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Abstract: The Kelch repeat F-box (KFB) protein is an important E3 ubiquitin ligase that has been
demonstrated to perform an important post-translational regulatory role in plants by mediating
multiple biological processes. Despite their importance, KFBs have not yet been identified and
characterized in bamboo. In this study, 19 PeKFBs were identified with F-box and Kelch domains;
genes encoding these PeKFBs were unevenly distributed across 12 chromosomes of moso bamboo.
Phylogenetic analysis indicated that the PeKFBs were divided into eight subclades based on similar
gene structures and highly conserved motifs. A tissue-specific gene expression analysis showed that
the PeKFBs were differentially expressed in various tissues of moso bamboo. All the promoters of the
PeKFBs contained stress-related cis-elements, which was supported by the differentially expression
of PeKFBs of moso bamboo under drought and cold stresses. Sixteen proteins were screened from
the moso bamboo shoots’ cDNA library using PeKFB9 as a bait through a yeast two-hybrid (Y2H)
assay. Moreover, PeKFB9 physically interacted with PeSKP1-like-1 and PePRX72-1, which mediated
the activity of peroxidase in proteolytic turnover. Taken together, these findings improved our
understanding of PeKFBs, especially in response to stresses, and laid a foundation for revealing the
molecular mechanism of PeKFB9 in regulating lignin polymerization by degrading peroxidase.

Keywords: Phyllostachys edulis; KFB; ubiquitination; abiotic stress; peroxidase activity; lignin poly-
merization

1. Introduction

Post-translational modification (PTM), which plays a central role in the maintenance of
protein stability and the modulation of protein activity, affects many aspects of plant devel-
opment and growth [1,2]. Various types of protein modification have been reported, such
as ubiquitination, acetylation, methylation, glycosylation, myristoylation, and phospho-
rylation [3]. Among them, ubiquitination is one of the main post-translational regulation
mechanisms in eukaryotes; it distinguishes itself from others in that most of the ubiq-
uitinated proteins are targeted to the 26S proteasome for degradation. Three sequential
ubiquitin enzymes are involved in mediating ubiquitination: the ubiquitin-activating en-
zyme (E1); the ubiquitin-conjugating enzyme (E2); and the ubiquitin ligase (E3), which
catalyzes the formation of an isopeptide linkage between the activated ubiquitin and the
lysine residue of the substrate protein. Finally, these isopeptides target the 26S proteasome,
where the target proteins are degraded; meanwhile, the ubiquitin monomers are reclaimed
by the action of de-ubiquitination enzymes [4].

The specificity of protein ubiquitination is mainly determined by E3, and due to
this, E3 provides recognition and binding specificity to the substrate in a temporally and
spatially regulated manner [5,6]. The E3 superfamily is classified into single subunit
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proteins and cullin-based multi-subunit protein complexes, both of which can mediate
ubiquitination; the multi-subunit protein complexes include SCF, CUL3-BTB, and CUL4-
DDB [7]. F-box proteins form a ubiquitin ligase complex together with the suppressor
of kinetochore protein 1 (SKP1), Cullin 1 (CUL1) and Ring-Box 1 (RBX1), where it plays
the critical role of recruiting substrates to the ubiquitin–proteasome system [8]. F-box
proteins were divided into different subfamilies based on classification criteria of variable
protein–protein interaction motifs at the C termini, such as leucine-rich repeats (LRR),
WD-40, and Kelch [9,10]. The Kelch repeat F-box (KFB) protein is one of these subfamilies;
it contains C-terminal Kelch repeats but excludes the F-box motif in N-termini [11].

In plants, the KFB subfamily includes members with one to five Kelch repeats consisting
of 44–56 residues [12]. To date, 46, 103, 31, and 36 KFBs have been described in Oryza sativa,
Arabidopsis thaliana, Triticum aestivum, and Salvia miltiorrhiza respectively [11–13]. Several
KFBs have been characterized and shown to have functions in regulating many important
biological processes such as seed germination [14], hypocotyl elongation [15,16], panicle
growth [17], leaf senescence [18], and other developmental processes [19,20]. Importantly,
KFBs have three very typical functions. Firstly, KFBs are involved in regulating photoperiod
flowering. FLAVIN-BINDING KELCH REPEAT F-BOX 1 (FKF1) is one of the most inten-
sively researched FBKs, the expression of which is controlled by the circadian clock [21].
These proteins play important roles in modulating photoperiodic flowering [22–24] and the
mechanisms of regulating proteins at both the transcriptional and post-translational levels in
promoting flowering [25–28]. Secondly, KFBs are the result of the biosynthesis of secondary
metabolites such as cuticular wax [29], phenols [30], flavonoids [31], and glucosinolate [32].
Lastly, several KFBs have been identified as key regulators in the phenylpropanoid biosyn-
thesis pathway by means of physically interacting with enzymes of the phenylpropanoid
pathway isoforms such as PAL and CCR to selectively mediate enzyme ubiquitination
and proteolytic degradation via the 26S proteasome pathway [33–35]. Interestingly, these
secondary metabolites play important roles in tolerance of stresses, suggesting KFB proteins
have many regulatory roles in response to biotic and abiotic stresses.

