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Visual P300-based Brain-Computer Interface (BCI) spellers enable communication

or interaction with the environment by flashing elements in a matrix and exploiting

consequent changes in end-user’s brain activity. Despite research efforts, performance

variability and BCI-illiteracy still are critical issues for real world applications. Moreover,

there is a quite unaddressed kind of BCI-illiteracy, which becomes apparent when the

same end-user operates BCI-spellers intended for different applications: our aim is to

understand why some well performers can become BCI-illiterate depending on speller

type. We manipulated stimulus type (factor STIM: either characters or icons), color

(factor COLOR: white, green) and timing (factor SPEED: fast, slow). Each BCI session

consisted of training (without feedback) and performance phase (with feedback), both

in copy-spelling. For fast flashing spellers, we observed a performance worsening for

white icon-speller. Our findings are consistent with existing results reported on end-users

using identical white×fast spellers, indicating independence of worsening trend from

users’ group. The use of slow stimulation timing shed a new light on the perceptual and

cognitive phenomena related to the use of a BCI-speller during both the training and the

performance phase. We found a significant STIMmain effect for the N1 component on Pz
and PO7 during the training phase and on PO8 during the performance phase, whereas

in both phases neither the STIM×COLOR interaction nor the COLOR main effect was

statistically significant. After collapsing data for factor COLOR, it emerged a statistically

significant modulation of N1 amplitude depending to the phase of BCI session: N1 was

more negative for icons than for characters both on Pz and PO7 (training), whereas

the opposite modulation was observed for PO8 (performance). Results indicate that

both feedback and expertise with respect to the stimulus type can modulate the N1

component and that icons require more perceptual analysis. Therefore, fast flashing

is likely to be more detrimental for end-users’ performance in case of icon-spellers.

In conclusion, the interplay between stimulus type and timing seems relevant for a

satisfactory and efficient end-user’s BCI-experience.

Keywords: brain-computer interface, semantic categorization, user experience, N1, P300, usability, visual

cognition, BCI-illiteracy
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1. INTRODUCTION

Brain-Computer Interface (hereafter BCI) systems enable people
to communicate with others or interact with the environment in
a non-muscular way and can serve both as assistive technologies
and rehabilitation tools (Wolpaw et al., 2002; Daly and Wolpaw,
2008; Daly et al., 2013) as well as new control interfaces for
healthy users (Krepki et al., 2007; Bos et al., 2010). They provide
the brain with new output pathways by exploiting changes in end-
user’s brain activity that result from the execution of cognitive
tasks. Data on brain activity are usually non-invasively recorded
using EEG, while cognitive tasks can range from mental tasks,
such as motor imagery, to (mostly visual) evoked potentials.

A non-invasive BCI system based on visual P300 (hereafter
P300-BCI) was first proposed by Farwell and Donchin (1988)
and their P300-speller is the standard reference for P300-
BCIs. A “Farwell and Donchin” P300-speller enables word-
spelling by flashing rows and columns of a matrix displayed on-
screen and containing both letters of the alphabet and keyboard
commands (like space or backspace). Therefore, a P300-BCI
is rooted in the visual oddball paradigm and exploits the
modifications of brain activity that arise from paying attention
to a target stimulus surrounded by non relevant ones in the
speller matrix. This feature makes the paradigm eligible not
only for standard alphanumeric spelling; since the seminal work
of Farwell and Donchin (1988) many different applications have
been proposed. The feasibility of using non-character matrices
of stimuli has been confirmed in studies involving healthy
as well as disabled subjects spelling with different alphabets
like hiragana (Ikegami et al., 2014) or logograms, i.e., Chinese
alphabet (Minett et al., 2012); operating both virtual and real
smart-home environments (Bayliss, 2003; Holzner et al., 2009;
Carabalona et al., 2012) or browsing the Internet (Mugler et al.,
2010).

For any BCI system to be used in real world, and not only

in research settings, a key goal is to perform at a satisfying

and reliable level, especially for disabled users (Huggins et al.,
2011, 2015); with respect to P300-spellers this means efficiently
maximize the difference (or class separation) in brain activity
related to the attended stimulus (target) and ignored stimuli
(non-target). To this end it is important to acknowledge the
interplay between the usability of the interface and the accuracy
of the classifier embedded in the BCI system (i.e., the algorithm
used to classify brain activity data). Many studies have focused
on the optimization of the interface parameters for a character
P300–speller: matrix size (Allison and Pineda, 2003; Sellers
et al., 2006) and symbols arrangements (Salvaris and Sepulveda,
2009; Li et al., 2010; Pires et al., 2012); color contrasts (Salvaris
and Sepulveda, 2009; Ikegami et al., 2012); timing for stimulus
presentation (Sellers et al., 2006; McFarland et al., 2011) and flash
patterns (Allison and Pineda, 2006; Guger et al., 2009; Townsend
et al., 2010; Ikegami et al., 2014). The leitmotiv in the proposed
approaches is the evidence that no parameter combination for the
stimulation matrix is optimal for all subjects in terms of achieved
accuracy. Moreover, it is important to consider usability issues
alongside the goal of eliciting separable brain potentials for target
and non target stimuli. This means that the interface would be

ergonomic, reliable, and, at the same time, fast enough to support
an efficient selection. Results about BCI setting parameters on
one side, and accuracy, bit rate, and users’ preferences on the
other, suggest that better classification results are obtained at
the cost of less usable interfaces. For instance, in McFarland
et al. (2011) faster flashing rates (i.e., faster interface) have
a detrimental effect on accuracy (i.e., less reliable interface).
Furthermore, this relation can be less apparent: if we consider
also the size of the speller matrix as in Sellers et al. (2006),
the reported interaction between matrix size and inter stimulus
interval favors faster and smaller matrices, but this implies more
steps for the user to make a final selection.

