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Introduction: Acute kidney injury (AKI) is common among hospitalized patients and has a significant

impact on morbidity and mortality. Although early prediction of AKI has the potential to reduce adverse

patient outcomes, it remains a difficult condition to predict and diagnose. The purpose of this study was to

evaluate the ability of a machine learning algorithm to predict for AKI as defined by Kidney Disease:

Improving Global Outcomes (KDIGO) stage 2 or 3 up to 48 hours in advance of onset using convolutional

neural networks (CNNs) and patient electronic health record (EHR) data.

Methods: A CNN prediction system was developed to use EHR data gathered during patients’ stays to

predict AKI up to 48 hours before onset. A total of 12,347 patient encounters were retrospectively analyzed

from the Medical Information Mart for Intensive Care III (MIMIC-III) database. An XGBoost AKI prediction

model and the sequential organ failure assessment (SOFA) scoring system were used as comparators. The

outcome was AKI onset. The model was trained on routinely collected patient EHR data. Measurements

included area under the receiver operating characteristic (AUROC) curve, positive predictive value (PPV),

and a battery of additional performance metrics for advance prediction of AKI onset.

Results: On a hold-out test set, the algorithm attained an AUROC of 0.86 and PPV of 0.24, relative to a

cohort AKI prevalence of 7.62%, for long-horizon AKI prediction at a 48-hour window before onset.

Conclusion: A CNN machine learning-based AKI prediction model outperforms XGBoost and the SOFA

scoring system, revealing superior performance in predicting AKI 48 hours before onset, without reliance

on serum creatinine (SCr) measurements.
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A
cute kidney injury (AKI) is a complex syndrome
associated with large clinical and financial bur-

dens.1–12 Despite its prevalence in hospitalized pa-
tients2,13 and reported incidence as high as 70% in the
critically ill,13,14 no treatment has been developed to
effectively reverse injury to the kidney and restore
kidney function.1 The reasons for this failure have
been attributed to delays in diagnosis and interven-
tion,2,15–23 the complex nature of the AKI syndrome
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and the staging of its severity,3,21 and its multiple
etiologies.15,16

Until recently, studies of incidence and outcomes of
AKI have produced inconsistent results owing to
varying definitions of AKI.24–26 The Risk, Injury,
Failure, Loss, End-stage kidney disease criteria,27 fol-
lowed by the AKI Network,28 and most recently the
Kidney Disease: Improving Global Outcomes (KDIGO)
criteria29,30 have provided consensus on AKI definition.
KDIGO guidelines define AKI as an absolute increase of
serum creatinine (SCr) of >0.3 mg/dl within 48 hours
or a relative increase of >50% in no more than 7
days.21,29 Doubling of SCr at steady state reflects an
approximate 50% decrease in kidney function as
evaluated by glomerular filtration rate.31 Some studies
have suggested that changes in SCr even smaller than
0.3 mg/dl within 48 hours are associated with
1289
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significant increases in the risk of death, dialysis, and
other morbidities,6,21,32–38 and other studies are
consistent with worsening outcomes with increasing
AKI stage.5,14,24,39–42 However, increases of SCr are
known to lag kidney injury by hours to days after the
initial kidney insult, and therefore recognition of AKI
is delayed owing to reliance on SCr measurements.43,44

Early AKI detection is critical to improving patient
outcomes.45–48 Given that the components necessary
for defining and staging AKI are routinely available in
EHR,3 a number of automated alerts have been devel-
oped to predict AKI events before onset. However,
these alerts are generally triggered by detecting
changes in SCr and urine output alone or in combina-
tion.17 Because a range of kidney injuries can exist
before a loss of kidney function can be estimated with
these standard laboratory tests,44,49 there is great in-
terest in developing methods that can be used to detect
AKI in patients at an earlier stage.50–56 In this article,
we describe our methodology for the development of a
convolutional neural net (CNN) prediction system that
predicts AKI up to 48 hours before onset using patient
data extracted from the EHR. The CNN model does not
require SCr or urine output values.
METHODS