To date, it has been challenging to face the depletion of forest resources and the
increase in the protection of existing resources, so there is a need to develop and utilize
nonwoody biomass [36]. In this context, bamboo, which offers a short growth cycle and equal
physical and mechanical properties such as an excellent mechanical and tensile strength, has
been widely used as an essential alternative to timber in mitigating its shortage [37]. The
better physical and mechanical properties of bamboo are highly dependent on lignification.
Studies in the field of the molecular mechanisms and genetic manipulations of lignification
at the transcriptional level have been widely carried out and included lignin synthase
genes [38,39], transcription factors [40,41], and miRNAs [42]; a reliable miRNA-mediated
“MYB-PeLAC20” module for lignin monomer polymerization in bamboo was proposed
in [42]. However, the underlying post-translational regulatory mechanisms of lignification
in bamboo remain unclear. As the important E3 ubiquitin ligases, KFBs also play an
important role in lignification and lignin biosynthesis. So, we performed identification
and characterization analyses of the KFB gene family in moso bamboo. Detailed analyses
including phylogenic distribution, structural features, chromosome location, and selection
pressure for duplicated gene pairs were conducted. Moreover, the tissue- and stage-specific
expression patterns of KFB genes in moso bamboo as well as the expression changes in leaves
under drought and cold stresses were analyzed. Finally, to gain insights into the molecular
mechanism of PeKFB9 involved in lignin polymerization, we systematically explored the
potential protein–protein interactions of PeKFB9 with PeSKP1-like-1 and PePRX72-1, which
laid a foundation for the future investigation of the potential functions of PeKFBs in bamboo.

2. Results
2.1. Identification and Characterization of KFB Genes in Moso Bamboo

Through BLASTP with the queries of Arabidopsis and rice KFBs in the bamboo
database, we looked for conserved F-box domains and Kelch domains by Pfam and SMART
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in all the candidates and excluded any gene that encoded truncated KFB proteins. As
a result, a total of 19 Kelch repeat F-box (KFB) proteins were obtained in moso bamboo
(named as PeKFB1-PeKFB19) and used for further analysis. The characteristics of the
proteins encoded by PeKFBs, including the numbers of amino acids and Kelch motifs,
their molecular weight, and isoelectric point, were systematically analyzed and are listed
in Table S1. The amino acid lengths of PeKFBs ranged from 345 aa (PeKFB14) to 634 aa
(PeKFB1) with molecular weights between 38.91 kDa and 68.29 kDa. We observed that
PeKFBs had a variable theoretical isoelectric point with a high of 9.78 (PeKFB6) and a low of
4.91 (PeKFB14). All the PeKFBs were localized in the nucleus; PeKFB13 was also localized
in the chloroplast. The conserved motif analysis showed that eight PeKFBs only had a
single Kelch motif, four PeKFBs had two Kelch motifs, one had three Kelch motifs, and the
remaining five had four Kelch motifs.

2.2. Phylogenetic Analysis of KFBs

To gain clear insight into the evolution of the PeKFBs, a phylogenetic analysis was
performed using the protein sequences of KFBs in moso bamboo, Arabidopsis, and rice. The
results showed that all the KFBs from different plant species could be clearly demarcated
into eight major subclades and that the members of each subclade were different (Figure 1).
Within the separated clades, the PeKFBs were clustered close to the KFBs of rice and
distant from those of Arabidopsis. Notably, Subclades C and F only contained KFBs of
Arabidopsis and rice with the absence of PeKFBs while the other subclades comprised
the KFBs of three species. Subclade G comprised the maximum number of PeKFBs (6)
followed by Subclade D (5), Subclade A (3), Subclades E and H (2), and Subclade A (1).
Interestingly, At1g15670 (AtKFB01), At1g80440 (AtKFB20), and At3g59940 (AtKFB50),
which are associated with lignin biosynthesis [33], were clustered in Subclade A, in which
three PeKFBs (PeKFB7, PeKFB9, and PeKFB17) were clustered close to them.
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PeKFB3. Concretely, each Kelch motif was featured with three conserved amino acid 

residues: two adjacent glycines (G) and one nonadjacent aromatic amino acid (W). 

However, the amino acid residues of the Kelch motif domain at the C-termini of KFBs 

lacked strictly conserved sequences and only a few amino acid residues were relatively 

Figure 1. Phylogenetic analysis of KFB proteins in moso bamboo, Arabidopsis, and rice. Green squares,
red triangles, and yellow circles represented moso bamboo, Arabidopsis, and rice, respectively. KFB
proteins were categorized into eight subclades (A–H), which are highlighted in various colors.
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2.3. Structural Features of PeKFBs

The structural features of all the identified PeKFBs were examined to gain insights
into their evolution. It is well known that gene structural diversity might be an explanation
for the evolution of multigene families. According to the predicted structures, 11 of the
19 PeKFBs had no introns while the rest of the PeKFBs only contained one intron (Figure 2a).
Structurally, the closely linked PeKFBs were more analogous and generally showed the
same exon/intron pattern in terms of intron number and position or exon length. PeKFB6
and PeKFB18 were the most representative genes and showed very similar exon–intron
structures.
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Ka/Ks ratios of duplicated KFB gene pairs (Table S2). The Ka/Ks ratios of all duplicated 

Figure 2. Structural features of KFB family members in moso bamboo. (a) Gene structures of PeKFBs.
Red boxes: exons; lines between the boxes: introns. The scale bar at bottom demonstrates the length
of exons and introns. (b) Conserved motifs of PeKFBs. Motifs 1–10 are presented in boxes with
different colors. The motif information was obtained from the MEME website and visualized in
TBtools.

