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Abstract

Despite the success of genome-wide association studies (GWASs) in detecting common variants (minor allele frequency
$0.05) many suggested that rare variants also contribute to the genetic architecture of diseases. Recently, researchers
demonstrated that rare variants can show a strong stratification which may not be corrected by using existing methods. In
this paper, we focus on a case-parents study and consider methods for testing group-wise association between multiple
rare (and common) variants in a gene region and a disease. All tests depend on the numbers of transmitted mutant alleles
from parents to their diseased children across variants and hence they are robust to the effect of population stratification.
We use extensive simulation studies to compare the performance of four competing tests: the largest single-variant
transmission disequilibrium test (TDT), multivariable test, combined TDT, and a likelihood ratio test based on a random-
effects model. We find that the likelihood ratio test is most powerful in a wide range of settings and there is no negative
impact to its power performance when common variants are also included in the analysis. If deleterious and protective
variants are simultaneously analyzed, the likelihood ratio test was generally insensitive to the effect directionality, unless the
effects are extremely inconsistent in one direction.
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Introduction

In human medical genetics, one often hypothesizes that genetic

susceptibility to common diseases such as diabetes is mainly due to

the alleles that have moderate frequencies in the population.

However, there is increasing evidence showing that there is

extreme allelic and locus heterogeneity and multiple rare variants

underlie susceptibility to such diseases. [1,2] So far, GWASs,

focusing mainly on common single nucleotide polymorphisms

(SNPs), have detected over 2000 loci associated with diseases and

traits [3]. However, many identified SNPs have very small effect

sizes and the proportion of heritability explained by common

variants is only modest [4]. Recently, Cirulli and Goldstein [5]

evaluated the evidence for an important role of rare variants of

major effect in common diseases and suggested the hypothesis that

multiple rare gene variants, each with moderate to high

penetrance, could play an important role in common diseases

[6–8]. Some studies have demonstrated that both common and

rare alleles may lead to the same disease. For examples, multiple

rare mutations were found to be related to early-onset Alzheimer’s

disease [9]. Rare mutations in genes involved in immune response

also confer a high risk for lupus [10]. An effective way to discover

disease-associated rare variants is through direct sequencing of

relevant regions (for examples, linkage regions, all exons, all

promoters). Botstein and Risch [11] suggested study of nonsynon-

ymous SNPs in common diseases. With the advances in

resequencing technologies, many believed that it is possible to

search systematically for rare variant effects that are not tagged by

panels of common SNPs.

In detecting associations with common variants, two approaches

are often used. One approach is the single-variant test with family-

wise error rate controlled by a multiple testing correction (for

example, Bonferroni, permutation). Another approach is to use a

multivariable method for testing all variants simultaneously.

However, application of either approach with multiple rare

variants involves multiplicity (that is, large degrees of freedom or

large number of comparisons) and data sparseness, which will

reduce power. To solve this problem when multiple rare variants

are expected to jointly influence disease risk, an often-used

approach is to group the variants according to some identified

function and to test the combined effect of multiple rare variants.

This motivates several collapsing methods, with or without

weighting, to enrich association signals and at the same time

reduce degrees of freedom [12–16].

Collapsing methods were mainly designed for detecting rare

variants in case-control studies. However, recently, Mathieson and

McVean [17] showed that the bias due to rare variant population

stratification was typically stronger than the bias due to common

variant population stratification and existing association tests for

case-control studies may not be able to correct for its effect. In this

paper, methods for analyzing sequence data from case-parents

studies are investigated. The related methods for detecting single

variant association are well known to be robust to the effect of

population stratification. In the case of detecting association with
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multiple rare variants, we show these methods continue to be

robust.

Here, we focus on a case-parents scenario in which a group of

rare variants has been identified. Our aim is to test whether these

rare variants are associated with the disease of interest. Four tests

are considered for detecting rare variants. The first test is based on

the largest single-variant TDT [18]. The second test is a

multivariable test proposed by Zhang et al. [19]. Their approach

uses a score vector based on the differences of transmitted and

non-transmitted genotypic codes across all variants. The third test

is a simple extension of the TDT based on combining the numbers

of transmitted mutant alleles across all variants from parents,

called combined TDT (cTDT ). The fourth test is a novel method

derived from the use of a random-effects model. The p-values of

the four tests are computed using a permutation argument. By

using this approach, we only need genotype data of the variants for

computing the four test statistics. All tests discussed here depend

on the number of the transmitted mutant alleles from heterozy-

gous parents. Thus they are robust to the effect of population

stratification. We investigate the validity of the four tests and their

power performance under various conditions on the number of

families, number of functional variants and their effect sizes,

number of nonfunctional variants in the region, variant frequency

and effect directionality. The simulation results indicated that for

non-functional gene, the type I errors of the tests all could be

adequately controlled near to the designated significance level, if

our permutation method was used. The results also concluded that

the test based on the random-effects model was most powerful

under all conditions used in simulations. We found no negative

effect to its power performance when rare and common variants

were analyzed simultaneously. In addition, the impact of effect

directionality was small and particularly so when the number of

family trios became large.

