24]. In addition, the representation is applied to five

biomedical tasks, that is, drug–drug interaction (DDI) network

reconstruction, anatomical therapeutic chemical (ATC) classifi-

cation and three bio-link predictions, to evaluate and validate

the representation performance of DeepR2cov.

Construction of heterogeneous drug networks

In this work, according to NeoDTI [13] and DTINet [25], we

assemble four types of nodes (i.e. drug, protein, side effect and

disease) and eight types of relationships [i.e. DDI, drug–side

effect association (DSA), protein–protein interaction (PPI), pro-

tein–drug interaction (PDI), disease–protein association (DisPA),

disease–drug association (DisDA), drug–drug structure similarity

(DDSS) and protein–protein sequence similarity (PPSS)], which

have beenproved by biological or clinical experiments.We ignore

other links (i.e. disease–disease association, protein–side effect,

disease–side effect, side effect–side effect). To the best of our

knowledge, although there are computational methods [26–27]

for measuring disease similarity, disease–disease association

cannot be verified by biology or clinical experiments.Meanwhile,

links (i.e. protein–side effect association, protein–side effect

association, disease–side effect association and side effect–

side effect association) do not exist in current biomedical

question. The DDI and PDI are extracted from DrugBank [28]

and ChEMBL [29]. The PPI is extracted from HPRD [30], HuRI

[31] and BioGRID [32]. The DisPA and DisDA are collected from

CTD [33] and repoDB [34]. We extract DSA from CTD [33] and

SIDER [35]. The protein sequence similarity network is obtained

by calculating the Smith–Waterman similarities [36] of the

amino acid sequence derived from UniProt. Furthermore, the

drug similarity network is obtained by calculating the Tanimoto

coefficient [37] from the Morgan fingerprint using the RDKit [38].

In the heterogeneous drug network, there are 11 490 nodes and

1887 041 edges; all edges are undirected.

Meta path-driven deep representation learning

The proposed DeepR2cov integrates a deep Transformer encoder

model and themaskedmeta paths to learn the representation of

network vertices, as shown in Figure 1B.
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Figure 2. Structure characteristics of heterogeneous drug networks. This work observes that the heterogeneous drug network is a multi-hub network where drugs and

proteins are important hubs.

Multi-hub characteristic and meta path of heterogeneous

drug networks

A meta path [39] is a composite relation denoting a sequence

of adjacent links between any two nodes in heterogeneous net-

works. The different adjacent links indicate distinct semantic.

Meta paths are widely used to capture the rich structure and

semantic for nonbiomedical heterogeneous networks. However,

not all meta paths have a positive effect on network represen-

tation learning; thus, the selection of meta path is still an open

question [40–41].

To develop a special representation learning for heteroge-

neous drug networks, first, DeepR2cov focuses on exploring

the structural characteristics of heterogeneous drug networks

and observes that the drug network is a multi-hub network

as shown in Figure 2, where drugs and proteins are important

hubs. Therefore, we specially design 23 types of meta path as

shown in Table 1, where the first two nodes in each meta path

are drugs and proteins, respectively. Then, we use these meta

paths to guide random walks over the heterogeneous drug net-

works. Based on the above procedure, we extract 3 billion path

samples from the heterogeneous drug networks. These paths

reflect the interaction mechanisms and topological structures

among vertices in heterogeneous drug networks. Note that all

the meta paths in this work are reversible, and the lengths of

meta paths is no longer than four. Because previous studies have

suggested that short meta paths are good enough and that long

meta paths may even reduce the quality of semantic meanings

[39, 42].

Deep transformers encoder

Thenetwork representationmodel inDeepR2cov is a deepTrans-

former encoder based on the original framework described in

[43], and the implementation is almost identical to the original.

The Transformer encoder model is composed of a stack of iden-

tical layers, and every layer includes two sublayers as shown

in Figure 1B. The first is a multi-head self-attention mecha-

nism, and the second is a simple, position wise fully connected

feed-forward network. Meanwhile, a residual connection [44]

is employed to connect each of two sublayers, and then layer

normalization is performed. The deep Transformer encoder can

capture long-range dependency without regarding to their dis-

tance limits in input sequence via the attention mechanisms.

Therefore, DeepR2cov can learn the complex and long-range

structure relation among heterogeneous drug networks.