Furthermore, a conserved-motifs analysis showed that a total of 10 motifs were found
in the PeKFBs (Figure 2b). Fourteen PeKFBs shared motif 5 and motif 6 while the remaining
five PeKFBs all contained motif 1. Motif 1 and motif 5 constituted the most highly conserved
part of the F-box domain and F-box-like domain. Interestingly, some motifs were detected
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only in specific KFBs; for example, motif 2 was only found in PeKFB3. Concretely, each
Kelch motif was featured with three conserved amino acid residues: two adjacent glycines
(G) and one nonadjacent aromatic amino acid (W). However, the amino acid residues of the
Kelch motif domain at the C-termini of KFBs lacked strictly conserved sequences and only
a few amino acid residues were relatively invariant (Figure S1). The variance in the motif
patterns might be related to diverse functions of PeKFBs within the same subclade.

2.4. PeKFBs Distributed in Chromosomes and Syntenic Analyses

The coordinates of 19 PeKFBs were extracted from the moso bamboo GFF file to ana-
lyze their localization on the moso bamboo genome. The distribution of the PeKFBs on the
pseudochromosome is shown in Figure 3a, which reveals that the PeKFBs were distributed
on 12 chromosomes with different densities. Chromosome 20 contained the highest number
of PeKFBs (four), followed by chromosome 17 with three PeKFBs and chromosome 5 with
two PeKFBs, while the other chromosomes anchored only one. To understand the dupli-
cation events of KFBs in moso bamboo and rice, a synteny analysis was performed using
MCscanX and the Advanced Circos software in TBtools. The results demonstrated that nine
segmental duplication pairs were found within PeKFBs and 23 segmental duplication pairs
were detected between PeKFBs and OsKFBs (Figure 3a).
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Figure 3. Synteny regions and Ka/Ks ratio analysis of KFBs. (a) Chromosome location and synteny
regions of PeKFBs and OsKFBs. The duplicated genes of PeKFBs and PeKFBs/OsKFBs on different
chromosomes are indicated with blue and red lines, respectively. (b) The Ka/Ks ratios of the gene
pairs of PeKFBs. (c) The Ka/Ks ratios of the gene pairs of PeKFBs and OsKFBs.

To better recognize the evolutionary selection pressure for KFBs in moso bamboo and
rice, we identified all 32 pairs of duplicated KFBs. We calculated the Ka and Ks values and
Ka/Ks ratios of duplicated KFB gene pairs (Table S2). The Ka/Ks ratios of all duplicated
gene pairs were less than 1.0 (Figure 3b,c), suggesting that the purification selection existed
in PeKFBs during moso bamboo’s evolution.

2.5. Responsive and Cis-Elements in the Promoters of PeKFBs

The 2000 bp sequences upstream of the PeKFBs’ encoding region were predicted using
the PlantCARE database. The results revealed that there were many responsive and cis-
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elements associated with hormones and abiotic stresses (Figure 4). A large number of
stress-responsive elements including the anaerobic induction element (ARE and GC-motif),
low-temperature-responsive element (LTR), and MYB binding site (MBS) were found to
be abundant in the promoters of the PeKFBs. Most promoters of the PeKFBs contained
MYB and MYC binding elements related to drought and cold (Figure 4). These results
suggested that these PeKFBs may participate in the response to various stresses. In addition,
some promoters of PeKFBs contained a cis-element involved in MeJA responsiveness and
abscisic acid responsiveness. In particular, ABRE, the CGTCA motif, and the TGACG
motif were enriched in almost every promoter of the PeKFBs. In addition, many types of
cis-elements involved in morphogenesis and organogenesis were identified, such as an
element involved in differentiation of the palisade mesophyll cells and an element involved
in seed-specific regulation. Moreover, the promoters of the PeKFBs also contained vast light
response elements such as the G-Box, GATA and GT1 motifs (Figure S2).
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Figure 4. The analysis of conserved cis-elements associated with phytohormone response and abiotic
stress in the promoter regions of PeKFBs. The 2000 bp promoter sequences were used to analyze nine
specific phytohormone-related (auxin, gibberellin, MeJA, and abscisic acid) cis-elements and three
abiotic stress-responsive (anaerobic induction, drought, and low-temperature) cis-elements. The right
heatmap shows the number of cis-elements with higher numbers in dark red and lower numbers in
light red.