Materials and Methods

In this section, we give a genetic model for family data under

allelic heterogeneity. We briefly describe the single-variant TDT

and multivariable test, and give a formal definition of the

combined TDT. Lastly, we propose a new test based on a

random-effects model with a mixture distribution. Simulations are

used for empirical evaluation of type I error rates and power.

Genetic Model and Basic Results
We assume that within a gene region, there are L variants that

may cause disease susceptibility. Here region is referred to the unit

in which the variants are collectively analyzed. For each variant,

we choose which allele of the variant to consider as mutation.

Usually, this will be the minor allele. We focus discussion on a

family study with sample of N family trios. It is possible to extend

our statistics for nuclear families or even general pedigrees [20].

However, a common feature shared by common and rare variants

is that they tend to give rise to a weak familial concentration of

cases [6].

At each variant site, we assume that genotypes of father, mother

and a diseased child were observed across families. Let genotypes

Fj , Mj , and Cj denote the number of mutant alleles carried by

father, mother, and the diseased child, respectively, at the jth

variant site. The minor allele frequency (MAF) of the jth variant is

denoted by fj . For genotype Gj at the jth variant site, let pGj

denote the penentrance of the genotype. The genotype relative

risks (RRs) at the jth variant site are defined as c1j~p1j=p0j , and

c2j~p2j

.
p0j :

We assume Hardy-Weinberg Equilibrium (HWE) holds. Thus

Pr(Gj~0)~ (1{fj)
2, Pr(Gj~1)~2fj(1{fj), and Pr (Gj~2)~

f 2
j : The usual TDT is calculated under three mating types: mating

type 2, if FzM~3, mating type 4, if F~M~1, and mating type

5, if FzM~1 [21], where at least one of the parents is

heterozygous. For the jth variant, the probability that the parent is

heterozygous and transmits the mutant allele, conditional on the

offspring having the disease, is given by

c2j f
2
j (1{fj)zc1j fj(1{fj)

2

c2j f
2
j z2c1j f j(1{fj)z(1{fj)

2
:

The same probability but not transmitting the mutant allele is

given by

c1j f
2
j (1{fj)zfj(1{fj)

2

c2j f
2
j z2c1j f j(1{fj)z(1{fj)

2
:

Thus, given the heterozygous parent with respect to the jth
variant (Fj = 1), the probability of transmitting a mutant allele to

the diseased offspring is given by

pj~ 1z
(1{fj)zc1j fj

c2j fjzc1j(1{fj)

( ){1

:

Under the null association, this probability equals to 1/2. In this

paper, we focus our discussion on the dominant genetic model

(c2j~c1j): We point out that since the rare variants have very low

allele frequencies, the chance of a subject carrying two mutant

alleles is small. Thus, the power of the proposed association tests

under the recessive model tends to be small. However, the

corresponding power under other genetic models is expected to be

similar to that under the dominant genetic model.

Single-variant TDT
One approach of association studies is to test the association of

each variant separately using a univariable test and assess the

significance of the overall test after correction for multiple

comparisons. The TDT is the most popular univariable test in

family studies. It compares the numbers of transmitted mutant

alleles and non-transmitted mutant alleles from heterozygous

parents of the diseased children. Specifically, for the jth variant, we

denote the number of transmitted mutant alleles from heterozy-

gous parents as aj and the number of non-transmitted mutant

alleles as bj . The TDT statistic is defined by TDTj~(aj{bj)
2=

(ajzbj): If the overall type I error rate of the multiple testing is

determined at a level, and Bonferroni correction is used, then the

significance level for each single-marker test should be a=L.

Unfortunately, this approach tends to have conservative type I

error and is under-powered in general. To mitigate this problem,

one could use the test statistic TDT~ max
1ƒjƒL

TDTj and apply the

following permutation method to compute its p-value. This

Detecting Rare Variants
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permutation method consists of n permutation steps. In the ith

permutation step, the transmitted and non-transmitted genotype

vectors within each family are randomly permuted and the test

statistic TDT�i based the ith permuted data set is computed. The p-

value is defined as the proportion of times that TDT�i exceeds

TDT , i~1,:::,n: This test procedure is denoted as Ts.

Multivariable Test
A multivariable test for the study of association is to test all

variants simultaneously using a multivariable technique. Here, we

focus on the approach suggested by Zhang et al. [19]. A very

similar multi-marker method was also proposed by Shi, et al. [22].