Masked meta path mechanism

The network representationmodel designs amaskedmeta path-

based learning strategy to enable deep bidirectional representa-

tion inspired by the Cloze task [45]. In the masked meta path

mechanism, the input paths are randomly masked by some

token, and the objective is to predict the masked nodes based

only on its context as shown in Figure 3. DeepR2cov follows the

method used in BERT [46] tomask an inputmeta paths. First, 15%

of nodes are randomly selected for masking. For every selected

node, it has 80% chance to be replaced by <MASK> token. With

10% and 10% chance, it will be randomly replaced by any other

token in the dictionary or kept unchanged correspondingly. The

advantage of this procedure is that the randomness can increase

the generalization ability of model and can capture bidirectional

dependency relation. In addition, because random replacement

occurs in only 1.5% of the time for all tokens, it does not seem to

harm the model’s semantic understanding capability.

Anti-inflammatory drug discovery for COVID-19

Clinical findings have showed that SARS-CoV-2 infection is asso-

ciated with the excessive inflammatory response and charac-

terized mainly by elevated plasma concentrations of cytokines,

such as IL-6, TNF-α, IL-7, IL-8, IL-9 and IL-10 [3, 47]. In particular,

compared with moderate cases, severe patients have markedly

higher levels of IL-6 and TNF-α [3, 48]. In addition, recent studies

have proposed that IL-6 and TNF-α might be promising thera-

peutic targets for preventing inflammatory response in COVID-

19 patients [4, 49–50]. Therefore, this study focuses on predict-

ing drugs that bind to IL-6 or TNF-α to facilitate the therapies

efficacy of COVID-19.

Prediction of drug-TNF-α/ IL-6 confidence scores

In this study, the heterogeneous drug network includes eight

types of edge, r ∈ R = {DDI,DSA,PPI,PDI,DisPA,DisDA,DDSS,PPSS}.

For r ∈ {DDI,DSA,PPI,PDI,DisPA,DisDA},Yr
ij = 1, if node i is linked

to node j, and Yr
ij = 0 otherwise. For r ∈ {DDSS,PPSS}, Yr

ijis

equal to the similarity value between node i and j. As shown

in Figure 1C, DeepR2cov uses a IMC model [22] to obtain edge-

type projection matrices Gr,Hr ∈ R
d×k for reconstructing the

original edge-type matrix Yr as much as possible, where d is

the dimension of representation vectors and k ≪ d2. A similar

strategy has been popularly applied to the bio-link prediction
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Table 1. The meta path types and statistics where the different types of meta paths indicate distinct semantic

No. The type of meta path Count

1 drug–protein 1923

2 drug–protein–drug 153 186

3 drug–protein–protein 8728

4 drug–protein–causes–disease 2209 742

5 drug–protein–protein–drug 12 734

6 drug–protein–protein–disease 11 603 240

7 drug–protein–drug–protein 221 020

8 drug–protein–drug–disease 8243 362

9 drug–protein–drug–side effect 4482 541

10 drug–protein–disease–protein 2020 665 247

11 drug–protein–disease–drug 231 785 524

12 protein–drug–drug 34 260

13 protein–drug–protein 6344

14 protein–drug–disease 636 903

15 protein–drug–side effect 270 234

16 protein–drug–drug–protein 60 096

17 protein–drug–drug–disease 11 188 449

18 protein–drug–drug–side effect 5315 270

19 protein–drug–protein–protein 19 371

20 protein–drug –protein–disease 13 232 097

21 protein–drug–disease–protein 558 541 026

22 protein–drug–disease–drug 115 924 998

23 protein–drug–side effect–drug 38 577 295

Total

number

3023 193 590

[13, 16]. The optimization function is defined as follows:

min
Gr ,Hr

∑

r∈R

∑

(i,j)∈Vr

∥

∥

∥
Yr
ij − FiGrH

T
r F

T
j

∥

∥

∥

2

2
(1)

where Vr is a set of node pairs with r type of edge in the

heterogeneous drug networks, Fi is the representation of node

i.

Based on the representation vectors and edge-type projection

matrices, the predicted confidence score of interaction between

each drug i and node j that is TNF-α or IL-6 can be obtained by:

score
(

i, j
)

= FiGPDIH
T
PDIF

T
j (2)

The top-k candidate drugs are selected according to the

confidence scores for TNF-α or IL-6, respectively.

CMap analysis

In this section, we perform the CMap [24] analysis based on

transcriptome data to further screen candidate drugs for COVID-

19 patients. Due to the clinical manifestation and pathogeneses

similarity of COVID-19 and SARS [51], DeepR2cov uses the

gene expression profiles from SARS-CoV-infected patients

(GEO:GSE1739) [52] to conduct connectivity analysis; the detailed

steps are listed as follows.