Description of Data

This study uses data from the MIMIC-III version 1.3
data set,57 collected at Beth Israel Deaconess Medical
Center in Boston, Massachusetts, from 2001 to 2012.
The MIMIC data set offers a variety of encounter in-
formation of more than 40,000 unique patients and
includes both structured (e.g., laboratory results) and
unstructured (e.g., clinician notes) data. Owing to
differences in the storage of patient procedure infor-
mation, we restrict our study to data collected from
2008 to 2012 using the iMDsoft MetaVision ICU
(iMDsoft, Needham, MA) EHR system and do not
include data collected from 2001 to 2008 using the
Philips CareVue Clinical Information System (Philips
Health-care, Andover, MA).58 Because the collection of
the MIMIC data did not affect patient safety and
because all data were anonymized in accordance with
the Health Insurance Portability and Accountability
Act Privacy Rule, the Institutional Review Boards of
Beth Israel Deaconess Medical Center and the Massa-
chusetts Institute of Technology waived the require-
ment for patient consent.

From the MetaVision EHR MIMIC encounters, we
selected for inclusion stays involving adult patients
(i.e., age 18 years or older) with at least one measure-
ment of diastolic blood pressure, systolic blood pres-
sure, temperature, respiratory rate, heart rate, oxygen
1290
saturation, and Glasgow Coma Scale. These measure-
ments were selected because they were frequently
available and easily collected at the patient bedside,
even before clinical suspicion of AKI was present.
These were the only direct variables used during the
training and testing of the algorithm; clinical notes
vectorized with the Doc2Vec algorithm were also used
as inputs to the CNN model. Serum creatinine was used
as part of the KDIGO criteria, which served as the gold
standard of patients with true-positive AKI, but it was
not used as an input in testing. To facilitate the analysis
of the 48-hour advance prediction of AKI onset with a
5-hour window of measurements upon which to base
such a prediction, we required the patient stay dura-
tion to be at least 53 hours long. For convenience and
with minimal restrictions, we required that patient
encounters lasted no more than 1000 hours. To train
and test the algorithm on the broadest possible patient
sample, no further inclusion or exclusion criteria were
applied. Patients with prevalent AKI, those with
chronic kidney disease, and who received dialysis were
therefore included. Inclusion criteria are listed in
Figure 1 for 24- and 48-hour prediction windows, and
the demographic characteristics of encounters meeting
the inclusion criteria are reported in Table 1.

Overview of Preprocessing, Training, and Testing

MIMIC-III intensive care unit (ICU) encounter data
were gathered in the following ways: encounters from
the MetaVision database in MIMIC-III were required to
be at least 18 years of age and had to include at least 1
measurement for at least 1 of the required input fea-
tures. For each prediction offset T, the encounters were
filtered such that each encounter was between 5 þ T
hours and 1000 hours. A total of 5 þ T hours were
required to account for the offset and give the model
the required 5 hours of measurements used for pre-
diction. For each prediction offset T, positive examples
measurements were taken between 5 þ T and T hours
before onset for prediction, whereas negative example
measurements were taken during random 5-hour win-
dows of the patient stays. Onset was defined as the first
time that the relevant KDIGO criteria were met during
the patient stay. Patient encounters satisfying the in-
clusion criteria were immediately allocated to training
and testing sets. Approximately 90% and 10% of all
encounters were randomly allocated to the training and
testing sets, respectively, stratified by positive and
negative classes to ensure equal representation of
classes in both sets. We binned the data by the hour,
imputed missing measurements, and standardized
measurements on a variable-by-variable basis. AKI was
defined according to KDIGO stage 2 or KDIGO stage 3
criteria, and positive cases were identified as those
Kidney International Reports (2021) 6, 1289–1298



Figure 1. Inclusion diagram. Patients were required to be at least 18 years of age and must have at least 1 measurement of at least 1 of the
input features. MIMIC-III, Medical Information Mart for Intensive Care III.