The research effort toward the best class separation led also
to the acknowledgement that the performance of the classifier
embedded in the BCI-speller is consistently based on the brain
activity at parieto-occipital sites (Krusienski et al., 2006, 2008;
Ikegami et al., 2012; Takano et al., 2014; Speier et al., 2015),
notwithstanding the centro-parietal scalp distribution of the
P300 peaks (Sutton et al., 1965). Moreover, some researchers
took the hint of Farwell and Donchin (1988) and explicitly
considered different features alongside the classical P300 (Allison
and Pineda, 2003, 2006; Shishkin et al., 2009; Bianchi et al.,
2010; McFarland et al., 2011). Their research on P300-spellers
based on character matrices shows that attentional modulation
of early event-related potential (ERP) components, like N1 and
N2, results in features useful for the classifier, although, according
to Shishkin et al. (2009), no effect due to physical characteristic
of the character stimuli in the speller matrix was observed.
Attempts to reduce performance variability across subjects and
BCI-illiteracy (i.e., inefficient and unsatisfactory BCI usage) led
evolve BCI-spellers from the canonical flashing approach to
new paradigms where the oddball effect is obtained changing
the status of speller items in other ways. Thus, despite the
fact that BCI-spellers can still be referred as P300-spellers due
to historical reasons, they are now also named ERP-spellers
emphasizing that target and non-target stimuli are distinguished
and classified by exploiting modulations of both early and late
ERP components elicited by superimposing faces (either famous
or dummy) on/or through movement of/items in the speller
matrix (Kaufmann et al., 2011; Jin et al., 2012; Kaufmann et al.,
2013; Chen et al., 2015). Results show both the feasibility of
these new paradigms for character-spellers, and the improvement
in classifier accuracy also for disabled users (Kaufmann et al.,
2013) otherwise experiencing unsatisfactory use of the classical
character flashing approach.

A diverse and hitherto quite unaddressed kind of BCI-
illiteracy in using BCI-spellers becomes apparent if we consider
the same group of end-users operating spellers aimed at
applications different from word spelling, such as leisure
activities, or interaction with a smart environment. Münßinger
et al. (2010) and Zickler et al. (2013) tested different versions of
Brain Painting, a BCI application for painting, both on healthy
and disabled users and compared the performances with those
obtained with a classical character-speller. Münßinger et al.
(2010) report about two experiments, the first involving both
healthy and disabled, and the second one only healthy end-
users (new group). The same character-speller and two different
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versions of the Brain Painting were used for the two experiments.
Results show a clear within-subjects variability in using both
spellers, with a statistically significant drop in accuracy with
respect to the character-speller in the first experiment on
healthy participants using the Brain Painting. Results of the
first experiment led to the new version of the Brain Painting
used in the second experiment, for which there was also a
drop in the Brain Painting accuracy although not statistically
significant. Experimental evidence for disabled participants (3
for Münßinger et al., 2010 and 4 for Zickler et al., 2013)
using the same character-speller and the two different Brain
Painting versions suggests also for these end-users a drop in
accuracy with respect to the character-speller, although the
samples are too small and only a non inferential statistical
approach is possible. Carabalona et al. (2012) proposed an icon-
speller aimed at operating a real smart-home environment.
This was contrasted with a character-speller for standard word-
spelling in a within-subjects study with participants suffering
from neurodegenerative diseases. All subjects experienced both
speller types according to a randomized experimental sequence,
resulting in a statistically significant lower on-line classification
accuracy for the icon-speller. Thus, experimental evidence
resulting from within-subjects studies suggests that the drop in
accuracy is less likely related to fatigue and habituation effects,
given the randomization of the experimental sequence. Results
further highlight the need to elaborate on the relation between
speller items and information embedded in the data submitted
to the classifier. Since the classifier receives data originating
from a visual cognition task, understanding how different items
can shape end-users experience with BCI-spellers means looking
deeper into their visual cognition and categorization processes.

Recent findings demonstrate that object and scenario
categorization may be viewed as an automatic and obligatory
process (Greene and Fei-Fei, 2014). Thus, when we are presented
with a visual item as in the case of BCI-spellers, we automatically
categorize it. In line with the terminology related to the theory
developed by Rosch et al. (1976), an item can be categorized
according to three possible levels of abstraction: superordinate,
basic, and subordinate. For instance, a picture of a dog would
be categorized at the basic level as a dog, but it could also
be identified as an animal (superordinate level, more general)
or as, let’s say, a Labrador (subordinate level, less general).
Jolicoeur et al. (1984) defined “entry-level” as the fastest level of
categorization and argued that for atypical (with respect to the
basic level) members in a category the entry-level is likely to be at
the subordinate rather than at the basic level. A classic example is
the penguin: as a first step it will be more likely categorized as a
penguin (i.e., at the subordinate level), than as a bird (basic level).
Later experimental results from Tanaka et al. (1999) pointed out
the possibility to use ERP analysis to track object categorization
processes of all three levels of object categorization. In their
experiment, participants had to match pictures with category
names at different level of abstraction by pressing a true/false key.
Names and picture stimuli were presented on a computer screen,
for 255 ms each, with no feedback. Results on posterior channels
showed an enhanced negative deflection (N1) about 140 ms after
stimulus onset, more pronounced for the subordinate category.

Their analysis revealed no difference in latency among the three
categories and an interaction with laterality, with a more marked
negative deflection on the left side: they comment on their
findings about N1 ERP component suggesting that the observed
enhancement is related to the more perceptually demanding
subordinate categorization level. Moreover, Tanaka and Curran
(2001) reported both a right lateralization and an enhancement
in the N1 component when subjects with real-world expertise
(bird- and dog-watchers) were asked to categorize items in their
domain of expertise with respect to when asked to categorize
items outside their domain of expertise. Gathering experimental
evidence arising from both BCI field and ERP tracking for
semantic categorization, N1 ERP component seems a natural
candidate for exploring end-user experience with BCI-spellers
based on different stimuli categories.