Step 1: Student’s t-test is performed to identify genes that are

differentially expressed in samples frompatients comparedwith

normal samples. For each gene, the statistical significance is

assessed by computing P-value. The log2(FC) value is calculated

as the fold change (FC) between the signal intensity of patients

and that of normal human subjects is calculated for each gene.

Any genesmeeting the criteria of p< .01 and an absolute log2(FC)

>1 are considered to be the up- and downregulated genes,

according to the protocol described in [53].

Step 2: The CMap score is computed based on the sets of

up- and downregulated genes in patients by using a web server

(https://clue.io/query).

Step 3: In DeepR2cov, under the hypothesis that if a drug

has a gene expression signature that is opposite to a disease

signature, that drug could potentially be used as a treatment for

that disease [23]. Therefore, drugs with the CMap scores >0 are

filtered.

PubMed publication analysis

Based the PubMed publication, we manually filter out drugs

that tend to increase the release of TNF-α or IL-6 and that

treatment effectiveness to COVID-19 is controversial. In addition,

we explore the potential actionmechanismof these drugs for the

treatment of COVID-19.

Molecular docking

DeepR2cov uses the molecular docking program DOCK6.8 [24] to

explore the possible bindingmodes between the predicted drugs

and TNF-α or IL-6. The three-dimensional structures of TNF-

α and IL-6 are from the Protein Data Bank (PDB IDs 2AZ5 and

4CNI, respectively). The structures of drugs are from the ZINC

database.

Biomedical application of DeepR2cov

To evaluate the representation performance of DeepR2cov, the

representation is applied to DDI network reconstruction, ATC

classification and three bio-link (i.e. DisPA, PDI and DSA) predic-

tions.

https://clue.io/query
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Figure 3. The architecture of the masked meta path learning. In input path, [CLS] and [SEP] represent the beginning and separator token in every input example, other

tokens are node ID in the heterogeneous drug networks. The input paths are randomly masked by <MASK> token, and the objective is to predict the masked nodes

based only on its context.

DDI network reconstruction

The representation vectors are expected to reconstruct the orig-

inal networks. Here, we employ the DDI in the heterogeneous

drug network as evaluation dataset. The proximity matrix is

attained by calculating cosine similarity between representation

vectors of all drugs. Then, node pairs are ranked according to

their proximity score. Finally, the ratio of real links in the top

k pairs of vertices is treated as the reconstruction precision.

Generally, a higher reconstruction precision indicates a higher

quality representation.

ATC classification

Identification of the ATC class of an uncharacterized compound

is a challenging and important task. In this section, we adopt all

drugs in the heterogeneous drug network as evaluation dataset

of ATC classification prediction. Given known ATC classification

of some drugs, the representation vectors of drugs are fed into

the Multi-label K-Nearest Neighbor [54] model to predict poten-

tial ATC classes of drugs. Generally, high-quality representation

vectors should lead to high precision of ATC classification.

Bio-link (DisPA, PDI and DSA) predictions

Link predictions, which refer to predicting the missing edges

that may appear in the future, is pervasive in biological net-

work analysis. Therefore, IMC is employed to perform bio-link

predictions, that is, DisPA, PDI and DSA. For DisPA prediction,

we employ the DisPA in the heterogeneous drug network as

evaluation dataset. Given known disease–protein relationships,

the representation vectors of all diseases and proteins are fed

into IMC model to predict potential associations in disease–

protein network. Similarly, we predict PDI and DSA in networks.

Studies suggested that a good network representationmodel can

improve prediction accuracy of link predictions.

Results

Experiment settings and performance evaluation

The parameters of DeepR2cov followBERT,which is L=12,H=768

and A=12, where L, H and A are the number of Transformer

blocks, the hidden size and the number of self-attention heads,

respectively.

To evaluate the representation performance of DeepR2cov,

the results on biomedical applications are based on comprehen-

sively compared with those obtained from LINE [55], GraRep [56],

struc2vec [57] and NeoDTI [13]. The details of baseline methods

and hyperparameter selections can be found in Supplementary

Materials Section S1. For DDI network reconstruction, we adopt

Precision@k [58] as the evaluation metric. The coverage, one

error, ranking loss and average precision, which are defined in

[59], are used to evaluate the performance on ATC classifica-

tion. For bio-link predictions, this work adopts the area under

precision recall (AUPR) curve and area under receiver operating

characteristic (AUC) curve as the evaluation metric.