Table 1. Demographic characteristics of MIMIC-III ICU encounters
found in the 48 hour data set and meeting the inclusion criteria of
Figure 1
Characteristic Count %

Gender Female 3186 46.71
Male 3635 53.29

Age (d):
Median 65, IQR (53–77)

18–29 317 4.65
30–39 307 4.50
40–49 665 9.75
50–59 1246 18.27
60–69 1599 23.44
70þ 2687 39.39

Length of stay (d):
Median 5, IQR (4–9)

<3 43 0.63
3–5 4282 62.78
6–8 1200 17.59
9–11 528 7.74
$12 768 11.26

Inhospital death Yes 1747 25.61
No 5074 74.39

KDIGO stage 2 or 3 Positive 520 7.62
Negative 6301 92.38

KDIGO stage 1, 2, or 3 Positive 1410 20.67
Negative 5411 79.33

ICU, intensive care unit; IQR, interquartile range; KDIGO, Kidney Disease: Improving
Global Outcomes; MIMIC-III, Medical Information Mart for Intensive Care III.
We note that the determination of KDIGO positive or negative was made after the data
preprocessing steps described in the Methods section.
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patients reaching KDIGO stage 2 or stage 3 during the
encounter. KDIGO stage 2 or stage 3 classifications were
determined for each encounter, along with the corre-
sponding times of KDIGO onset where appropriate.
Stage 2 AKI is defined in the KDIGO staging system as
an increase in SCr to more than 200% to 300% (>2- to
3-fold) from baseline or urine output <0.5 ml/kg per
hour for more than 12 hours.29 Stage 3 AKI is defined as
an increase in SCr to more than 300% (>3-fold) from
baseline, or $4.0 mg/dl ($354 mmol/l), or kidney
replacement therapy, or a decrease in estimated
glomerular filtration rate to <35 ml/min per 1.73 m2

(if <18 years of age), or urine output < 0.5 ml/kg per
hour for $24 hours or anuria for $12 hours.29 In both
cases, the smaller of either the Modification of Diet in
Renal Disease27 SCr estimate based on KDIGO 2012
guidelines or the 20th percentile of observed creatinine
measurements was used for the baseline creatinine
measurement in each patient encounter. Any missing
features required for measurement, including missing
urine or SCr measures, made a contribution of 0 to the
total KDIGO score.

A Doc2Vec embedding network was created to
vectorize clinical text data. The Doc2Vec algorithm
works by creating vectors for the most common words
in all the documents and separate vectors for each
document. These vectors are trained by selecting a
Kidney International Reports (2021) 6, 1289–1298
window of words in each document; the corresponding
vectors for these words, in addition to the vector for
the document that the text came from, predict the next
word in the sequence. The resulting document vectors
are used as inputs, whereas the word vectors are
1291
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discarded. The embedding network was prepared on a
large collection of midstay clinical notes, ranging from
the primary complaint to radiology notes, including
everything up to, but not including, the discharge
summary, from encounters allocated to the training set.
The network embedded texts into 250-dimensional
numeric vectors, which served as inputs to the classi-
fiers, alongside the structured data associated with the
stays. Any notes dated after the onset of AKI were not
used as inputs for the model to ensure that the model
used only data found at or before prediction time.

Training data were passed to a CNN structure, with
hyperparameters optimized on the training set using
the Python-based optimization package Talos (Auton-
omio Talos [Computer software]). Tuned hyper-
parameters include learning rate, batch size,
optimization loss, L1 and L2 regularization coefficients,
and the size of dense layers in the model. CNN was
chosen instead of a recurrent neural network as it is
faster to train and has fewer parameters (M. Blohm
et al., unpublished data, 2018). In addition, the win-
dow of time from which the structured data were
gathered for prediction was relatively short (5 hours).
CNN modeling techniques have been found to
outperform recurrent neural network modeling tech-
niques with improved generalizability when applied to
speech recognition tasks (A.V. Oord et al., unpublished
data, 2016). After the end of the training on each fold,
network performance was evaluated using the hold-out
test set. Results were reported as the average test set
performance across cross-validation folds.