The present study expands upon the research of Carabalona
et al. (2012) and the aim is 2-fold. First, to evaluate whether the
issues in using an icon-speller with respect to a character-speller
observed by Carabalona et al. (2012) on disabled subjects also
hold for the sample of healthy subjects considered in the present
study. Second, to disentangle from an electrophysiological
point of view the visual cognition process underlying end-
user experience with character- and icon-spellers. The point
here is not to compare characters to icons per-se, but to
investigate whether and how different categories of BCI-items
might influence the performance of a same user executing
the same visual attentive task. Thus, we designed a within-
subjects study considering two different 6×6 speller matrices:
a standard character-speller and an icon-based one. Moreover,
we manipulated both the stimulus color and flashing rate as
two levels factors: white/green and fast/slow, respectively. As to
the first goal, the use of the same white×fast combination as
in Carabalona et al. (2012) was mandatory for comparison. With
respect to the second goal, we considered a slow stimulation
timing in order to avoid the ERP distortion effects (Martens et al.,
2009) arising in the fast rate stimulation condition. Finally, for
both character- and icon-spellers we administered a Usability
questionnaire (Carabalona et al., 2012), in order to assess the
subjective counterpart in BCI use.

2. MATERIALS AND METHODS

2.1. Participants
Eight healthy volunteers (median age in years [min–max]: 29.5
[20–36], four females) participated in this study after giving
informed consent in agreement with the Declaration of Helsinki.
The research project was approved by the Scientific Board
of Fondazione Don Gnocchi. Eligible participants, colleagues
and students rotating at the Department, were enrolled after
giving their consent. The consent procedure was in oral
form. Eligible participants were informed about both the aim
of the research and the whole protocol (administration of
paper and pencil neuropsychological tests and questionnaires;
EEG acquisition with standard wet electrodes and commercial
instrumentation; experimental session duration). They had the
possibility to ask specific questions about the experimental data
acquisition procedure and the BCI system before giving consent.
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It was clearly stated that participation was voluntary and that
participants had the possibility to withdraw at any point of
the experimental session without consequences. They were also
informed about anonymous data storage, only accessible by
the researcher. Data were collected according to best practice
guidelines and stored anonymously. Vision was normal or
corrected to normal, all subjects had a basic familiarity with
computers and none of them had previous experience with BCI.
Demographical characteristics are reported in Table 1.

2.2. Study Design
In order to investigate the differences in P300-BCI performances
and to allow the comparison with results reported in Carabalona
et al. (2012), we considered 3 factors, 2 levels each: stimulus type
(STIM: character, labeled as CH; icon, labeled as IC), stimulus
color (COLOR: white, green), stimulation timing (SPEED: slow,
fast). In case of slow stimulation timing (i.e., SPEED = slow),
flash time was designed to be 100 ms and dark time between two
flashes to be 900 ms. For fast stimulation timing (i.e., SPEED =
fast), flash time was designed to be 60 ms and dark time between
two flashes to be 10 ms. Moreover, since we were also interested
in the subjective evaluation of the usability of each speller type
in itself, we designed experimental sequences interlacing a cross-
over approach with a factorial one, as depicted in Figure 1. Given
the stimulus type (CH or IC), order and sequence effects for
the SPEED×COLOR combinations were counteracted using a
balanced Latin square design. Groups corresponding to each of
the two STIM sequences (i.e., CH-IC or IC-CH) were matched
for gender and age. Speller types used for BCI acquisitions were
always 6×6 matrices of stimuli on black background, whereas
flashing symbols flashed from dark gray to white or green,
according to the level of factor COLOR.

2.3. Experimental Set-up
All data acquisitions were performed in the smart home DAT-
Domotic, Assistive technologies permanent exhibition, and
occupational Therapy (Andrich et al., 2006), a facility built
in the Santa Maria Nascente Care and Research Institute of
Don Gnocchi Foundation, in Milan, Italy. The BCI system was
integrated into the EIB/Konnex environmental control system
of DAT using a configurable network interface designed at

TABLE 1 | Demographic characteristics of study participants.

Group Subject Gender Age (years) Scholarity (years)

CH – IC S1 F 36 20

S2 F 20 14

S3 M 30 11

S4 M 27 19

IC – CH S5 F 31 21

S6 F 29 20

S7 M 35 13

S8 M 28 18

the University of Parma, called FEIM-Field Ethernet Interface
Module (Grossi et al., 2007).

Since the P300-BCI is based on a paradigm requiring visuo-
spatial attention, participants underwent a neuropsychological
evaluation before instrumentation for BCI. End-users’
performance and experience with respect to character- and
icon-spellers were assessed using on-line selection accuracy of
the specific classifier as well as off-line biosignal analysis of EEG
data acquired during rest and BCI sessions. Details for each
assessment procedure are given below.

2.3.1. Neuropsychological Evaluation
We evaluated participants’ working memory as well as selective
attention and scan velocity administering three different
neuropsychological tests. Since we aimed at assessing the
comparability with the results reported in Carabalona et al.
(2012), we used the same tests, namely: MiniMental State version
of the Serial Seven Subtraction Test (SSST) (Folstein et al., 1975)
and the Attentive Matrices Test (AMT) (Spinnler and Tognoni,
1975) as in Carabalona et al. (2012). Moreover, we added the
Bells Cancellation Test (Gauthier et al., 1989) in order to assess
selective attention and scan velocity specifically for icons.