Let genotypes Fij , Mij and Cij denote the number of mutant alleles

carried by father, mother, and the diseased child, respectively, in

the ith family at the jth variant site. Zhang et al. considered the

difference of the numbers of transmitted and non-transmitted

mutant alleles uij~2Cij{Fij{Mij and multiple-marker scores

UT~(U1,U2,:::,UL) where Uj~
PN
i~1

uij (~(aj{bj)). The vari-

ance-covariance estimate of the scores under the null hypothesis

was given by V~
PN
i~1

ui�u
T
i�, where uT

i�~(ui1,:::uiL). The statistic of

the test was defined as Tmult~UT V{1U , where V{1 is the

generalized inverse of V . Under the null hypothesis of no

association, Tmult has asymptotic x2 distribution with degrees of

freedom equal to the rank of V . However, the p-value based on

the asymptotic result also gives conservative type I error and low

power, unless the number of markers is small. In this paper, we

propose using the same permutation method described above to

compute its p-value.

Combined TDT
Another approach based on the transmitted genotypes is the

collapsing method. This method is to combine transmitted (non-

transmitted) mutant alleles, usually minor alleles, across all variants

to enrich the signals of mutation and simultaneously reduce the

degrees of freedom. Several versions of the combining method also

can be considered in this regard. However, one simple and yet

more powerful version is to combine the numbers of transmitted

and non-transmitted mutant alleles across all variants by defining

A~
PL
j~1

aj and B~
PL
j~1

bj . The combined TDT statistic is defined

by cTDT~(A{B)2=(AzB).
Under the null hypothesis, the asymptotic distribution of cTDT

is not totally clear, since the variants may be correlated. Here, we

also propose using the same permutation method to compute its p-

value.

Likelihood Ratio Test Based on a Random-effects Model
At the jth variant, we note that pj is the probability of a

heterozygous parent transmitting the mutant allele to his/her

affected offspring, and nj~ajzbj is the total number of

heterozygous parents in the sample. Thus, conditional on nj

heterozygous parents, the probability of observing aj mutant

alleles transmitted is given by

Pr (aj Dpj)~
nj !

(nj{aj)!aj !
p

aj
j (1{pj)

nj{aj ,

a binomial probability, if there is no population stratification.

However, in the case of no linkage and no association association,

pj = 0.5 and the probability Pr (aj Dpj)~0:5nj nj !=(aj ! bj !) is a

binomial probability, even there is population stratification. Thus,

any test, depending only on the numbers of transmitted and non-

transmitted alleles, has type I error robust to the population

stratification.

We note that pj is bounded, 0.5, pj ,1, if the variant is

functional (defined to be risk-related, here and after) and has

deleterious effect. Very often, however, one can identify an upper

bound for relative risks, say RR�. Under this situation and a

dominant genetic model, the transmission probabilities is bounded

by 0.5 ƒpjƒhj , where hj~RR�= RR�z(RR�{1)fjz1
� �

is

treated as a known quantity. Here fj is the estimate of allele

frequency based on the case-parents genotypes under HWE

condition [23]. We let the proportion of the functional variants in

the gene region be given by a, 0ƒaƒ1, and follow the

formulation of random-effects model (Laird and Ware [24]) to

treat pj as a random variable. Then pj has a mixture distribution

given by aU 0:5,hj

� �
z 1{að Þ I pj~0:5

� �
: Here, U 0:5,hj

� �
is a

uniform distribution over the interval between 0.5 and hj , and

I pj~0:5
� �

is a distribution with probability mass 1 at pj~0:5.

From this simple model one finds that association testing can be

done by simply testing H0: a~0: That is, the fraction of functional

variants is zero. We note that the value of hj is inversely related to

the magnitude of the MAF fj . Thus according to the mixture

distribution, the random effect pj is assumed to take smaller mean

effect value when the corresponding MAF is larger. This model

property agrees with the usual observation in the genetic studies

that common variants tend to have smaller effects and rare

variants tend to have moderate or larger effects; see Smith and

Lusis [25].

To infer parameter a , we consider the marginal distribution of

aj . This can be done by combining the binomial distribution and

mixture distribution. Simple calculation shows that the marginal

distribution of aj is given by

Pr (aj Da)~
nj !

aj !bj !
1{að Þ 1

2

� �nj

z2aBeta(ajz1,bjz1)

�

Betaajz1,bjz1(hj){Betaajz1,bjz1(0:5)

2hj{1

 !#
,

where Betaajz1,bjz1(t) is the cdf of a beta distribution evaluated at

t and has parameters (ajz1,bjz1) and Beta(ajz1,bjz1) is the

usual beta function evaluated at ajz1 and bjz1. We use a pseudo

likelihood function, defined by L(a)~ P
L

j~1
Pr (aj Da), to work as if it

is the true likelihood. This is because that the numbers of

transmitted alleles aj
’s across all variants may not be independent.