2.6. Expression Patterns of PeKFBs in Different Tissues of Moso Bamboo

The gene expression patterns could provide information for potential gene functions.
The recent transcriptome data generated from different tissue samples was used to in-
vestigate the expression patterns of the PeKFBs (Figure 5). Accordingly, 19 PeKFBs were
classified into five separate groups (Group I~Group V) in the heat map according to the hier-
archical clustering of expression patterns; the genes in Group I–Group III generally showed
a higher expression abundance than those in other groups. Group I consisted of four
PeKFBs that had a higher expression level in young tissues. For example, PeKFB9 showed
a high expression in 0.2 m shoots, 0.1 cm roots, and buds; however, its expression pattern
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was not significant in Group II. Group III included five PeKFBs (PeKFB2/10/14/16/17) that
had high transcript levels in all stages and tissues. A relatively low transcript expression
level of these genes was observed in older roots, shoots, and bud tissues; a high expression
abundance of them was detected in 0.2 m shoots and rhizome. Similarly, they showed
higher expression in the top and middle than those in the low parts of single internodes
(Figure S3). These results also indicated that the PeKFBs in Groups I-III might be directly or
indirectly involved in the rapid growth of bamboo shoots. Group IV included only two
members (PeKFB6 and PeKFB7) that were almost undetected in all tissues. The PeKFBs in
Group V showed obvious tissue-specific effects correlated with the different developmental
stages and the tissues. For instance, PeKFB13 showed a relatively dominant expression
level in blades but a relatively lower one in the other tissues.
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Figure 5. The expression patterns of 19 PeKFBs in different tissues based on RNA-seq data of moso
bamboo. Hierarchical clustering heat maps were plotted based on FPKM values of 19 PeKFBs. Five
groups are indicated by different colors on the left. The right heatmap shows gene expression with
high levels in red and low levels in blue.

2.7. Expression Patterns of PeKFBs in Leaves of Moso Bamboo under Drought and Cold Stresses

To further confirm whether the expressions of the PeKFBs were affected by stresses,
except for 4 PeKFBs without suitable specific primers, 15 PeKFBs were carefully selected
for RT-qPCR analysis according to their specific expression patterns in different tissues
(Figure 5) and the elements in their promotors. Except for PeKFB12, the other 14 PeKFBs
showed significantly upregulated expression patterns under cold stress compared with
the control (Figure 6), which had three expression patterns: a continuously increasing
trend, an increasing trend with a final decrease, and a trend of an initial decrease followed
by a subsequent increase or slight stability with the treated time. The drought stress
induced significant expression changes of 14 PeKFBs while PeKFB5 showed no obviously
significant expression changes (Figure 6). The expression of seven PeKFBs were significantly
upregulated and then decreased, of which six reached the highest level at 6 h, whereas
PeKFB19 showed a peak at 3 h. PeKFB8/15/16 was continuously upregulated during the
drought treatment. The expression levels of PeKFB9/10/12 were decreased significantly at
3 h and 6 h but were induced at 12 h under drought stress.
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2.8. Yeast Two-Hybrid Screening for the Proteins That Interacted with PeKFB9

PeKFB9 showed that it was highly homologous to AtKFB01, AtKFB20, and AtKFB50,
which was related to phenylpropanoid biosynthesis, and had abundant transcription levels
in different tissues of moso bamboo; therefore, PeKFB9 was selected for further analysis.
The full-length cDNA sequence of PeKFB9 contained an ORF of 1092 bp encoding a putative
364 amino acid protein. A sequence analysis using the Pfam website indicated that PeKFB9
contained an F-box domain in the N-termini and a Kelch repeat domain near the C-terminus
(Figure 7a). To identify the proteins that may interact with PeKFB9 while participating in
the lignification of moso bamboo, a cDNA library of moso bamboo shoots was constructed
and a yeast two-hybrid system was conducted to screen for the interactors to find the
potential chaperones of the PeKFB9 protein using pGBKT7-PeKFB9 as bait.

Among 16 positive clones, 2 clones were characterized by containing the same protein
(encoded by PH02Gene22472) (Table S3). The deduced protein of this gene belonged to
the SKP1-like proteins, which are the core subunit of the SKP1/Cullin/F-box E3 ubiquitin
ligase complex. However, the function of the identified protein here was still unknown,
so the protein was named the PeSKP1-like-1. A Y2H assay was used to confirm the
potential physical interaction between PeKFB9 and PeSKP1-like-1. The pGBKT7-PeKFB9
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and pGADT7-PeSKP1-like-1 plasmids were co-transformed into yeast AH109 cells and the
co-transformed yeast cells were grown on synthetic dropout medium (Figure 7d). Next,
a truncated expression vector of FˆPeKFB9 was constructed in which the predicted F-box
domain of PeKFB9 was removed (Figure 7b). FˆPeKFB9 showed an indiscernible interaction
with other SKP1-like-1 in Y2H assays under the same conditions (Figure 7d). The results
suggested that the N-terminal F-box motif of the KFB proteins is required to mediate the
interaction of the KFB proteins with SKP1 to form a functional SCF-type E3 ligase.
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Figure 7. PeKFB9 physically interacted with PeSKP1-like-1 and PePRX72-1. (a–c) Schematic diagram
showing the predicted F-box and Kelch repeat domains in PeKFB9, FˆPeKFB9, and KˆPeKFB9.
(d) Yeasts carrying activation domain (AD) (pGADT7-PePRX72-1 and pGADT7-PeSKP1-like-1) and
binding domain (BD) (pGBKT7-PeKFB9, pGBKT7-FˆPeKFB9, and pGBKT7-KˆPeKFB9) vectors grown
on double dropout (-Leu/-Trp) and quadruple dropout (-Leu/-Trp/-His/-Ade) synthetic defined
medium supplemented with X-α-Gal. Yeast harboring pGBKT7-53 and pGADT7-T vectors served as
a positive control; yeast harboring pGBKT7-Lam and pGADT7-T vectors served as a negative control.