Structured Data Preprocessing

Structured data were binned by the hour, with mul-
tiple intrahour measurements of the same variable
replaced by its average. Missing measurements were
handled separately for training and testing sets using
the last observation that carried forward the imputa-
tion. Any remaining missing values were filled in using
the measurement median in the training data. Quanti-
tative data and document vectors were then standard-
ized using the training data such that each feature had
a mean of 0 and a variance of 1.

Document Vector Encoding Network and Un-

structured Data Preprocessing

To facilitate the use of unstructured text data alongside
the structured inputs, we trained a Doc2Vec (Q.V.Le.,
unpublished data, 2014) embedding network with 250
nodes on 238,468 midstay clinical notes. Document
vectors were produced for the text data available from
each encounter, using 125 epochs of the Doc2Vec al-
gorithm—to better ensure the stability of the inferred
document vectors—and an initial learning rate of 0.01.
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The choice of the number of epochs and learning rate
was found through experimentation. Clinical notes
dated after AKI onset were excluded from the input
when training and testing CNN.

Training of Neural Network Classifier

We constructed a classifier to predict the probability of
the presence of AKI at a given offset time from predic-
tion using the Python deep learning library, Keras, that
uses variants of multichannel, multiheaded attention
together with convolutions to extract information from
quantitative time series data. A separate network for
handling the document vector produced by the Doc2Vec
network was combined downstream through concate-
nation in a fully connected output layer. This allowed
the model to incorporate information from both the time
series data in the EHRs and the qualitative information
found in the clinical notes. Model parameters were
optimized using the Nadam optimizer59 as implemented
in the Keras library with a learning rate of 0.0009 and
binary cross-entropy loss. A diagram of this neural
network architecture is available as Supplementary
Figure S1. Owing to the low prevalence of AKI in the
data, random oversampling was performed to artificially
inflate the positive population. This was performed by
picking examples from the positive class at random with
replacement until the number of positive examples
matched the number of negative examples.

To fit the weights of the network with 10-fold cross-
validation, we split the training data into 10 subsets of
roughly equal size and iteratively used 9 subsets for
intrafold training and the final subset for intrafold
testing. Model parameters were fit over the course of 50
epochs on the 9 intrafold training subsets, with eval-
uation on the final subset. For each iterate, we obtained
an ROC curve and a battery of performance metrics.
We then randomly reset the model parameters before
performing another iterate. From cross-validation, we
obtained an average ROC curve and average perfor-
mance metrics, along with standard deviation for the
performance metrics. These results are presented in
comparison with an XGBoost60 classifier and the SOFA
score,61 which has been found to independently pre-
dict AKI outcomes62–64 and therefore serves as a vali-
dated comparison measure for AKI prediction. SOFA
was computed using all organ systems; any missing
inputs required for computation contributed zero
points to the total SOFA score. The XGBoost classifier
was trained on the same processed training sets—5-
hour windows of quantitative, clinical EHR data—
and evaluated on the same testing set. The time series
data were turned into a list of the binned measurements
at the different hours and given to XGBoost as input,
requiring no additional feature engineering. Document
Kidney International Reports (2021) 6, 1289–1298



Table 2. Results from 10-fold cross-validation of predictions 48 hours before onset on the MIMIC-III data set
Performance metric CNN XGBoost SOFA No Doc2Vec Stage 1 included Stage 3 only

AUROC mean (SD) 0.856 (0.034) 0.654 (0.011) 0.701 0.763 (0.035) 0.778 (0.037) 0.819 (0.036)

Sensitivity mean (SD) 0.804 (0.000) 0.798 (0.000) 0.798 0.805 (0.006) 0.806 (0.008) 0.806 (0.000)

Specificity mean (SD) 0.763 (0.057) 0.380 (0.006) 0.441 0.623 (0.064) 0.649 (0.074) 0.679 (0.079)

PPV mean (SD) 0.236 (0.039) 0.095 (0.001) 0.127 0.163 (0.022) 0.310 (0.044) 0.105 (0.023)

NPV mean (SD) 0.975 (0.002) 0.956 (0.001) 0.960 0.970 (0.003) 0.940 (0.006) 0.985 (0.002)