We also use the usual likelihood ratio statistic LR = 2log

L(âa)22logL(0) to test the null hypothesis, where âa is the usual

maximum likelihood estimate of a: We suggest that the p-value of

the likelihood ratio test (LRT ) also be computed through the use of

the same permutation method described above.

Evaluation of Type I Error Rate and Power
To evaluate the performance of four tests: LRT ,cTDT ,Ts and

Tmult, simulations were used to generate diplotypes of parents and

diseased children for the L variants within a gene region. We first

generated parental diplotypes. We used coalescent model [26] that

mimics the LD pattern, recombination rate and population history

for the Europeans to simulate realistic sequence-level genetic data.

We randomly selected one gene region with 250 kb in length and

used COSI [26] to generate a pool of 25000 haplotypes. From this
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pool of haplotypes, we calculated the haplotype frequencies of all

variants and generated parental diplotypes. The diplotype of the

offspring was determined by randomly transmitting one haplotype

from each of his/her parents. The disease status of the offspring

was determined by the relative risks and disease prevalence. Let

D~1 denote that the child is diseased and 0, otherwise. Also recall

that Cj is the number of mutant alleles carried by the diseased

child at the jth variant site. The relative risk (RR) model was given

by

P D~1DC1~c1,C2~c2,::::,CL~cLð Þ
P D~1DC1~0,C2~0,::::,CL~0ð Þ ~ exp b1c1z:::zbLcLð Þ,

where the relative risk due to the jth variant was exp (bj). The RR

of a functional variant was determined according to its MAF and

the RR-range (RRmin to RRmax) of all functional variants, through

the following formula: RR~RRminz(1{
MAF{MAFmin

MAFmax{MAFmin
)

(RRmax{RRmin): Here, MAFmin(MAFmax) was the smallest

(largest) MAF of all functional variants. This in effect means that

functional variant with smaller frequency was assigned larger effect

size in the simulations.

In all simulations, we randomly selected L variants from the

simulated region and assumed the first M variants were functional

and the rest were nonfunctional. In all scenarios, rare variants with

minor allele frequencies (MAFs) ranging from 0.1% to 1% were

randomly selected. Higher frequency (common) variants had

MAF either 3% or 5%. Among the randomly selected rare

variants in our simulations, the largest minor allele frequency

(MAFmax) was 0.00936 and the smallest minor allele frequency

(MAFmin) was 0.00120.

Given the disease risks for all functional variants, haplotype

frequencies, and disease prevalence rate equal to 1%, we

determined the disease status of each offspring and sampled

families until a pre-specified number of case-parents trios (500–

2000) was reached. In order to evaluate type I error rate of each

test under the null hypothesis, we considered regions with (L = ) 5–

100 rare variants. Next, in order to study the power performance

and its impact due to the inclusion of the nonfunctional variants in

the studied region, we considered regions with (M = ) 2 and 10

functional variants, and RR ranges 1.8–2.0 and 3.4–3.6,

respectively. The percentage of nonfunctional variants was chosen

to be 0%, 50%, 67% 75%, 80%, 90%, or 95%. The functional

variants may be protective or deleterious. To study its impact, we

also considered a region with 10 functional variants and each

variant had 10%, 20%, 30%, or 40% chance of being protective.

The RR of the protective variant was taken as the inverse of that

for the deleterious variant. Finally, in order to study the power

performance of the tests when rare and common variants in the

same region were simultaneously analyzed, we considered a region

with 5 functional variants and 20 nonfunctional variants under

two scenarios: (1) functional variants included 1 or 2 common

variants with MAFs equal to 3%, 5% and the rest of the variants

rare; (2) nonfunctional variants included 1 or 2 common variants

with MAFs equal to 3%, 5%, and the rest of the variants rare.

All simulation results given in this paper were based on 5000

independently simulated samples. In each sample, we performed

n = 10,000 permutation steps to compute p-values for all tests. The

LRT statistic was defined with the choice of relative risk upper

bound RR� = 5. Type I error rates and power of all tests were

estimated by the proportions of replicates with p-value ,0.05.

Results

Empirical Type I Error Rates
Table 1 shows empirical type I error rates of the competing tests

in detecting rare variants when the significance level was designed

at 5%. From Table 1, we first found that the type I error rates of

Ts were slightly conservative when sample size was small.