2.3.2. Biosignal Acquisition
During biosignal acquisition, subjects sat in a comfortable chair
approximately 60 cm in front of a 50.8 cm (20-inch) LCD-
screen (refresh rate: 60 Hz). Tilt, brightness and contrast of the
computer monitor were adjusted in order to guarantee comfort
and clear vision. Signals were digitized at 24 bits and sampled at
256Hz bymeans of a single biosignal amplifier (gUSBamp, g.tec).
Impedances were maintained below 10 k�. A 50 Hz notch filter
was used and data were also bandpass filtered between 0.5 and 30
Hz. For EEG acquisition, we used eight electrodes according to
the extended International 10–20 system (Nuwer et al., 1998): Fz ,
Cz , P3, Pz , P4, PO7, Oz , and PO8. This EEG channels set is the
same used in Carabalona et al. (2012). Data on eye movements
(EOG) were derived from four electrodes: two placed above and
below the left eye, two placed about 1-cm from the external
canthus of each eye. As ground and reference, we selected Fpz
and right mastoid, respectively.

2.3.3. P300-BCI Data Acquisition Protocol
For each STIM×COLOR×SPEED combination in the assigned
experimental sequence, participants performed a P300-BCI
session consisting of two phases: training and performance. Both
were in copy spelling, thus the subject had to spell a predefined
sequence of symbols. For each session, a 6× 6 matrix containing
only alphanumeric characters or only icons (one in each cell,
see Figure 2) was presented to the subject and Fisher’s Linear
Discriminant Analysis (hereafter LDA, the algorithm is detailed
in subsection 2.5.1) was used as classifier as in Carabalona et al.
(2012). During the training phase, the subject communicated a
predefined meaningful word (or string of icons) and, since the
classifier was still in its “learning” phase, the BCI system gave a
feedback to the user printing on the screen the symbol “@” at the
end of of every flashing sequence and no action was executed in
the smart home. This type of feedback was labeled asmeaningless
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FIGURE 1 | Experimental design.

FIGURE 2 | Screenshots of 6x6 matrices used for the white icon–speller (A) and the white character–speller (B).

because the printed symbol was not included in the character-
nor in the icon-speller matrices. The whole data-set was then
used off-line by the BCI system to initialize the classification
algorithm. During the performance phase, the subject had to
communicate a different predefined meaningful word (or string
of icons) and the epoched data-set related to each spelled symbol
was classified at the end of the flashing sequence according to
the classifier learned off-line after the training phase. In this case
the subject received a meaningful feedback at the end of each
series of random flashes, as a result of an on-line classification.
This means that, depending on the speller type, one of the two
events may occur: either a character is printed on the screen, for
the character-speller, or an icon is printed on the screen followed
by the execution of the corresponding action in the smart home,
for the icon-speller. After each BCI feedback, there was a pause
lasting 4 seconds which allowed participants time to relax and to
locate the next target. Subjects were fully aware that the training
phase produced meaningless feedback as well as that the LDA
algorithm used data acquired during the training phase in order
to extract and learn how to classify the features elicited by the
cognitive task: they had been told in advance to ignore the symbol

printed on the screen at the end of every flashing sequence in the
training phase.

2.4. Experimental Schedule
Before subject instrumentation, demographic data were acquired
by means of a brief interview. Subsequently, Mini Mental
State version of the Serial Seven Subtraction Test (SSST),
Attentive Matrices Test (AMT) and Bells Cancelation Test were
administered. After neuropsychological assessment, subjects
received a sort of BCI manual. This was a booklet describing
each stage of BCI use (training phase and meaningless feedback,
off-line data elaboration, performance phase with meaningful
feedback) by means of screenshots with suitable detailed
captions, one for each page. Subjects were given all the needed
time to read the booklet and the possibility to ask questions
during or after reading. Then, subjects were instrumented and
basal data were acquired at rest (eyes open, without cognitive
stimulation). The different P300-spellers were subsequently
administered according to the assigned experimental sequence.

Before each P300 session, subjects could visually explore a
still (i.e., not flashing) speller matrix depicted on the computer
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monitor, without any time pressure. This was intended to give
the subjects the possibility to familiarize with the stimulus matrix
in terms of both symbol type and arrangement within the matrix
itself. Participants were also allowed to ask questions about the
meaning of icons. At the very beginning of each experimental
sequence, i.e., the very first time a participant was presented with
the speller matrix, time spent for scanning the still matrix was
registered.

Participants had to spell 5-characters meaningful words or
5-icons strings. The word (string) to spell for the training
phase was different from that spelled during the performance
phase. In sum, we used a fixed set (with respect to participants)
of eight different 5-characters meaningful words and of eight
different 5-icons strings. A different LDA classifier was learned
for each training-performance pair. According to study design,
subjects performed both whole character-based BCI and icon-
based BCI experimental sequences. After completing each
assigned sequence, they had the possibility to rest and to
express their opinion on their BCI experience. They received
a Usability questionnaire (Carabalona et al., 2012) pertaining
to four domains: Satisfaction, Ease of Use, Usefulness and Ease
of Learning. Overall, participants rated fourteen statements
on seven-point Likert scales ranging from “strongly disagree”
(labeled with 1) to “strongly agree” (labeled with 7).

2.5. EEG Data Analysis
Since the present study has two different aims, we performed
diverse analyses on acquired EEG data.

First, we aimed at evaluating whether the within-subjects
BCI illiteracy observed by Carabalona et al. (2012) on disabled
subjects using both icon- and character-speller also hold for the
sample of healthy subjects considered in the present study. Thus,
the goal of the EEG data analysis here is to compute the classifier
accuracy for each speller type during the performance phase (i.e.,
on-line) in order to assess whether the same issue is present. This
is detailed in subsection 2.5.1.

Our second aim was to disentangle from an
electrophysiological point of view the visual cognition process
underlying the end-user experience with character- and icon-
spellers. Therefore, we performed off-line analyses in order to
investigate whether and how different categories of BCI-items
might influence the performance of a same end-user executing
the same visual attentive task. The analyses are detailed in
subsection 2.5.2.