Accuracy mean (SD) 0.765 (0.052) 0.411 (0.005) 0.612 0.638 (0.056) 0.672 (0.062) 0.683 (0.076)

DOR mean (SD) 14.076 (3.779) 2.421 (0.059) 3.123 7.123 (1.899) 8.167 (2.425) 9.566 (3.410)

LRþ mean (SD) 3.558 (0.739) 1.287 (0.012) 1.429 2.191 (0.362) 2.389 (0.478) 2.658 (0.660)

LR� mean (SD) 0.258 (0.021) 0.532 (0.008) 0.458 0.316 (0.035) 0.301 (0.035) 0.288 (0.035)

F1 mean (SD) 0.361 (0.047) 0.169 (0.001) 0.214 0.270 (0.030) 0.444 (0.045) 0.184 (0.036)

AUROC, area under the receiver operating characteristic curve; CNN, convolutional neural network; DOR, diagnostic odds ratio; KDIGO, Kidney Disease: Improving Global Outcomes;
LRþ, positive likelihood ratio; LR�, negative likelihood ratio; MIMIC-III, Medical Information Mart for Intensive Care III; NPV, negative predictive value; PPV, positive predictive value; SD,
standard deviation; SOFA, sequential organ failure assessment.
The CNN model is compared with an XGBoost classifier and the SOFA score. SOFA required no training and thus could be applied to the entire test set at once; hence, no SD is reported.
Additional comparison is made to the CNN model without the use of the Doc2Vec network (i.e., without unstructured text data) and for the prediction of KDIGO criteria of any stage.
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vectors were not given as input for XGBoost. XGBoost
hyperparameters were tuned using a cross-validated
grid search on the training data. Hyperparameters
were optimized using grid search in the hyper-
parameters “gamma,” which controls how often the
trees are split, and “colsample_bytree,” which controls
the number of features randomly selected for inputs
when constructing each tree.

RESULTS

The demographic characteristics associated with
MIMIC-III ICU encounters meeting the inclusion
criteria of Figure 1 are provided in Table 1. The study
population consisted of 53.29% men, with a few pa-
tients younger than 30 years of age (4.65%) and a
substantial percentage of patients aged 70 years or
more (39.39%). More than half the patients had stays
lasting between 3 and 5 days (62.78%), with a sub-
stantial percentage of patients experiencing stays of 12
days or longer (11.26%). The overall mortality rate was
39.39%, with 7.62% of encounters meeting the criteria
for KDIGO stage 2 or stage 3 at some point during the
stay, and 20.6% of stays meeting some stage of the
KDIGO criteria at any point during the stay.

Performance was evaluated by predicting once in
each encounter using 5 hours of data. These data
were taken either from a random portion of the stay
for negative examples, or from the specified model
offset for positive examples. The results from 10-fold
cross-validation on the 90% training set are reported
in Tables 2 and 3 for 48 and 24 hour predictions,
respectively. Test performance is reported for the
best performing model, selected by cross-validation
of the training data. The CNN model, with the use
of the Doc2Vec embeddings of encounter text data,
outperformed the XGBoost comparator model and the
SOFA score for advance prediction of KDIGO stage 2
or stage 3 onset. We note that, to provide
Kidney International Reports (2021) 6, 1289–1298
nonsummative performance metrics (i.e., the metrics
other than AUROC), we selected an operating point
for each model or score that provided a sensitivity
nearest to 0.80. The CNN model performed better
(AUROC of 0.86 for 24 and 48 hour predictions)
when text data were made available through Doc2-
Vec than when these data were unavailable (AUROC
of 0.77 and 0.76 for 24 and 48 hour predictions,
respectively). In addition, the quality of prediction
was higher for KDIGO stage 2 or stage 3 onset, as
compared with the prediction of onset for any of
KDIGO stages 1–3. For corresponding CNN and
XGBoost results without oversampling of the minor-
ity class, see Supplementary Table S1. Permutation
feature importance methods were implemented to
provide information on the relative importance of
each input variable. A precision-recall curve com-
parison between the CNN model, the XGBoost model,
and the SOFA score is presented in Supplementary
Figure S2.