However, its performance can be improved by increasing the

number of family trios. Under all simulated conditions, the range

of its type I errors was (0.0325, 0.0592). In contrast, the

corresponding type I error ranges for Tmult, LRT and cTDT
were respectively given by (0.0436, 0.0564), (0.0425,0.0580) and

(0.0308, 0.0470). This indicates that the permutation method

proposed in the paper can effectively control type I errors of all

tests near the designated level.

Empirical Power when Nonfunctional Variants were
Included

Here, we considered the regions with 2 or 10 functional variants

and 0%–95% nonfunctional variants. The effect sizes of the

functional variants were inversely proportional to the number of

functional variants. The results from Table 2 first indicated that

the power of the test depends more on the effect size of the variant

and less on the number of functional variants. For example, in the

case of large effect size (RRs between 3.4 and 3.6) but a small

number ( = 2) of functional variants, most of the power was greater

Table 1. Type I error rates of the tests when the true significance level is 5%.

5 nonfunctional variants 10 nonfunctional variants 20 nonfunctional variants

Sample size Ts Tmult LRT cTDT Ts Tmult LRT cTDT Ts Tmult LRT cTDT

500 0.0328 0.0436 0.0496 0.0308 0.0378 0.0438 0.0470 0.0318 0.0325 0.0475 0.0425 0.0312

1000 0.0336 0.0440 0.0462 0.0380 0.0478 0.0518 0.0460 0.0420 0.0522 0.0548 0.0508 0.0438

2000 0.0452 0.0474 0.0558 0.0384 0.0592 0.0558 0.0504 0.0452 0.0438 0.0548 0.0452 0.0470

50 nonfunctional variants 100 nonfunctional variants

Sample size Ts Tmult LRT cTDT Ts Tmult LRT cTDT

500 0.0372 0.0452 0.0450 0.0442 0.0342 0.0460 0.0510 0.0420

1000 0.0414 0.0564 0.0580 0.0414 0.0464 0.0517 0.0568 0.0460

2000 0.0514 0.0486 0.0482 0.0416 0.0544 0.0474 0.0498 0.0400

doi:10.1371/journal.pone.0074310.t001
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than 80% when the family number was moderate or large

(§1000) and the proportion of the functional variants in the gene

region was at least 10%. Under the same conditions, however, the

power of the tests was often smaller than 70% when the effect size

was small (RRs between 1.8 and 2.0), but the number of functional

variants was large ( = 10). The power of the tests tended to be

decreased when the proportion of nonfunctional variants was

increased to create more noise. However, we found that the tests

Ts and LRT were less sensitive to the nonfunctional variants, and

particularly so when the functional variants had larger effect sizes.

Unfortunately, the power of Ts was too small in most cases. In

contrast, LRT has better empirical power under all simulation

conditions considered. The power loss due to the inclusion of

nonfunctional variants can be reduced by increasing sample size.

For example, if the number of family trios was increased to 2000,

the power of the tests Tmult and LRT can be maintained above

80% under all conditions. If the family number was decreased to

500, LRT was still able to maintain its power ranging from 0.7426

to 0.9592 when the proportion of functional variants was no less

than 50%. However, under the same condition, the corresponding

range for the second best test was only between 0.6650 and

0.7948. Obviously, there was a substantial power advantage

accrued by using LRT .

Power when the Effects were in Different Directions
Table 3 shows the power performance of four competing tests

when the effects of the variants were in different directions. In the

simulations, the probability of a functional variant having

protective effect was assumed to be between 10% and 40%.

Clearly, if the probability was 10%, then the effects were more

consistent in one direction, and if the probability was 40%, then

the effects were less consistent. We focus on a region with 10

functional variants. From the results of Table 3, we found that

when sample size was small, the power of cTDT was more

sensitive to the effect directionality. For example, when the family

number was 1000, the power of cTDT was decreased from

92.36% to 59.44% as the probability of protective variant was

increased from 10% to 40%, while the power of LRT was

decreased from 93.28% to 75.58%. When the family number was

increased to 2000, the corresponding power was decreased from

99.72% to 87.78% and 99.40% to 95.58%, respectively. In the

former case, the ranges for Ts and Tmult were 47.00%–51.08%,

and 73.30%–80.30%, respectively. These results show that Ts and

Tmult were more robust to the effect directionality. However, they

are less powerful when the family number was small or moderate.

Overall, we found that LRT had the best power performance

when the variants have different effect directions. However, in the

case of a large number of family trios ( = 2000), Tmult and LRT
were found to be more comparable in power.

Empirical Power when Common Variants were Included
Table 4 gives the power results when the common and rare

variants were analyzed simultaneously. It is well known that both

the magnitude of allele frequency and effect size of functional

variant have impact on the power performance of test. From the

results of Table 4 we found that in family study, low effect

Table 2. The power of the tests when nonfunctional rare variants are included.