Anti-inflammatory drug discovery and mechanism
of action analysis

In DeepR2cov, 20 drugs (corresponding to roughly 3% of the total

number of drugs), are selected as candidate agents binding to

TNF-α and IL-6, respectively. Then, seven drugs with the CMap

scores >0 are filtered (as described in Supplementary Materials

Section S2). Then, we use knowledge from PubMed publications

to filter out drugs that tend to increase release of TNF-α or IL-6

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab226#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab226#supplementary-data
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Table 2. Candidate drugs and their interaction mechanisms with COVID-19

Target Drug name Mechanism of action to COVID-19 PMID

TNF-α Thalidomide Decreasing stability of mRNA 8496685, 8755512, 12105857,

9068814

Amrinone Concentration dependent manner 11969359

Dasatinib Unclear 19786067

Acarbose Decreasing the expression of microRNA 24260283

Minocycline Unclear 15904993

Imatinib Reducing DNA binding of NF-κB 16174751, 32599278

Enflurane NA NA

Dipyridamole Unclear 32318327, 23866809

Nifedipine Unclear 11104367, 15018304

Olopatadine Unclear 10831003, 15847317

IL-6 Oseltamivir Unclear 30400276, 10517426

Acarbose Reducing the MicroRNA levels 24260283

Tranexamic acid Concentration dependent manner 17988379

Aliskiren Reducing the mRNA levels 24858618, 30569967

Acetazolamide Reducing the mRNA levels 28420165

Dorzolamide NA NA

Dacarbazine NA NA

Methazolamide Unclear 27158384

Azithromycin Inhibiting of NF-κB activation 24534490, 17012372 15252403

Rivaroxaban Reducing the mRNA levels 30867376, 28735510 31984306

Ribavirin Reducing the mRNA levels 18007553, 22269828 15607755,

15472864

Amiloride Unclear 8770057

Amifostine Inducing activation of redox signaling 19010997

NA represents that there has been no study proving that the drug can inhibit the release of TNF-α or IL-6.

(as described in Supplementary Materials Section S3). Finally, we

manually filter out drugs (i.e. chloroquine and hydroxychloro-

quine), because their treatment effectiveness to COVID-19 is

controversial (as described in Supplementary Materials Section

S4).

Based on above procedure, we identify 22 anti-inflammatory

drugs for COVID-19, where acarbose is treated as an agent

that binds to both TNF-α and IL-6, as shown in Table 2. We

find that 19 of 22 drugs that have been previously reported

in PubMed publications could reduce the release of TNF-α or

IL-6. Although most of these drugs are treated as therapeutic

agents for inflammatory response, this study suggests their role

in anti-inflammatory response in COVID-19 patients for the

first time.

Fourteen drugs initially used for the anti-inflammatory response

in COVID-19 patients

To the best of our knowledge, 14 of the drugs predicted by

DeepR2cov are initially proposed as potential therapeutic for

inflammatory response in COVID-19 patients. The evidences

from PubMed publications suggest that these drugs inhibit the

cytokine release and inflammatory response, as listed in column

4 in Table 2. These results suggest that the proposed DeepR2cov

is able to predict candidate drugs that ameliorate the cytokine

storm and inflammatory response in patients with COVID-19.

Eight agents in current ongoing clinical trials to COVID-19

In DeepR2cov, eight predicted drugs have been determined

in clinical studies against COVID-19, as shown in Table 3.

Interestingly, seven drugs (i.e. thalidomide, imatinib, oseltamivir,

dipyridamole, azithromycin, rivaroxaban and ribavirin) have

been used as an immunomodulator to treat the COVID-19

Table 3. Eight drugs in current ongoing clinical trial on COVID-19

Drug name Clinic trial registration ID

Anti-inflammatory Antiviral

Thalidomide NCT04273581 NA

Imatinib NCT04422678 NCT04394416

Oseltamivir NCT04457609 NCT04516915

Dipyridamole NCT04424901 NA

Tranexamic acid NA NCT04338126

Azithromycin NCT04341870 NCT04359316

Rivaroxaban NCT04662684 NA

Ribavirin NCT04664010 NCT04494399

NA represents that there has been no clinical trial proving that the drug can

inhibit inflammatory response or antiviral activity.

patients, which is consistent with the result of DeepR2cov.