The CNN model averaged a PPV of 0.24 over cross-
validation folds for the 48-hour prediction of KDIGO
stages 2 and 3, compared with average PPVs of 0.09
and 0.13 for XGBoost and the SOFA score, respectively
(Table 2). CNN had almost no advantage (PPV of 0.16)
in the absence of text data through Doc2Vec input. The
average PPV was highest when the CNN classifier was
given access to Doc2Vec input and tasked with 48-hour
prediction of KDIGO stages 1–3 (PPV of 0.31). Relative
to the 7.62% prevalence of KDIGO stages 2 and 3,
positive predictions made by the CNN model enriched
KDIGO stage 2 or 3 encounters by a factor of 4.80,
whereas XGBoost and the SOFA scores enriched these
encounters by factors of 2.50 and 2.11, respectively.

The ROC curve comparison of the 48-hour predic-
tion on the 10% hold-out test set is found in Figure 2.
The CNN model, which was provided text data
through the Doc2Vec input, performed substantially
1293



Table 3. Results from 10-fold cross-validation of predictions 24 hours before onset on the MIMIC-III data set
Performance metric CNN XGBoost SOFA No Doc2Vec Stage 1 included Stage 3 only

AUROC mean (SD) 0.863 (0.009) 0.729 (0.009) 0.727 0.769 (0.028) 0.834 (0.004) 0.867 (0.009)

Sensitivity mean (SD) 0.803 (0.000) 0.801 (0.000) 0.784 0.801 (0.003) 0.798 (0.005) 0.795 (0.000)

Specificity mean (SD) 0.772 (0.021) 0.463 (0.026) 0.537 0.585 (0.066) 0.716 (0.018) 0.785 (0.024)

PPV mean (SD) 0.221 (0.016) 0.111 (0.005) 0.151 0.153 (0.019) 0.359 (0.014) 0.131 (0.014)

NPV mean (SD) 0.978 (0.001) 0.964 (0.002) 0.961 0.968 (0.003) 0.944 (0.001) 0.988 (0.000)

Accuracy mean (SD) 0.773 (0.020) 0.489 (0.024) 0.684 0.602 (0.060) 0.728 (0.014) 0.784 (0.023)

DOR mean (SD) 13.905 (1.617) 3.484 (0.367) 4.200 5.861 (1.440) 10.030 (0.822) 14.396 (2.212)

LRþ mean (SD) 3.545 (0.319) 1.494 (0.073) 1.692 1.970 (0.292) 2.821 (0.178) 3.740 (0.452)

LR� mean (SD) 0.256 (0.007) 0.431 (0.024) 0.403 0.344 (0.038) 0.282 (0.007) 0.261 (0.008)

F1 mean (SD) 0.345 (0.019) 0.194 (0.007) 0.247 0.256 (0.027) 0.494 (0.013) 0.224 (0.020)

AUROC, area under the receiver operating characteristic curve; CNN, convolutional neural network; DOR, diagnostic odds ratio; KDIGO, Kidney Disease: Improving Global Outcomes;
LRþ, positive likelihood ratio; LR�, negative likelihood ratio; MIMIC-III, Medical Information Mart for Intensive Care III; NPV, negative predictive value; PPV, positive predictive value; SD,
standard deviation; SOFA, sequential organ failure assessment.
The CNN model is compared with an XGBoost classifier and the SOFA score. SOFA required no training and thus could be applied to the entire test set at once; hence, no SD is reported.
Additional comparison is made to the CNN model without the use of the Doc2Vec network (i.e., without unstructured text data) and for the prediction of KDIGO criteria of any stage.
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better than the XGBoost model and SOFA. The XGBoost
model and SOFA had similar performance on the test
set.
Figure 2. ROC curve comparison of prediction performance using a
CNN classifier, an XGB classifier, and the SOFA score, 48 hours
before AKI onset on the MIMIC-III ICU hold-out data set. AKI, acute
kidney injury; AUROC, area under the receiver operating charac-
teristic curve; CNN, convolutional neural network; ICU, intensive
care unit; MIMIC-III, Medical Information Mart for Intensive Care III;
ROC, receiver operating characteristic; SOFA, Sequential Organ
Failure Assessment score; XGB, XGBoost.
DISCUSSION