2 functional variantsa 10 functional variantsb

Sample Size
Proportion of
functional variants Ts Tmult LRT cTDT Ts Tmult LRT cTDT

500 100% 0.8334 0.8896 0.9592 0.9152 0.2674 0.4606 0.8370 0.7948

50% 0.8000 0.8376 0.9254 0.8146 0.2438 0.3412 0.7426 0.6650

33% 0.7830 0.7778 0.8840 0.6946 0.2018 0.2776 0.6112 0.4642

25% 0.7718 0.7150 0.8714 0.6594 0.1752 0.2270 0.4936 0.3230

20% 0.7534 0.6792 0.8542 0.5978 0.1618 0.2182 0.4448 0.2756

10% 0.7240 0.5516 0.7888 0.4376 0.1308 0.1542 0.3178 0.1842

5% 0.6642 0.3696 0.6818 0.1698 0.1229 0.1114 0.2434 0.1280

1000 100% 0.9922 0.9960 0.9998 0.9986 0.5288 0.8168 0.9788 0.9864

50% 0.9904 0.9874 0.9976 0.9896 0.4600 0.7034 0.9208 0.9268

33% 0.9866 0.9802 0.9956 0.9608 0.4022 0.5990 0.8508 0.7776

25% 0.9812 0.9662 0.9898 0.9304 0.3530 0.5108 0.7834 0.5870

20% 0.9760 0.9522 0.9890 0.8890 0.3286 0.4568 0.7264 0.5142

10% 0.9672 0.8754 0.9814 0.7312 0.2636 0.3190 0.5618 0.1867

5% 0.9446 0.7406 0.9554 0.3164 0.2400 0.2241 0.4634 0.1789

2000 100% 1.0000 1.0000 1.0000 1.0000 0.8724 0.9886 0.9974 1.0000

50% 1.0000 1.0000 1.0000 1.0000 0.8086 0.9718 0.9890 0.9990

33% 1.0000 1.0000 1.0000 0.9992 0.7556 0.9474 0.9822 0.9788

25% 1.0000 0.9994 1.0000 0.9980 0.7290 0.9000 0.9694 0.8932

20% 1.0000 0.9994 1.0000 0.9948 0.6874 0.8616 0.9614 0.8237

10% 1.0000 0.9974 1.0000 0.9574 0.6101 0.7133 0.8919 0.5888

5% 1.0000 0.9850 1.0000 0.5662 0.5375 0.5392 0.8255 0.4189

aRRs are 3.4–3.6.
bRRs are 1.8–2.0.
doi:10.1371/journal.pone.0074310.t002
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common variant tended to have greater positive impact in power

than high effect rare variant. Although we have observed that

LRT had the best power performance if all functional variants had

low MAFs. We found that the power performance of all tests

became more comparable when common but low effect variants

were included in the study and the number of family trios was

moderate or large (§ 500). In the case of smaller number of family

trios (300), however, their power differences became greater. In

this case, LRT still had the best power performance. It had power

0.8629 and 0.9986, if one and two rare functional variants were

replaced by common functional variants, respectively. The second

best test was Ts and its power was 0.6975 and 0.9806, respectively.

When nonfunctional common variants replaced nonfunctional

rare variants in the analysis to create more noise, we also found

that LRT had better power performance. However, the power

change of any test seemed small. For example, in the case of 500

family trios and 1 or 2 nonfunctional rare variants were replaced

by nonfunctional common variants, the power range for LRT was

(0.6184, 0.6200). The corresponding ranges for other tests were

(0.3498, 0.3506), (0.3214, 0.3230), and (0.3558, 0.3568). The

power range became even smaller if the number of family trios

became larger. These results indicated that the tests were

insensitive to the nonfunctional common variants.

Discussion

There is emerging interest in association studies of rare variants

and it is hypothesized that rare variants are more likely to be

functional than common variants are. Although it is still not totally

clear how exactly rare and common variants affect the disease,

some results have shown that the combination of GWAS and

sequencing could be a good technique for studying diseases [27].

GWAS is used for localizing signals to a small region of the

genome and sequencing is applied to find and define the specific

variations that may be underlying the causes that led to the signal.

In this process, one powerful method for identifying rare variants is

to pool variants by gene or pathway into a composite test. Most

tests considered so far for detecting rare variants were based on

population-based case-control studies. However, the method

proposed for detecting rare variants in case-control studies needs

extra effort to control for the potential confounding effect due to

the population stratification. Li and Leal [12] suggested that the

problem may be overcome by implementing logistic regression in

which covariates for describing ethnicity are included in the

analysis; also see Wu et al. [15] and Lin and Tang [16]. However,

Mathieson and Mcvean [17] pointed out that the existing methods

can fail to correct for rare variant stratification. They suggested

that more robust approach with respect to stratification, such as

family-based association, should be used for replication. In this

paper, we have described four statistical methods for detecting

group-wise association between multiple rare variants in a locus

and a genetically heterogeneous disease, based on sequence data.