2.5.1. Computation of Classifier Accuracy
According to the first aim, acquired brain activity was submitted
to the LDA classifier embedded in the BCI system as
in Carabalona et al. (2012). EEG data are down-sampled to
64Hz, epoched using with a window length of 800 ms (100 ms
before and 700 ms after stimulus onset), baseline corrected using
pre-stimulus data, and filtered with a moving average filter (3
samples). For each trial (i.e., symbol to spell) rows and columns
of the matrix flashed 15 times each and flashing order of rows
and columns was randomly selected. As regards the training data-
set, this led to 150 target data (15 flashes × 2 [one row and one
column]× 5 [number of symbols spelled]) and to 750 non-target

data (15 flashes × 10 [5 rows and 5 columns] × 5 [number of
symbols spelled]). Thus, the training data matrix submitted to
the classifier consisted of 900 rows (i.e., 150 target+750 non-
target) and 120 columns (15 time samples × 8 [number of
electrodes]). With respect to the performance phase, at the end
of each trial (i.e., at the end of the flashing sequence for each
symbol to spell) the learned classifier was used to assign a weight
to each row and column. The weight are computed as cumulative
sum of posterior probabilities for target-class membership. The
algorithm identifies the row r and the column c with highest
cumulative posterior probability and selects the corresponding
element, i.e., the one indexed with (r, c), in the speller-matrix.

2.5.2. Electrophysiological Analysis of End-User

Experience
In line with the second aim, continuous EEG was first
preprocessed in order to remove ocular artifacts with an adaptive
procedure based on concurrent EOG data. Then, consistently
with the approach used during BCI sessions, EEG data were
windowed into epochs (100 ms pre-stimulus to 700 ms post-
stimulus onset) and baseline corrected from 100 ms pre-stimulus
to stimulus onset. ERPs were calculated for each participant
and each experimental condition for every electrode in the
EEG-set. We considered SPEED = slow and SPEED = fast

separately because fast stimulation timing dramatically alters the
ERP morphology hence making very difficult to track potential
visual categorization effects.

ERP data for SPEED = slow were analyzed using time-
domain methods, with reference to approach and results
described in Tanaka et al. (1999) and in Tanaka and Curran
(2001) with respect to ERP tracking of semantic categorization
process. We identified two ERP peaks after stimulus onset: the
local maximal negative deflection (N1) in the 130–200 ms time
window, and the local maximal positive deflection (P300) in
the 250–450 ms time window. We evaluated both training and
performance phases. First, we aimed at assessing the consistency
with results reported in Tanaka et al. (1999), where participants
did not receive any feedback and a greater (i.e., more negative)
N1 component was associated with categorization at subordinate
level with respect to categorization at the basic level for posterior
sites. Thus, we assessed data from training phase (meaningless
feedback and no action in the smart home) considering both N1
and P300 for the whole electrode set. The experimental evidence
in Tanaka et al. (1999) about greater negative deflection in N1 for
subordinate level of semantic categorization led to formulation
of one-sided alternative hypotheses. Moreover, only for Cz , we
added three time windows (50 ms each) ranging from 200 to 350
ms after stimulus onset. These three subsets were then averaged
in each time window for statistical analysis.

Subsequently, we aimed at evaluate the consistency with
results reported in Tanaka and Curran (2001) about the relation
between real-world expertise and semantic categorization level
on a sample of real-world experts. They asked bird- and dog-
watchers to perform semantic categorization with respect to
stimuli both outside and in their domain of expertise: according
to their results, real-world experts showed a right lateralization
for the N1 component, with a more negative N1 when the
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stimulus was in their domain of expertise as when it was outside.
As regards BCI experience, we can consider participants as real-
world experts with respect to characters and novices with respect
to icons. Moreover, in contrast with the training phase, the
presence of a meaningful feedback allows the end-users to really
interact with the environment, making the use of the BCI-speller
less detached from reality than it was during the training.We thus
regarded the performance phase as the “real-world expertise”
phase and analyzed N1 only for PO7 and PO8. Also in this
case the greater negative deflection in N1 reported in Tanaka
and Curran (2001) for not-novel stimuli (which are the items
in the character-speller for the present study) led to formulation
of one-sided alternative hypotheses. Finally, we considered the
P300 extracted from all electrodes, in order to assess potential
differences also in this ERP component.

For the case SPEED = fast, we analyzed only epoched
data related to the performance phase for each STIM×COLOR
combination and posterior electrodes: since the fast stimulation
dramatically modifies ERP waveforms in the time domain, data
were analyzed by means of time-frequency decomposition, in
order to enhance both effects related to stimulus-locking and the
steady state visual evoked potentials (SSVEP) induced by non-
target stimuli. According to the approach described in Tallon-
Baudry et al. (1997), ERP data were convolved with Morlet’s
wavelets w(t, f0) defined as:

w(t, f0) = A exp(−t2/2σ 2
t ) exp(2iπ f0t) (1)

Each wavelet has a Gaussian shape characterized in time and
frequency domain by σt and σf respectively, with σf = 1/2πσt ,

and a normalization factor A = (σt
√

π)−1/2. Moreover, the
family is characterized by the constant ratio k = f0/σf that should
be equal to (or greater than) 5. For our data analysis we chose
k = 7, with f0 ranging from 5 to 20 Hz, in 1 Hz steps. This leads,
for f0 = 5 Hz to 2σf = 1.43 Hz and 2σt = 445.63 ms and for
f0 = 20 Hz to 2σf = 5.71 Hz and 2σt = 111.41 ms.

For each trial we compute the normalized complex time-
varying energy for the signal sj(t) in trial j, with j= 1...N:

Pj(t, f0) = w(t, f0)×sj(t)/
∣

∣w(t, f0)×sj(t)
∣

∣ (2)

Finally, as in Tallon-Baudry et al. (1997), we computed the
phase-locking factor (PLF). This index is stimulus-locked and,
independently of signal amplitude, indicates the consistency of
phase values across trials at different frequencies: it ranges from
0 (no phase synchronization across trials) to 1 (perfectly phase-
locked activity).