Meanwhile, clinical studies indicated that four agents (i.e.

imatinib, oseltamivir, azithromycin and ribavirin) also play

important roles in antiviral process. In addition, we also

note that tranexamic acid was not only used to reduce the

infectivity and but also virulence of SARS-CoV-2. However,

Jimenez et al. [60] suggest that tranexamic acid plays a key

role in the circulating levels of the proinflammatory cytokine

IL-6. Therefore, ongoing clinical studies on COVID-19 should

investigate the anti-inflammatory effects of tranexamic acid.

Anti-inflammatory response via multiple pathways

The knowledge from PubMed publications reveals that 19 drugs

can inhibit TNF-α and IL-6 release to reduce inflammatory

response. As shown in column 3 in Table 2, there are five

drugs (i.e. thalidomide, aliskiren, acetazolamide, rivaroxaban

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab226#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab226#supplementary-data
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Figure 4. Four representative molecular docking results for drugs binding to TNF-α or IL-6. The three-dimensional structures of TNF-α and IL-6 are from the PDB (IDs

2AZ5 and 4CNI, respectively). The structures of drugs are from the ZINC database. Here, the blue, green and gray dotted lines represent hydrogen bond, π–π stacking

and hydrophobic interaction between drugs and targets, respectively.

and ribavirin) that exert inhibitory action on TNF-α or IL-6 by

decreasing mRNA stability or enhancing mRNA degradation.

Administration of acarbose to diabetic rats significantly reduces

the expression of microRNA to inhibit the release of TNF-α and

IL-6. Amrinone reduces the release of TNF-α in a concentration-

dependent manner. Imatinib inhibits TNF-α release by reducing

the DNA binding of nuclear factor kappa B. Amifostine is

considered as a therapeutic agent of lung inflammation that

acts by suppressing IL-6-induced activation of redox-sensitive

signaling. Ribavirin inhibits the expression of TNF-α and IL-

6 in blood lymphocytes by reducing mRNA levels. Notably, a

clinical study implied that ribavirin is able to reduce the release

of IL-6 and IL-8 by inhibiting viral replication. The above studies

illustrate that these drugs can ameliorate the release of TNF-

α and IL-6 to reduce inflammatory responses via multiple

pathways.

Molecular docking analysis

In this section, four representative docking results are shown

in Figure 4. For the docking model of TNF-α, the docking result

in Figure 4A shows that acarbose mainly binds to TNF-α via

five hydrogen bonds and one hydrophobic interaction. Figure 4B

shows that thalidomide binds to TNF-α via two hydrogen bonds

and hydrophobic interactions. In the docking model for IL-

6, seven hydrogen bonds are predicted to form interactions

between acarbose and IL-6 as shown in Figure 4C. The result

in Figure 4D shows that IL-6 combines with amiloride through

five hydrogen bonds and forma π–π stacking, respectively.These

results suggest that there are some differences in the binding

modes for different drugs and targets.

DeepR2cov-based drug repurposing for Middle East
respiratory syndrome (MERS) and SARS

It is interesting and important to discuss more applications

of DeepR2cov for other types of viral infections and human

diseases. In this section, we use DeepR2cov to predict potential

therapeutic agents for patients infectedwithMERS-CoVor SARS-

CoV. Researches have suggested that interferon (IFN)-γ concen-

trations aremarkedly increased inMERS-CoV patients compared

with healthy controls [61]. Similarly, the expression of IL-1β is

upregulated in the blood of patients with SARS [62–63]. These

studies also indicated that the excessive of IFN-γ (or IL-1β) are

related to the severity disease and death in MERS (or SARS)

patients. Therefore, we are working to predicting drugs that can

inhibit the release of IFN-γ (or IL-1β) to treat patients with MERS

(or SARS).

Based on the same procedure as DeepR2cov, we identify

11 drugs for MERS as shown in Supplementary Table S2. The

PubMed publications have reported that eight of these drugs

(i.e. imatinib, bupropion, venlafaxine, arsenic trioxide, borte-

zomib, sunitinib, nifedipine and donepezil) are able to reduce the

release of IFN-γ and revealed that these drugs can reduce the

release of IFN-γ via multiple pathways of action. For example,

venlafaxine and sunitinib exert inhibitory action on IFN-γ by

decreasing mRNA expression [64–65]. Arsenic trioxide alters the

levels of INF-γ promoter acetylation and the combination of RNA

polymerase II to the INF-γ promoter [66]. Bortezomib inhibits the

express of IFN-γ by inducing T cell death [67–68].