All tests discussed in this paper depend on the differences

between the numbers of the transmitted and non-transmitted

mutant alleles from heterozygous parents to their diseased

children, across all variants and families. The properties of the

tests depend only on the transmission probabilities of the mutant

alleles from parents to their children, and consequently, they are

robust to the effect of population stratification. In the simulations,

we also have investigated the effect of the population stratification

on type I error rate. We considered two populations, Europeans

and Africa Americans, and used the coalescent model for the

Africa Americans to generate sequence-level data at the same

variant locations for the Europeans (as described in the simulation

section), with MAFs ranging from 0.001 to 0.03. The disease

prevalence rate and the proportion of the second population were

set at 4% and 20%, respectively. Unreported results showed that

all type I errors were between 0.04 and 0.06 and all tests were truly

robust to the effect of population stratification.

Although the tests considered depend only on the transmitted

and non-transmitted genotype vectors, they are defined in different

ways or use different concepts. The combined TDT is defined to

enrich the association signals across variants, while the single-

variant and multivariable tests are not. The likelihood ratio test

based on a random-effect model is a novel test derived from the

use of a completely different concept. It is designed to test zero

proportion of functional variants in a gene region. Other tests were

designed to compare the genotype frequencies of the ‘‘case’’ and

‘‘control’’ populations. We have compared the performance of the

four tests: Ts, Tmult, LRT and cTDT . From our limited simulation

study, we found that if the number of family trios is small (500), Ts

and Tmult seems to be less powerful when the region size (that is, L)

is larger, and cTDT tends to have poorer power performance

when the region size is smaller. Whether this is in general true,

Table 3. The power of the tests when effects are in different directionsa.

Proportion of protective variants

10% 20%

Sample size Ts Tmult LRT cTDT Ts Tmult LRT cTDT

500 0.2628 0.4380 0.7510 0.6480 0.2476 0.4198 0.6836 0.5582

1000 0.5108 0.8030 0.9328 0.9236 0.5096 0.7864 0.9132 0.8676

2000 0.8512 0.9888 0.9940 0.9972 0.8532 0.9870 0.9896 0.9918

30% 40%

Sample size Ts Tmult LRT cTDT Ts Tmult LRT cTDT

500 0.2576 0.4072 0.6102 0.4516 0.2388 0.3922 0.5040 0.3302

1000 0.5004 0.7676 0.8584 0.7870 0.4700 0.7330 0.7558 0.5944

2000 0.8284 0.9832 0.9842 0.9758 0.8194 0.9768 0.9558 0.8778

aDeleterious variants have RRs between 1.8 and 2.0. Protective variants have RRs between 0.50 and 0.56.
doi:10.1371/journal.pone.0074310.t003
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more study is needed. If the number of family trios is increased,

however, the power differences of all tests become very small

unless the proportion of functional variants in the gene region is

very small. Overall, under any simulation condition given in this

paper, we find that LRT has the best power performance.

In our computation of p-values, a permutation method based on

random permutation of the transmitted and non-transmitted

genotype vectors within each family is used; Shi et al. [22] also

used the same technique. One advantage of using this permutation

approach is that haplotype data are not required. We need

genotype data only. The results from the null simulations indicate

that this approach can effectively control type I errors near to the

designated 5% significance level.

A number of studies have shown that alleles with a wide range

of frequencies are involved in disease etiology [28–36]. Some

simulation results showed that the collapsing methods for detecting

rare variants in case-control studies could be adversely influenced

by the presence of low-effect common variants (see for example Li

and Leal [12]). In this paper, we also have compared the impacts

of low-effect (RRs between 1.2 and 1.4) common variants

(MAFs§3%) and high-effect (RRs between 2.4 and 2.6) rare

variants (MAFs between 0.1% and 1%) in family studies. Our

simulated results suggested that the low-effect common variants

have greater positive impact in power than the high-effect rare

variants. We emphasize that this finding is observed under the

given sample size, RRs and MAFs, chosen for comparison in

simulations. Same simulation study also showed that all tests were

very robust to the inclusion of nonfunctional common variants in

the analysis. In general, we find no negative impact produced by

analyzing rare and common variants simultaneously in a family

study.

The disadvantage of the usual collapsing methods is that they

are not powerful when the effects are not all in the same direction.