2.9. PeKFB9 Is Involved in Regulating Lignin Polymerization by Degrading PePRX72-1

In addition, another candidate protein (PH02Gene23181) was identified by the Y2H
screening that belonged to the peroxidase protein family and was homologous with At-
Prx72, which had been shown to participate in lignin polymerization [43], so we named it
PePRX72-1. In order to verify the function of PeKFB9 in moso bamboo, we first examined
whether PeKFB9 physically interacted with PePRX72-1 via Y2H assays. The results showed
that the yeast transformants harboring the expressed vectors of PeKFB9 and PePRX72-1
could effectively activate the expression of four independent reporter genes (lacZ, HIS3,
ADE2, and MEL1), resulting in good growth of blue yeast colonies on an SD/-Ade/-
His/-Leu/-Trp medium containing X-α-Gal (Figure 7d). Kelch repeat domains near the
C-terminus were responsible for interacting selectively with the target proteins, therefore
conferring specificity to this complex [44]. So, we constructed a truncated KˆPeKFB9 in
which we removed the predicted Kelch repeat domains of PeKFB9 (Figure 7c); the Y2H as-
say results showed that experimental group did not grow on the SD/-Ade/-His/-Leu/-Trp
medium containing X-α-Gal (Figure 7d).



Int. J. Mol. Sci. 2022, 23, 12568 10 of 17

Furthermore, we verified whether the interaction of PeKFB9 with the PePRX72-1
decreased peroxidase activity in order to evaluate the hypothesis that PeKFB9 mediated
the degradation of the peroxidase. The assay of the transient expression of PePRX72-1 in
tobacco leaves showed that co-expression of the PePRX72-1-FLAG fusion proteins with
PeKFB9 decreased peroxidase activity more than 60% compared with the control (Figure 8a).
To verify whether the reduction in peroxidase activity resulted from the degradation of
the PePRX72-1 protein, we examined the stability of the PePRX72-1-FLAG fusions using
Western blotting with an anti-FLAG antibody. The signal for PePRX72-1-FLAG fusions was
weakened in the extracts from leaves co-expressing PePRX72-1 with the full-length PeKFB9
protein. However, the signal for PePRX72-1 was essentially unchanged when it was co-
expressed with FˆPeKFB9 (Figure 8b). In conclusion, PeKFB9 could inhibit the peroxidase
activity by degrading PePRX72-1, resulting in the regulation of lignin polymerization.
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Figure 8. PeKFB9 attenuated the stability of PeRX72-1. (a) Peroxidase activity in crude extracts
from tobacco leaves co-expressing PePRX72-1 with PeKFB9-FLAG (1), FˆPeKFB9-FLAG (2), and
pCAMBIA1300-3×FLAG (3). Data are the mean ±SD from three biological replicates. Different
letters indicate significant differences (p < 0.01). (b) Immunoblot detection of the stability of the
PePRX72-1-FLAG fusion proteins using anti-FLAG antibody in tobacco leaves co-infiltrated with
PeKFB9-FLAG (1), FˆPeKFB9-FLAG (2), and pCAMBIA1300-3×FLAG (3) constructs.

3. Discussion

KFB proteins play crucial roles in the course of plant growth and in the response to
biotic and abiotic stresses, as well as in phenylalanine biosynthesis [30,45]. Lignin biosyn-
thesized from phenylalanine is deposited in mature tissues, which leads to lignification,
which in turn affects the application value of timber and the texture, taste, and nutrition
of fruits and vegetables during storage [42,46]. Lignin biosynthesis goes through two
processes of phenylalanine biosynthesis and monomer polymerization. KFBs probably play
a role in the lignification of bamboo and in response to environmental stress. Therefore,
identification and characterization of KFBs in bamboo will be helpful in further research on
bamboo growth. However, none of the KFBs were previously identified and reported in
bamboo. In the present study, we conducted a systematic investigation of KFBs in moso
bamboo and provided a basis for analyzing their functions in the future.

We identified 19 PeKFBs in the genome of moso bamboo, which was less than the
numbers previously found in Arabidopsis, rice, potato, wheat, and chickpea [33,45,47,48]. A
similar phenomenon occurred in the F-box family, suggesting that the KFB family in moso
bamboo has experienced family contraction. The number and species-specific conserved
motifs of each KFB family member were different to some extent but the conserved motifs
and species-specific members in the same clade were roughly consistent (Figure 2). We
found that three PeKFBs (PeKFB7, PeKFB9, and PeKFB17) in the same clade had the same
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gene structures and conserved motifs (one motif 5 and two motif 6), which suggested
that they may have similar functions. The characterized domains (F-box domain and
Kelch domain) of the PeKFBs had a lack of strictly conserved sequences, resulting in the
differentiation and diversity of their functions (Figures S1 and S4); this was in agreement
with previous studies [45,49]. In addition, the Kelch domain is responsible for selectively
interacting with target proteins and its diversity suggests the recognition of different
substrates such as PAL and S-ADENOSYL-L-METHIONINE SYNTHETASE1 [18]. In
contrast with previous studies [45,50], KFBs including five Kelch domains had not been
identified previously in moso bamboo, illustrating the contraction of the PeKFBs in their
evolution with the corresponding functions also lost. These results of variation in the
conserved motifs also suggested that the function of the PeKFBs was diversified during
evolution.