PLF is expressed as the modulus of the averaged Pj(t, f0) across
N trials:

PLF(t, f0) =
∣

∣

∣

∣

6j(Pj(t, f0))

N

∣

∣

∣

∣

(3)

We computed PLF both for correct and wrong selections,
separating target and non-target data. For instance, for a subject
with 3 correct selections in a sequence of 5, NTARGETcorrect =
3∗30 = (number of correct selections)∗(number of target

stimuli) and NTARGETwrong = 2∗30 = (number of wrong
selections)∗(number of target stimuli); NNON-TARGETcorrect =
3∗150 = (number of correct selections)∗(number of non-target
stimuli) and NNON-TARGETwrong = 2∗150 = (number of wrong
selections)∗ (number of non-target stimuli).

Since the PLF is a function of both time and frequency, for
each subject we collapsed PLF data along the time dimension
using the median value. Each subject is then represented with
a vector of 16 (the frequency span used for PLF calculation)
median values for each STIM×COLOR combination. Two data-
set related to correctly performed trials were then created
grouping median PLF values for correct target selections: one for
target and one for non-target data. The two data-set associated
with correct performances were then considered as reference set
for median PLF values related to wrong selection trials.

2.5.3. Influence of the Information Embedded the N1

Component on Classifier Selection Accuracy
As a last step, since the scalp distribution of the N1 component
involves parieto-occipital electrodes, we excluded Pz , PO7, and
PO8 channels data from the original training and performance
phase data-set in order to assess the direct influence of the
information embedded in the N1 component on classifier
selection accuracy. We performed off-line analyses on EEG data
from the reduced data-set for every STIM×COLOR×SPEED
combination and for each subject. Each reduced training data-
set was submitted to the LDA classifier as described in subsection
2.5.1. The newly trained classifier was then used to classify
each reduced data-set corresponding to the performance phase.
Thus, we computed new classification weights (i.e., cumulative
sums of posterior probabilities of target class membership) and
subsequent selection accuracy for each target.

2.6. Statistical Analysis
All analyses were performed using R (R Core Team, 2014).
With respect to descriptive statistics (i.e., grand average, median,
maximum, relative frequency, as well as Spearman’s correlation
coefficient) computations were performed using standard
functions implemented in R (package stats). Plots were obtained
using the package ggplot2 (Wickham, 2009) and the function
“balloonplot” implemented in the package gplots (Warnes et al.,
2016). With respect to the analysis performed on the N1
and P300 components for factor SPEED = slow, considering
the Latin-square design and after a preliminary inspection of
ERP data we assumed a negligible period effect in testing
differences in character- and icon-spellers. This means that we
considered data as they had been collected using a within-Ss
factorial design with the two factors STIM (2 levels: character,
CH and icon, IC) and COLOR (2 levels: white, WH and
green, GR). We therefore performed a permutational analysis
of variance for repeated measures using the function “ezPerm”
implemented in the package ez (Lawrence, 2013). Effect sizes are
computed using the function “ezANOVA” implemented in the
same package (Lawrence, 2013) and referencing to Bakeman
(2005). One-way analysis of variance for repeated measures
was performed using Friedman test (function “friedman.test” in
package stats). For paired data comparisons,Wilcoxon Rank Sum
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(function “wilcox.test” in package stats) or sign test (function
“signmedian.test” in package signmedian.test, Yu and Yang, 2015)
were chosen depending on the asymmetry for distributions of
differences. As index for effect size we used in this case Cliff ’s
delta according the approach implemented in the package effsize
(function “cliff.delta”, Torchiano, 2016). Statistical significance
was set at 0.05. In case of multiple testing, family-wise error rate
was controlled according to the Holm approach (holm option of
the “p.adjust” function of the R standard package stats).

3. RESULTS

In order to evaluate cognitive differences in using a character-
speller with respect to an icon-based one, we considered many
aspects. The following subsections detail the results obtained
from various assessments procedures and EEG data analyses.

3.1. Neuropsychological Assessment
Scan times for AMT were (median [25–75%]): 18.3 [15.2–22.9],
23.8 [21.9–26.9], and 30.1 [27.0–31.1] seconds for the three
matrices, respectively. Friedman test was significant (P-value =
0.0046) and post hoc test confirmed that scant time increased with
task difficulty. Results were (Wilcoxon Rank Sum test, one-sided
alternative hypothesis with Holm correction): scan time AMT2
vs. AMT1 Cliff ’s delta = 0.5313, P-Value = 0.055 (uncorrected
0.055); scan time AMT3 vs. AMT2 Cliff ’s delta = 0.5, P-Value
= 0.0117 (uncorrected 0.0039) and scan time AMT3 vs. AMT1
Cliff ’s delta = 0.7813, P-Value = 0.0156 (uncorrected 0.0078).
The score (i.e., the number of correct subtractions in the five

trials) in the SSST was quite uniformly distributed in the two
groups, being 5,3,5,4 for the CH-IC group and 5,2,4,5 for the IC-
CH group. Only one subject performed critically in the Bells Test
(S2, 11 missing targets: 4 in the left and 5 in the right side), being
also the worst performer in the last attentive matrix (7 missing
targets) and always the one with the minimum scan time (44.4
and 20.5 s, in Bells Test and third attentive matrix respectively).

3.2. Other Behavioral Data
Time data related to the possibility to familiarize with speller
matrices refer to time to scan still, not flashing, speller matrices at
the very beginning of each experimental sequence. This was 15.5
s [12.9–22.0] for the character-speller, and 41.5 s [34.2–70.4] for
the icon-speller. Scan time for the icon-speller matrix was longer
than scan time for the character-speller matrix, with a statistically
significant P-value of 0.0352 (sign test with one sided alternative
hypothesis, Cliff ’s delta = 0.9063). Relations (Spearman’s ρ)
between data from neuropsychological assessment (AMT and
Bells Test) and scan time for still speller matrices (0.476, 0.691,
0.595, 0.024 for character-speller; 0.333, 0.405, 0.309, 0.595
for icon-speller) show weak direct correlations, although not
statistically significant.