We also have investigated the properties of the competing tests

when the effects are in different directions. In general, if the

proportion of the variants that are protective is increased, then the

power of the tests is decreased. However, if the number of family

trios is increased, then the power loss can be reduced. Ts and Tmult

are more robust in the sense that their percentages of power loss

are smaller. Unfortunately, they are less powerful. The power loss

of cTDT is the largest. Thus one should be careful when it is used

for detecting rare variants. Finally, we observe that although LRT

is not the most robust test, but it is the most powerful test in all

cases. Thus this method can be recommended for detecting rare

variants.

The definition of the combined TDT is based on the equal

weighting strategy. Madsen and Browning [14] proposed a

strategy to weight each variant according to allele frequencies in

case-control study. Their idea is to assign lower weights for the

common variants. However, our simulation results suggested that

the tests considered here were robust to the inclusion of

nonfunctional common variants and the power can be improved

if functional common variant was included in the analysis with the

same weight as that for rare variant. Price et al. [13] suggested a

variable-threshold approach to demonstrate that the incorporation

of computational predictions of the functional effects of missense

variants can provide improvement in power. We note that a

weighting strategy that can adapt to properties of individual

variants may be applied to improve power too. For example, in

our random-effect model approach, different effect distributions

were used for variants with different MAFs. According to the

distribution property, the range (from 0.5 to hj ) of the random

effect was smaller for variants with larger MAFs and larger for

variants with smaller MAFs. If we know more precisely the range

of RRs, we also can use a more precise upper bound for RRs and

hence a better random-effects model. This in general can lead to

the power improvement of the likelihood ratio test. In our

simulations, we have used RR upper bound equal 5 and the results

Table 4. The power of the tests when high frequency functional and nonfunctional variants were includeda.

Sample size

300 500

Number of high frequency
functional variantsb

Number of low
frequency functional
variantsb Ts Tmult LRT cTDT Ts Tmult LRT cTDT

0 5 0.2186 0.2182 0.4386 0.2353 0.3506 0.3230 0.6200 0.3568

1 4 0.6975 0.6030 0.8629 0.4868 0.9440 0.8532 0.9796 0.7156

2 3 0.9806 0.9530 0.9986 0.8558 1.0000 0.9995 1.0000 0.9814

Sample size

500 1000

Number of high frequency
non-functional variantsc

Number of low
frequency non-
functional variantsc

Ts Tmult LRT cTDT Ts Tmult LRT cTDT

0 20 0.3506 0.3230 0.6200 0.3568 0.6789 0.6708 0.8930 0.6641

1 19 0.3506 0.3230 0.6200 0.3568 0.6792 0.6706 0.8931 0.6642

2 18 0.3498 0.3214 0.6184 0.3558 0.6794 0.6708 0.8933 0.6641

aThe first high frequency variant has MAF 3% and the second high frequency variant has MAF 5%. High frequency functional variants have RRs between 1.1 and 1.2. The
low frequency variants have MAFs between 0.1% and 1% and low frequency functional variants have RRs between 2.4 and 2.6.
bThere are 5 high or low frequency functional variants and is no nonfunctional variants.
cThe total number of variants is 25. Among them, there are 20 high or low frequency nonfunctional variants and 5 low frequency functional variants.
doi:10.1371/journal.pone.0074310.t004
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seems acceptable. Thus, unless one has more information so that

smaller upper bound can be used, otherwise, this upper bound is

recommended.

Note that the family study requires genotypes of the diseased

individuals and their parents. Unfortunately, parental genotypes

may not be always available. Several methods had been proposed

to solve the issue of missing parental genotype, for example, using

EM algorithm with the assumption that genotype missing is

random conditional on the known genotypes of other family

members; see the discussion in Chen and Cheng [37]. These

methods are difficult to extend to the cases of multiple variants

with very small allele frequencies. For some diseases it might be

easy to obtain the genotype of one parent either because the other

parent is not available for study or he/she refuses to participate. In

such circumstances, one may follow the idea of 1-TDT (Sun et al.

[38]) for example to utilize genotype information for diseased

individuals and only one available parent for each diseased

individual. Another alternative approach is to compare variant

genotypes in affected and unaffected offspring, instead of using

variant data from parents; see for examples, Spielman and Ewens

[39], Siegmund, et al. [40], Lunetta, et al. [41], and Zhao et al.

[42]. Note that we would require more complicated method for

computing p-values for the approach by Sun et al. [38]. On the

other hand, for the alternative approach, a within family

permutation argument may be sufficient. The detailed methods

and results will also be reported elsewhere.

In this paper, we report only the simulation results under the

multiplicative genetic model. The unreported power under the

dominant genetic models only differs slightly but basic conclusions

remain unchanged. One major reason is that the subject cases

have only very small chance of being homozygous for the mutant

allele, because of low MAF. For the same reason, we also find that

all competing tests have very small power in detecting rare variants

under the recessive genetic model.
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