These experiments reveal that a CNN can predict AKI
up to 48 hours in advance of KDIGO stage 2 or stage 3
AKI onset, with AUROC performance superior to that
of an XGBoost classifier and the SOFA scoring system
(Table 2, Figure 2). Unlike other diseases for which
multiple severity scores exist, AKI represents a group
of syndromes that are loosely connected by the char-
acteristic rapid drop in estimated glomerular filtration
rate found in patients with AKI.65 With more than 30
definitions of AKI,66 attempts at a uniform definition
for AKI have included the Risk, Injury, Failure, Loss,
End-stage kidney disease classification,27 followed by
the AKI Network,28 and, most recently, the KDIGO
criteria.29,30 The absence of a consistent, uniform
definition may explain the current lack of an AKI-
specific risk score that serves as a standard-of-care.
To provide context for the performance of their AKI
prediction models, previous studies have used the
biomarker serum neutrophil gelatinase–associated lip-
ocalin as a comparator,67 compared their model to other
machine learning models,68 or not included a standard-
of-care comparator.69,70 In the current study, we
compare 2 machine learning models and provide the
SOFA score as a comparator. Although the SOFA score
was not developed for the purpose of long-horizon AKI
prediction, because of the ubiquity of the SOFA score
and its previous use in AKI outcome prediction, it
serves as a validated comparator for our current
approach.62–64 The XGBoost comparator is similarly
important, primarily owing to its broad and successful
use in applications for other clinical prediction tasks
(e.g., the 2019 Physionet Computing in Cardiology
Challenge71).
1294
The superiority of the CNN classifier over the XGBoost
classifier and the commonly used SOFA score is evi-
denced by key performance metrics, such as AUROC and
PPV (Table 2). The PPV performance improvement is of
particular importance. Romero-Brufau et al. have argued
that AUROC performance may be misleading for clini-
cians interested in evaluating the clinical impact of a
diagnostic tool, as AUROC does not incorporate infor-
mation on the prevalence of a condition.72 In fact, for the
same reason, AUROC is useful for comparing the per-
formance of tools retrospectively validated on different
data sets. This concern regarding PPV and prevalence is
Kidney International Reports (2021) 6, 1289–1298
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relevant to our study, as we found that the prevalence of
KDIGO stages 2 or 3 is roughly 7.6% in the cohort, an
estimate consistent with previous epidemiologic
studies.73 The AUROC is a summative metric that may
include ranges of operating points that are irrelevant to a
given task, whereas PPV can be focused on a clinically
relevant operating point. To produce the metrics in
Table 2, we chose the operating points for the CNN and
the comparators such that their sensitivities were fixed
near 0.80.

Beyond the text data input through Doc2Vec, CNN
predictions were made using only age and 7 routinely
collected patient measurements (diastolic blood pres-
sure, systolic blood pressure, temperature, respiratory
rate, heart rate, oxygen saturation, and Glasgow Coma
Scale) as inputs. Although this study was restricted to
the MetaVision (iMDSoft) EHR system for technical
reasons, the use of these widely available inputs sup-
ports the generalizability of the model to broad clinical
practice. Importantly, the CNN model did not rely on
SCr to make predictions, distinguishing it from other
AKI prediction tools. Creatinine levels can take hours or
days to rise to AKI thresholds as defined in the KDIGO
staging system74; therefore, changes in SCr may reflect
preexisting kidney damage. An AKI prediction tool that
does not depend on SCr measurements may better afford
clinicians the opportunity to intervene early, to prevent
AKI development or progression, or to limit further
kidney damage. Furthermore, using only often collected
variables in the EHR for AKI prediction allows automatic
screening of a general patient population for impending
AKI without requiring specialized evaluation.