Similarly, as shown in Supplementary Table S3,we identify 10

therapeutic agents targeting SARS, and the PubMed publications

have demonstrated that eight of them can inhibit the express

of IL-1β, that is, minocycline, orlistat, oseltamivir, fenofibrate,

azithromycin, acetazolamide, gliclazide and tramadol. Based on

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab226#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab226#supplementary-data
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Figure 5. Results of DDI network reconstruction generated by DeepR2cov and

baseline methods.

PubMed publications, we also explore the potential mechanism

of these drugs for the treatment of MERS. Minocycline sup-

presses the release of IL-1β by reducing the mRNA expression

[69]. Azithromycin significantly inhibits IL-1β secretion by desta-

bilizing mRNA levels and a dose-dependent manner [70–71].

These drugs predicted by DeepR2cov should be taken into

consideration in clinical studies on MERS or SARS. These results

indicate that the proposed DeepR2cov not only can increase

clinical testing accuracy for the emerging disease COVID-19, but

also can be applied to develop effective treatment strategies for

other types of viral infections and human diseases.

Representation performance on biomedical applications

In this section, we comprehensively analyze the results on

biomedical applications to evaluate representation performance

of DeepR2cov and baseline approaches.

Results of DDI network reconstruction

As shown in Figure 5, the Precision@k is calculated for dif-

ferent k values, which correspond to roughly 20%, 40%, 60%,

80% and 100% of the total number of the DDI edges (10 036),

respectively. DeepR2cov significantly outperforms the baseline

methods.Meanwhile, DeepR2cov shows the best precision when

the k is 6000, whereas the baseline methods exhibit the best

reconstruction precision when k is 2000. This result indicates

that DeepR2cov may reconstruct more edges than the baseline

methods.

Results of ATC classification

In this section, we perform 10-fold cross-validation, in which a

subset of 10% of the drug entities in the heterogeneous drug

network is randomly selected as test set, and the remaining

90% of drugs are treated as the training set. To reduce the data

bias of cross-validation, DeepR2cov and baseline methods are

repeatedly run 10 times and the average performance is com-

puted. Meanwhile, average precision is used in the experiments

to ensure a fair comparison, because original papers of baseline

methods also compared average precision.

Table 4 shows the results of ATC classification generated

by DeepR2cov and baseline methods, and the best results

are marked in boldface. The results clearly demonstrate that

DeepR2cov is able to achieve better results for ATC classification

than the baseline methods. In particular, DeepR2cov achieves

an approximately 50% improvement in terms of one error value

compared with baseline approaches. This results indicate that

DeepR2cov is a powerful network representation method for

predicting ATC classification of given drugs.

Results of three bio-link (DisPA, PDI and DSA) predictions

For bio-link predictions including DisPA, PDI and DSA, we per-

form a 10-fold cross-validation test on positive pairs and a

matching number of randomly sampled negative pairs. Similar

to the prediction of ATC classification, each method is repeated

10 times and the average performance is computed. Table 5

summarizes the overall results of the bio-link predictions.

In DisPA and DSA prediction tasks, DeepR2cov outperforms

the baseline methods. In particular, DeepR2cov is significantly

superior to struc2vec, improving the AUC and AUPR by over 10%.

For PDI prediction, the baseline methods achieve poor results

below 0.9 in terms of AUC and AUPR, whereas DeepR2cov shows

the excellent performance with results close to 1. These findings

suggest that DeepR2cov can still obtain good results when other

methods fail to accurately predict PDI. In summary, we observe

that DeepR2cov greatly outperforms other baseline methods.

Performance evaluations on the external drug
repositioning dataset

The above experimental results are based on the heterogeneous

drug networks (see Section Construction of heterogeneous drug

networks) and maybe lead to overoptimistic results to a certain

extent. To further test the validity and generalization ability of

DeepR2cov, we employ a different drug repositioning dataset

[16] as the external validation set that integrates four types of

entities (i.e. drug, protein, side effect and disease) and eight

types of relationships (i.e. DDI, DSA, PPI, PDI, DisPA, DisDA, DDSS

and PPSS). Based this heterogeneous drug information networks,

DeepR2cov automatically learns the representation vectors of

entities and then feed the vectors into IMC [22] model to pre-

dict potential drug–protein interactions. The performance of

DeepR2cov is compared with three state-of-the-art methods (i.e.