3.3. BCI Performances
On-line classification accuracy in the different experimental
combinations of STIM (CH, IC), COLOR (white, green) and
SPEED (fast, slow) is depicted in Figure 3. The achieved on-line
accuracy is plotted using dots: since many subjects can perform
at the same level, a single dot could also correspond to more

FIGURE 3 | Paired data plots referring to performances with the different spellers for each subject, explicitly labeled with letter S and consecutive numbers. Since data

for selection accuracy can overlap, a single dot can correspond to more than one subject. Therefore each dot is labeled: a label with dash (as in S1–S3) means S1,

S2, and S3; a label with comma (as in S1, S3) means S1 and S3. Results are reported in panels (A) and (B) according to the assigned experimental group (Seq.

CH-IC or IC-CH, i.e., first character-speller and then icon-speller or the other way around) timeline. Dots are linked with dashed lines in order to highlight the

within-subjects variability in performing with the various spellers. As regards each subplot: White and Green labels refer to the stimulus COLOR (factor COLOR, two

levels), whereas Fast and Slow labels refer to stimulus timing (Factor SPEED, two levels). Stimulus type: CH, character-speller; IC, icon-speller.
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than one subject. Therefore each dot is labeled: a label with dash
(as in S1–S3) means S1, S2, and S3; a label with comma (as in
S1, S3) means S1 and S3. Data are also plotted in panels A and
B according to the experimental sequence the participant was
assigned to, i.e., CH-IC or IC-CH, as in Figure 1. Finally, dots
are linked with dashed lines in order to highlight the within-
subjects variability in performing with the various spellers.
Only three subjects reached 100% accuracy in all experimental
conditions (S1, S3, S6), whereas worst performances are 40%
(S4 and S8, IC×white×fast; S5, IC×green×slow) and 60%
(S4, CH×white×fast; S5, IC×white×fast, CH×green×slow and
IC×white×slow). The combination IC×white×fast emerges
as the more heterogeneous one among subjects, although
classification accuracy for white×fast icons was not significantly
worse from that for white×fast characters (sign test with one-
sided alternative hypothesis, P-value= 0.1875).

3.4. Electrophysiological Analysis of
End-User Experience
According to the approach described in subsection 2.5.2, results
reported in the following subsections are stratified with respect to
the two levels of the factor SPEED, which refers to the stimulation
timing used for the P300-spellers. Slow stimulation timing (flash

time = 100 ms, dark time = 900 ms) removes the distortion of
ERP waveforms; fast stimulation timing (flash time= 60ms, dark
time = 10 ms) refers to a feasible P300-BCI application, since it
enables fast communication and interaction.

3.4.1. Off-Line ERP Analysis − SPEED = Slow
Grand average target-ERPs relative to the training phase for
slow stimulation timing in each STIM×COLOR combination are
reported in Figure 4 for the different conditions. Data for N1
component are reported inTable 2 and corresponding effect sizes
for each electrode and STIM×COLOR combination are reported
in Table 3. With respect to the P300, the peak amplitudes [µV]
(latencies, [ms]) at Cz were: 2.781 (439.063) and 2.917 (423.438)
for white and green character-speller; 5.999 (392.188) and 4.612
(407.813) for white and green icon-speller.

Referring to ERPs for training phase-target condition for
each electrode and STIM×COLOR combination, permutational
analysis of variance for the N1 component amplitude resulted,
after Holm correction for the whole electrode set (i.e., 8
electrodes), in a statistically significant STIM main effect for
Pz (Holm corrected P-Value = 0.035; uncorrected: 0.005) and
PO7 (Holm corrected P-Value = 0.032; uncorrected: 0.004). Post
hoc analysis was then performed on ERP data for these two

FIGURE 4 | Target ERPs in BCI-set (Fz , Cz , P3, Pz , P4, PO7, Oz , and PO8) for the training phase and slow stimulation timing (flash time = 100 ms, dark time = 900

ms). Data are epoched (from 100 before to 700 ms after stimulus onset) and baseline corrected for each-speller type. WH-CH, white character-speller; WH-IC, white

icon-speller; GR-CH, green character-speller; GR-IC, green icon-speller.

Frontiers in Neuroscience | www.frontiersin.org 9 June 2017 | Volume 11 | Article 363

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Carabalona Stimulus Type-Timing Interplay in P300-Spellers

TABLE 2 | Speed = SLOW: Amplitude (µV) and latency (ms) for N1 component during training phase.

Fz Cz Pz Oz

Amp Lat Amp Lat Amp Lat Amp Lat

WH-CH −3.309 185.156 −2.742 181.250 −1.742 177.344 −1.938 185.156

GR-CH −3.325 177.344 −3.253 173.438 −1.778 181.250 −2.167 177.344

WH-IC −3.226 169.531 −2.445 177.344 −3.348 173.438 −2.656 177.344

GR-IC −2.439 177.344 −2.014 189.063 −4.621 165.625 −1.251 173.438

P3 P4 PO7 PO8

Amp Lat Amp Lat Amp Lat Amp Lat

WH-CH −2.226 181.250 −1.777 181.250 −1.119 192.969 −2.131 181.250

GR-CH −2.732 181.250 −3.835 177.344 −1.618 185.156 −2.110 177.344

WH-IC −3.314 173.438 −3.485 181.250 −3.269 173.438 −2.762 181.250

GR-IC −4.332 177.344 −2.568 177.344 −3.731 185.156 −3.007 177.344

Stimulus type: CH, character-speller; IC, icon-speller; Stimulus color: WH, white; GR, green.