The structural diversity and complexity of PeKFBs make their functions diverse as well,
which was demonstrated in the diversity of the expression patterns. We further analyzed
the expression patterns of the PeKFBs in different tissues and found a large variety among
different PeKFBs (Figure 5), suggesting their diversified functions. The promoter region of
a gene is related to its function; thus, the analysis of cis-elements assists in its functional
characterization. Our results showed that the PeKFBs contained various cis-elements in their
promoters, including cis-elements essential for light, phytohormone, and stress responses
(such as drought and cold stresses) (Figure 4 and S2), suggesting that these genes were
involved in multiple biological processes, especially in response to stresses. The PeKFBs
shared common drought- and cold-related cis-elements, so we performed RT-qPCR to verify
their expression levels under drought and cold stresses. The results showed that the PeKFBs
were induced or inhibited by these stresses, which was similar to the results found in other
F-box protein genes [50,51]. Among the cis-elements, ABRE, as an important component in
the ABA pathway, has been shown to be bound by transcription factors in response to ABA-
mediated osmotic stress signals [52,53]. ABRE distributed in almost all the promoters of the
PeKFBs (except for PeKFB9, PeKFB12, and PeKFB17). Therefore, it was consistent with the
results of previous studies that these genes may be involved in the abiotic stress response
and participate in the regulation of ABA signaling [54,55]. Meanwhile, only sporadic GA
and IAA-related cis-elements were distributed in the promoters of a few PeKFBs, which
was consistent with the results showing that the transcriptions of the PeKFBs were not
responsive to these phytohormones (Figure S5), but did not agree with the results in
tomato [45]. Interestingly, the homologous genes of AtKFBs associated with phenylalanine
biosynthesis (PeKFB7, PeKFB9, and PeKFB17) had the same structure but showed different
expression patterns (Figures 2 and 4), which was confirmed by the RT-qPCR results. These
results suggested that the function of PeKFB7 might be redundant to PeKFB9 and PeKFB17,
which would contradict the above assumption.

Lignification is regulated in transcriptional regulation, translational regulation, post-
translational modification and proteolysis, and product inhibition. With regard to ligni-
fication in bamboo, most studies focused on transcriptional regulation [38,42]. To date,
AtKFB01, AtKFB20, AtKFB39, and AtKFB50 have been identified as the interacting protein
of AtPALs, which mediate PAL ubiquitination and subsequent degradation to negatively
regulate plant phenylpropanoid biosynthesis [33]. PeKFB9 was phylogenetically related to
AtKFB01, AtKFB20, AtKFB39, and AtKFB50, suggesting that PeKFB9 may share a similar
function in moso bamboo. In this study, PePRX72-1 (PH02Gene23181) was identified by
the Y2H assay using PeKFB9 as bait and was highly homologous to peroxidase 72 of
Arabidopsis, which altered cell wall and phenylpropanoid metabolism. Class III peroxidases
are glycoproteins with a major role in lignin formation and have been implicated in the
cross-linking of lignin formation [56,57]. In rice, OsPRX38 facilitated lignin polymerization
by oxidizing lignin monomers (monolignols) to promote lignin content [58]. Several PRXs
in Arabidopsis were implicated in lignification, including AtPRX2, AtPRX4, AtPRX17, At-
PRX25, AtPRX52, and AtPRX71, due to altered lignin content or composition in mutant
plant lines [59–62], which was further supported by the assay of the transient expression of
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PePRX72-1 in tobacco leaves. In addition, PeKFB9 might have interacted with SKP1-like-1
to form a functional SCF-type E3 ligase (Figure 7), which promoted the ubiquitination and
degradation of peroxidase. However, another subunit of the SCF-type E3 ligase (except
for SKP1-like-1 and KFB9) was not identified, which is worthy of further experimental
verification.

4. Materials and Methods
4.1. Sequence Retrieval and Identification of Kelch Repeat F-Box (KFB) Proteins in Moso Bamboo

To obtain nonredundant KFB proteins in moso bamboo comprehensively, a BLASTP
algorithm-based search provided by the BambooGDB database under the E-value cutoff of
1e-10 was first performed using the KFB protein sequences reported in Arabidopsis and
rice [11]. The resulted sequences were then subjected to Pfam (https://pfam.xfam.org,
accessed on 19 April 2022, European Molecular Biology Laboratory, Cambridgeshire, UK)
to detect the presence and number of the F-box and Kelch domains. All KFB sequences were
manually inspected and those that did not contain the conserved domains were discarded.
Finally, the KFB proteins were named according to their BambooGDB assembly names in
order.

The basic characteristics of the identified KFB proteins in moso bamboo were further
analyzed, including the predicted proteins and the physicochemical parameters. The
predicted molecular weights (MWs) and isoelectric points (pIs) of the KFB proteins were
analyzed using ProtParam (). The subcellular localization was predicted by using Plant-
mPLoc (http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/# accessed on 19 April 2022).