NeoDTI [13], deepDTnet [16] and DTINet [25]) that are designed

for drug repositioning. Based on the guidance in [16], we perform

a 5-fold cross-validation test on positive pairs along with a

matching number of randomly sampled negative pairs. To make

a fair comparison, we adopt the hyperparameters and results

from original paper [16] for deepDTnet and DTINet. The results

of NeoDTI are attained by performing the source code that is

provided by original work NeoDTI [13]. A detailed description of

datasets and experiments can be found in Supplementary Mate-

rials Section S6. The results of DeepR2cov and baseline meth-

ods are listed in Table 6. We observe that DeepR2cov achieves

superior performance compared with state-of-the-art methods,

improving the AUC and AUPR by at least 2%. These results

indicate that DeepR2cov has a high generalization ability and is

able to apply to drug repositioning.

Effect of representation dimension

In this section, we evaluate the effect of representation dimen-

sion for the performance and time efficiency. The embedding

dimension is a hyperparameter for representation learning.

Here, each method is run times with different representation

dimension to evaluate the impact of dimension on the prediction

performance and time efficiency. Figure 6 illustrates the effects

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab226#supplementary-data
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Table 4. Results of ATC classification generated by DeepR2cov and baseline methods

Method One errora Coveragea Ranking-lossa Average precisiona

DeepR2cov 0.421 2.658 0.164 0.680

NeoTDI 0.779 4.291 0.290 0.421

GraRep 0.763 4.298 0.291 0.424

LINE 0.769 4.234 0.285 0.431

struc2vec 0.798 4.379 0.297 0.405

aAmong the mentioned evaluation metrics, smaller values show better performance except in the case of average precision.

Table 5. Results of three bio-link (DisPA, PDI and DSA) predictions generated by DeepR2cov and baseline methods

Method DisPA PDI DSA

AUC AUPR AUC AUPR AUC AUPR

DeepR2cov 0.961 0.956 0.997 0.997 0.939 0.936

NeoTDI 0.921 0.904 0.878 0.881 0.927 0.918

GraRep 0.918 0.898 0.805 0.798 0.890 0.879

LINE 0.902 0.885 0.840 0.835 0.879 0.868

struc2vec 0.834 0.794 0.751 0.743 0.838 0.828

Table 6. Results of DeepR2cov and baseline methods on the external
drug repositioning dataset

Methods AUC AUPR

DeepR2cov 0.994 0.996

NeoTDI 0.971 0.970

deepDTnet 0.965 0.969

DTINet 0.963 0.969

of dimension on DDI network reconstruction (k=10 000), ATC

classification and three bio-link predictions. Generally, the pre-

diction performance is improved with increasing representation

dimension. The same conclusion is described in [72]. This is

intuitive since higher number of dimensions can encode more

useful information. However, the performance tends to saturate

or decrement when the dimension reaches to a threshold (e.g.

768). In this study, the time cost first increases gradually when

the dimension is below 768, but it tends to increase sharply (note

that the y-axis is log-based) when the dimensionality continue

to increase, as shown in Figure 7. There, we suggest that the

dimensionality should be set to approximately 768 to optimize

performance and time efficiency.

Discussion

To fight the emerging COVID-19 pandemic, this study proposes a

deep representation on heterogeneous drug network to discover

anti-inflammatory agents for patients with COVID-19. Based

on comprehensive evaluation, DeepR2cov predicts 22 high-

confidence drugs binding to cytokines to prevent excessive

inflammatory responses in patients with COVID-19. To the best

of our knowledge, 14 of these drugs predicted by DeepR2cov

are initially proposed as anti-inflammatory therapeutic for

COVID-19 patients. Eight drugs have been determined in

clinical studies against COVID-19. Interestingly, four drugs (i.e.

imatinib, oseltamivir, azithromycin and ribavirin) not only as

immunomodulators but also as antiviral agents in clinical trial

have been used to treat COVID-19 patients. A possible reason

for the inconsistent result is that these studies use different

experimental approaches and drug dosage, thus leading to

potential data conflicts or noises. Therefore, standard assays

must be carried out to measure the effects of these drugs. In

addition, all predicted drugs must be validated in preclinical

models experiments and randomized clinical trials before being

used in patients.

On five biomedical tasks, DeepR2cov significantly outper-

forms baseline network representation approaches. These

results suggest that DeepR2cov is a powerful representation

technique and can greatly facilitate the biomedical studies.