This study contributes to the growing body of
retrospective machine learning literature for the pre-
diction of AKI.75 Chiofolo et al.69 developed a model for
AKI prediction and surveillance in patients in the ICU
for a 6-hour prediction window with an AUROC of
0.88. Flechet et al.67 developed the AKIpredictor, a
prognostic calculator for prediction of AKI in patients
in the ICU during the first week of stay. Their KDIGO
stage 2 and 3 models produced AUROCs between 0.77
and 0.84. The AUROC of 0.84 corresponds to a pre-
diction of KDIGO stage 2 and 3 after gathering 24 hours
of data. As a point of comparison, the CNN model used
only 5 hours of data before making a prediction. Recent
work by Toma�sev et al.68 pursued a deep learning
approach for continuous risk prediction of deteriora-
tion in patients with AKI and evaluated their tool on a
Veteran’s Health Administration data set of 703,782
adult patients. Algorithm performance for a 48-hour
prediction window corresponded to a sensitivity of
55.8% and a specificity of 82.7%.68 This performance
is reported to be in the range required for regulatory
approval.76 Although these studies make important
Kidney International Reports (2021) 6, 1289–1298
contributions to the domain of AKI research, they
depend on the use of SCr to make predictions, which is
a lagging marker of kidney function. In contrast, the
CNN described in this work does not rely on SCr to
make predictions of AKI onset, allowing for both
longer lead times and improved predictive performance
and for making predictions for patients who may not
yet be clinically suspected of having AKI and who have
not yet had their SCr measures drawn. CNN also offers
improvement in performance as compared with our
previous work,77 which used the machine learning
method of gradient-boosted trees to predict AKI before
onset and included SCr as a model input. In compari-
son, results from our current work suggest that AKI
predictions can be made with a more robust machine
learning architecture, without reliance on SCr, while
achieving stronger predictive performance.

Although the CNN described in this study offers
substantial lead time in AKI identification (up to 48
hours) and offers improved predictive performance
over our previous work,77 it still requires prospective
validation. Furthermore, we cannot determine from
this retrospective study what impact the algorithm
might have on clinicians and their provision of care in
clinical settings, nor provide an analysis of model
evaluation and its prediction performance in time.
Although the CNN model performance was superior to
that of SOFA and XGBoost, improvements in PPV
achieved by CNN compared with XGBoost or SOFA are
less pronounced without the use of clinical notes. Al-
gorithm performance was evaluated only on patients in
the United States older than 18 years with stays in the
ICU, which limits the generalizability of our results to
other patient populations and levels of care. Although
most of the patients in the negative class had a SCr
measurement at some point in the ICU stay, it is
possible that inclusion of patients missing urine mea-
sures in the negative class led to the misclassification of
some patients in our data set. It is also possible that
misclassifications could have occurred for some pa-
tients in the data set owing to inclusion of patients with
a previous diagnosis of chronic kidney disease or who
received dialysis. Owing to the lack of a standard-of-
care AKI score, we used the SOFA score and the
XGBoost model to provide context for our model per-
formance. Although the SOFA score has been used in
AKI outcome prediction studies,62–64 it was not devel-
oped for the purpose of long-horizon AKI prediction.
Furthermore, although the XGBoost comparator was
included owing to its use in other clinical prediction
tasks,71 it does not serve as a standard-of-care for AKI
predictions. Last, because there have been several
proposed consensus definitions for AKI, the algorithm
we described may produce different results when
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compared against non–KDIGO definitions, or in set-
tings that use a different standard in their diagnostic
procedures.

CONCLUSION

A CNN for AKI prediction outperforms XGBoost and
the traditional SOFA scoring system, revealing superior
performance in predicting AKI up to 48 hours before
onset without reliance on measurements of changes in
SCr. Although the use of clinical text data through a
Doc2Vec network substantially strengthened CNN
prediction performance, CNN was found to have su-
perior performance over both XGBoost and SOFA even
when clinical notes were not included as model inputs,
supporting the use of CNN models for the task of AKI
prediction. Such a tool may improve prediction and
early detection of AKI in clinical settings, thereby
allowing for earlier intervention.
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