4.2. Multiple Sequence Alignment and Phylogenetic Analysis of KFBs

To explore the evolutionary relationships among the KFBs in moso bamboo, MEGA 6.0
was used to perform multiple sequence alignments with the full length of KFB amino
acid sequences and the maximum-likelihood phylogenetic unrooted trees were constructed
using the FastTree program [63]. The KFB sequences of 103 AtKFBs and 39 OsKFBs were
downloaded for the Arabidopsis genome from TAIR (The Arabidopsis Information Resource)
release 10.0 (http://www.arabidopsis.org accessed on 19 April 2022) and the rice genome
annotation database (http://rice.plantbiology.msu.edu/index.shtml, release 7.0 accessed on
19 April 2022) respectively, which were used for the construction of the phylogenetic trees.

4.3. Structural Features Analyses of KFB Family in Moso Bamboo

The gene structure of the KFB genes in moso bamboo was predicted using TBtools
software [64]. The GFF3 file containing information about the intron–exon structure of the
KFB genes was used as input. Multiple Expectation Maximizations for Motif Elicitation
(MEME, http://meme-suite.org accessed on 19 April 2022, National Institutes of Health,
Bethesda, Rockville, MD, USA) was adopted to identify the conserved motifs with the
following parameters: the distribution of motif occurrences—zero or one per sequence;
the maximum number of motifs—10; and the optimum width of each motif—between
6 and 300 residues [65].

4.4. Physical Localization and Gene Duplication Analysis of KFB Genes in Moso Bamboo

The chromosomal localization data of each KFB gene identified in moso bamboo was
retrieved from the GFF file using TBtools. MCScanX software was used to identify the
duplicated and syntenic KFB genes within the moso bamboo genome and those between
moso bamboo and rice using the default settings [66]. The chromosomal distributions and
syntenic relationships of the KFB genes were visualized using Circos software [67]. The
syntenic analysis maps were constructed using the TBtools software to display the syntenic
relationships of the orthologous KFB genes in moso bamboo and rice. The nonsynonymous
(Ka) and synonymous substitution rates (Ks), as well as the Ka/Ks ratios of syntenic KFB
gene pairs, were calculated using KaKs_Calculator software [68].

https://pfam.xfam.org
http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/#
http://www.arabidopsis.org
http://rice.plantbiology.msu.edu/index.shtml
http://meme-suite.org
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4.5. Putative Cis-Element Analysis in the Promoters of KEB Genes in Moso Bamboo

To obtain the promoter sequences of KFB genes in moso bamboo, we downloaded
2000 bp of the sequence upstream of each KFB gene coding region from the BamGDB.
Cis-elements were analyzed using the database of PlantCARE (http://bioinformatics.psb.
ugent.be/webtools/plantcare/html/ accessed on 19 April 2022). The number of elements
in the promoters was shown in heat map made by using TBtools software.

4.6. Expression Analysis of KFB Genes in Moso Bamboo Based on RNA-Seq Data

To investigate the expression of KFB genes in the different tissues and those in shoots
at different developmental stages of moso bamboo, the RNA-seq data generated from
26 samples of rhizomes, roots, shoots, leaves, sheaths, and buds were downloaded from
the NCBI Short Read Archive (SRA) and used for further analysis. The accession numbers
in SRA were SRX2408703~SRX2408728 and SRR13201212-SRR13201244, respectively. The
RNA-seq data of moso bamboo leaves under NAA and GA3 treatments were also used
for the expression profiles of the KFB genes. The expression levels were normalized by
log2(FPKM+1) and loaded into TBtools software to generate heat maps.

4.7. Real-Time PCR Analysis (RT-qPCR)

Sample collection: moso bamboo seeds gathered from the Guangxi Province of China
were sown and cultivated in a greenhouse (25 ± 2 ◦C; 16 h/8 h light/dark cycle). After
three months, the seedlings were used for the following treatments. Drought and cold
stresses were simulated using a 20% PEG 6000 solution and 4 ◦C, respectively. The solution
was poured into the cultured pots of moso bamboo seedlings and the leaves were harvested
at 3 h, 6 h, and 12 h, respectively, and immediately frozen in liquid nitrogen and stored at
−80 ◦C for RNA isolation. Meanwhile, the untreated seedlings were also collected and
used as the control (0 h).

RNA extraction: the total RNA was extracted using a plant RNA extraction kit (Qiagen,
Shanghai, China) according to the manufacturer’s instructions. The integrity of the total
RNA was verified via agarose gel electrophoresis and the purity and concentration of the
total RNA was determined via spectrophotometry (Nanodrop2000, Thermo, Waltham,
MA, USA). The first strand cDNA was synthesized using a reverse-transcription system
(Promega, Madison, WI, USA). For each 20 µL reaction, 1000 ng of total RNA was used; the
synthesis was performed at 42 ◦C for 45 min. The final cDNA product was diluted 5-fold
prior to use.