A major reason for the success of DeepR2cov is that this

work focuses on exploring the structural characteristics of

the heterogeneous drug network and observes that the drug

networks are multi-hub network. Therefore, we specially design

23 types of meta paths that integrate the structure and semantic

feature among vertices in the heterogeneous drug networks. A

mass of studies [42, 73–74] have suggested thatmeta paths could

contribute to learning meaningful representation. However,

these meta path-based representation approaches are mainly

proposed on nonbiomedical networks, and only a few studies

are focused on biomedical issues. Meanwhile, compared with

previous path-based approaches, DeepR2cov integrates a deep

bidirectional Transformer encoder, which can capture long-

range dependency without regarding to their distance limits

in original network. In addition, DeepR2cov designs the masked

meta path learning strategy to enable train deep bidirectional

representation model for capturing context-dependent relation.

Nevertheless, most of path-based representation approaches

adopt Skip-Gram that is a left-to-right architecture, where every

token can only attend to previous tokens [73].

However, we acknowledge several limitations in our current

study. DeepR2cov uses meta paths to help learning high-quality

representation vectors for various tasks. Unfortunately, it only

focuses on preserving local structure and semantic information.

Therefore, the global information among vertices in heteroge-

neous drug networks is hard to be fully modeled. In addition,

the generation of meta paths in DeepR2cov only consider the

multi-hub characteristic of drug networks and ignores the

attribute features of vertices in heterogeneous drug networks.

However, attribute features of vertices play an important role in

network-based drug discoverymethods. Therefore, in the future,
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Figure 6. The results generated by DeepR2cov and baseline methods with different dimensions for five biomedical applications. (A) and (B) are the results of DDI

network reconstruction, and ATC classification, respectively. (C)–(H) are the AUC and AUPR value of three link predictions.

Figure 7. Influence of dimensionality on the training time of different representation methods.

we will develop more self-supervised learning mechanisms

and effective multi-task learning frameworks that integrate the

topology, semantic and attribute characteristics of biomedical

heterogeneous networks for drug discovery.

In anti-inflammatory drug discovery, the top-k agents are

regarded as candidate entities related to COVID-19 according to

the confidence scores. The operation is simple and popularly

applied to the recommended systems. However, the results

neglect statistical significance to a certain extent. How to select

associated candidate agents is also an important question for

drug discovery. The selection strategy of candidates must be

improved in order to promote the precision of drug repositioning.

For example, the confidence score could be converted to a

z-score based on permutation tests, and the corresponding

P-value could be calculated. For each target, those predic-

tions with a P-value <.05 could be treated as candidate

drugs [19].

Conclusion

In this study,we propose DeepR2cov,which is a deep representa-

tion on heterogeneous drug network to discover agents for treat-

ing the excessive inflammatory response in COVID-19 patients.

This work explores the multi-hub characteristic of heteroge-

neous drug networks, which inspires us to design a meta path-

driven deep representation model. The representation model

can capture long-range dependency and complex semantic rela-

tion among nodes in heterogeneous drug networks. Based on

the representation vectors and transcriptomics data, DeepR2cov

identifies 22 potential drugs that bind to TNF-α or IL-6 to prevent

excessive inflammatory responses in patients with COVID-19.

These drugs predicted by DeepR2cov agreed well with the pre-

vious experimental studies in PubMed publications and ongoing

clinical trials. In addition, the results of five biomedical appli-

cations demonstrate that DeepR2cov significantly outperforms
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than other representation approaches. In summary, this study

offers a powerful network representation approach and holds

the potential to accelerate the treatment of the inflammatory

responses in patients with COVID-19. Meanwhile, DeepR2cov

could also been applied to develop treatment strategies for other

types of human diseases.

Key Points

• We built a heterogeneous drug network by integrat-

ing eight unique networks and observe that the drug

networks is multi-hub networks, where drugs and

proteins are important hubs.
• Inspired by the multi-hub characteristic, we design a

meta path-driven deep representation learning model

that can integrate long-range structure dependency

and complex semantic relation among network nodes.
• We predict 22 drugs, whose therapeutic associations

with the inflammation storm in COVID-19 patients,

andmolecular bindingmodel are further validated via

data from PubMed publications, ongoing clinical trials

and a docking program.
• The results on five biomedical applications suggest

that our proposed approach is a powerful network

representation approach and can achieve competitive

performance compared with state-of-the-art meth-

ods.
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Supplementary data are available online at https://academi
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