RT-qPCR: the specific primers for different KFB genes of moso bamboo were designed
in Primer Premier 5.0 software and empirically adjusted for gene expression analysis
(Table S4). Additionally, all primers showing a clear specific melting peak according to
a real-time melting curve analysis that was consistent with the results of agarose gel
electrophoresis of specific PCR products were used for further analysis. The RT-qPCR was
performed with a Roche Light Cycler 480 SYBR Green I Master kit on a qTOWER2.2 system
(Analytik Jena, Jena, Germany). The PCR program involved 95 ◦C for 10 min followed by
40 cycles at 95 ◦C for 10 s and 60 ◦C for 10 s. The 10.0 µL reaction volume contained 5.0 µL
of 2 × SYBR Green I Master Mix, 0.8 µL of cDNA, 0.1 µL of primer (10.0 mM each), and
4.0 µL of ddH2O. NTB was used as a reference gene [69] and the 2−∆∆Ct method was used
for the analysis and visualization of the generated PCR data [70].

4.8. Yeast Library Construction and Yeast Two-Hybrid (Y2H) Screening

The moso bamboo cDNA library for Y2H experiments was constructed by OE BioTech
(Shanghai, China) using the cDNA synthesized from the mRNAs of shoots at different
developmental stages and cloned into the prey vector pGADT7. The full-length CDS of
PeKFB9 (PH02Gene23593.t1) was cloned into the pGBKT7 bait vector (Table S4) and the
fusion plasmids were further used for self-activation and Y2H screening of the pGADT7-
based cDNA library. Y2H experiments were conducted using Matchmaker GAL4 two-
hybrid systems; the putative PeKFB9-interacting clones were identified on an SD/-Ade/-

http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
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His/-Leu/-Trp/X-α-Gal medium and further characterized and sequenced. To ensure
the reliability of the library screening results, the interacted clones were cloned into the
pGADT7 prey vector. Two recombinant vectors were co-transformed into the yeast strain
AH109. The transformants were selected on SD/-Trp/-Leu and SD/-Trp/-Leu/-Ade/-
His/X-α-Gal plates at 30 ◦C for five days to verify whether they were interacted. The
co-transformants with pGBKT7-Lam and pGADT7-T were used as a negative control while
the pGBKT7-53 and pGADT7-T combination were selected as a positive control.

4.9. Assays for the Transient Expression of PeKFB9 and PePRX72-1 in Tobacco Leaves

The ORFs of PeKFB9 and PePRX72-1, as well as the trunked PeKFB9 (FˆPeKFB9 and
KˆPeKFB9), were cloned via PCR using the primers described in Table S4. The PCR frag-
ments were recombined into pCAMBIA1300-3×FLAG using the Infusion® cloning method
to generate PeKFB9-FLAG, FˆPeKFB9-FLAG, and PePRX72-1-FLAG, respectively. The
Agrobacterium strain GV3101 carrying the PePRX72-1 expression vector (OD600 = 0.6) was
mixed with an equal volume of an Agrobacterium strain (OD600 = 0.6) carrying PeKFB9-
FLAG, FˆPeKFB9-FLAG, and empty pCAMBIA1300-3×FLAG, respectively; these were
then used to infiltrate the tobacco leaves.

After three days of infiltration, the total soluble proteins were extracted with ly-
sis buffer containing 20 mM of Tris-HCl (pH = 8.0), 150 mM of NaCl, 1 mM of EDTA,
10% glycerol, 0.2% Triton X-100, and 1 × protease inhibitor cocktail. The ratio of leaf fresh
weight to extraction buffer was 1 g ml−1. The concentration of total protein was measured
by using a Bradford protein assay kit (TaKaRa, Dalian, China). The proteins were examined
using immunoblotting with an anti-FLAG monoclonal antibody.

In addition, harvested leaves (0.1 g) frozen at −80 ◦C were crushed with a prechilled
mortar and pestle using an appropriate volume of prechilled extraction buffer. After uni-
form homogenization and centrifugation at 13,000 rpm for 15 min at 4 ◦C, the supernatant
containing the crude enzymes was collected and used for the peroxidase activity analyses
using the kit and following the manufacturer’s instructions (Suzhou Grace Biotechnology
Co., Ltd., Suzhou, China).

4.10. Statistical Analysis

Analyses were performed with SPSS Statistics for Windows (Version 22.0. SPSS Inc.,
Chicago, IL, USA). All data were the average and standard deviation (SD) of three biological
replicates. One-way analysis of variance was used to evaluate the statistical significance
of differences among means using SPSS software. Different letters indicate respective
significant differences at the level of p < 0.01.

5. Conclusions

In the present study, we conducted a comprehensive analysis of the KFB family in
moso bamboo for first time. A total of 19 PeKFBs were identified and classified into eight
subclades. The PeKFBs were mapped to 12 chromosomes unevenly; their exon-intron
organization and the conserved motifs in their coding proteins were relatively similar to
those in other monocot plants. The expression patterns of the PeKFBs in different tissues
and organs at various developmental stages implied that they may be involved in the
growth and development of moso bamboo. The cis-elements in the promoter regions of
the PeKFBs and their expression patterns indicated that the PeKFBs might be involved in
responses to drought and cold stresses. The results of the peroxidase activity and Western
blotting analyses indicated that PeKFB9 was a post-translational regulator responsible
for the turnover of peroxidase to negatively control the monomer polymerization. Taken
together, the results of the present study provided an extensive resource for understanding
the diversity of KFB genes that can be utilized for genetic manipulation in improvement of
abiotic stress tolerance and wood properties in bamboo.
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