TABLE 3 | Speed = SLOW: Generalized Eta-Squared measure of effect size for

N1 amplitude during training (all electrodes) and performance (only for PO7 and

PO8, in bold) phases.

Fz Cz Pz Oz

STIM 0.0130 0.0245 0.1305 0.0003

COLOR 0.0083 0.0001 0.0128 0.0105

STIM×COLOR 0.0090 0.0094 0.0115 0.0200

P3 P4 PO7 PO8

STIM 0.0345 0.0018 0.0942 0.0178

COLOR 0.0113 0.0119 0.0053 0.0004

STIM×COLOR 0.0013 0.0755 0.0000 0.0005

PO7 PO8

STIM 0.0026 0.1762

COLOR 0.0111 0.0017

STIM×COLOR 0.0106 0.0272

STIM refers to stimulus type: CH, character-speller; IC, icon-speller; COLOR refers to

stimulus color: WH, white; GR, green.

electrodes, collapsing data with respect to the factor COLOR.
N1 component amplitude for STIM = IC was larger (i.e., more
negative) than for STIM = CH for both Pz and PO7 (Cliff ’s
delta = −0.4375 and −0.4063, respectively. Sign test with one
sided alternative hypothesis: Holm corrected P-Value = 0.0078,
uncorrected= 0.0039).

Permutational analysis of variance for each STIM×COLOR
combination on Cz data averaged in the three time windows
A (200-250 ms, generalized effect sizes: STIM = 0.1736,
COLOR = 0.0017, STIM×COLOR = 0.0005), B (250–300 ms,
generalized effect sizes: STIM = 0.2395, COLOR = 0.0218,
STIM×COLOR = 0.0065) and C (300–350 ms, generalized
effect sizes: STIM = 0.17, COLOR = 0, STIM×COLOR = 0)
led to the following Holm corrected (uncorrected) P-Values
for STIM main effect : 0.052 (0.043), 0.033 (0.011), and 0.052

(0.026) for time-window A, B, and C respectively. P-values for
STIM×COLOR interaction and COLOR effects were far from
statistical significance. Given the significant result on window
B, post hoc analysis on collapsed data with respect to the factor
COLOR showed a greater amplitude for STIM = IC than for
STIM = CH (Cliff ’s delta = 0.7188; P-value = 0.035, sign test
with one sided alternative hypothesis). Permutational analysis
of variance for the P300 component led to P-values far from
statistical significance.

With respect to the performance phase, grand average ERPs
for target and slow stimulation timing in each STIM×COLOR
combination are reported in Figure 5. Data for N1 component
for each electrode and STIM×COLOR combination are reported
in Table 4. We considered for statistical analysis the N1
component only for parieto-occipital electrodes PO7 and PO8:
corresponding effect sizes are reported in bold in Table 3. A
statistically significant STIM main effect was observed on the
N1 component amplitude for PO8 (Holm corrected P-Value
= 0.03; uncorrected: 0.015). We consequently collapsed data
for factor COLOR for PO8 and compared data for STIM =
CH and STIM = IC: N1 component amplitude for STIM
= CH was larger (i.e., more negative) than for STIM = IC
(Cliff ’s delta = −0.5937. Sign test with one sided alternative
hypothesis: 0.035). With respect to the P300 component,
permutational analysis of variance led to P-values far from
statistical significance.

3.4.2. Off-Line ERP Analysis − SPEED = Fast
Phase locking values for Oz and PO8 are reported in Figure 6. For
each STIM×COLOR combination plot are paired for target and
non-target data. The correct performances data-set (obtained
grouping the median PLF values for correct selections) is
graphically summarized reporting its median (the black dot-line)
and minimum and maximum (the shaded area). The SSVEP
induced by flashing of non-target data is clearly recognizable in
each NON-TARGET plot for Oz and the SSVEP effect seem also
present in target data. In each plot it is also stressed the fact that
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FIGURE 5 | Target ERPs in BCI-set (Fz , Cz , P3, Pz , P4, PO7, Oz , PO8) for the performance phase and slow stimulation timing (flash time = 100 ms, dark time = 900

ms). Data are epoched (from 100 before to 700 ms after stimulus onset) and baseline corrected for each -speller type. WH-CH, white character-speller; WH-IC, white

icon-speller; GR-CH, green character-speller; GR-IC, green icon-speller.

TABLE 4 | Speed = SLOW: Amplitude (µV) and latency (ms) for N1 component during performance phase.

Fz Cz Pz Oz

Amp Lat Amp Lat Amp Lat Amp Lat

WH-CH −4.037 177.344 −3.473 177.344 −4.122 185.156 −1.244 177.344

GR-CH −3.765 177.344 −4.994 189.063 −2.763 196.875 −3.462 189.063

WH-IC −2.213 173.438 −5.153 177.344 −2.020 169.531 −1.367 173.438

GR-IC −4.323 173.438 −2.304 177.344 −1.472 177.344 −0.576 185.156

P3 P4 PO7 PO8

Amp Lat Amp Lat Amp Lat Amp Lat

WH-CH −4.425 181.250 −3.046 169.531 −1.351 181.250 −3.610 185.156

GR-CH −3.144 189.063 −2.115 185.156 −1.338 196.875 −4.231 181.250

WH-IC −2.985 173.438 −2.909 177.344 −2.264 169.531 −2.148 185.156

GR-IC −1.576 181.250 −2.108 181.250 −1.028 189.063 −1.114 196.875

Stimulus type: CH, character-speller; IC, icon-speller; Stimulus color: WH, white; GR, green.

some subjects performed bad in some trials and well in some
other. This is achieved representing the median PLF values for
these subjects in a 2-fold way: the bold line (which is within
the shaded area) is related to the correct performance (i.e., with

correct selection); the thin line, with the same color code as the
thick one, is related to the bad performance (i.e., with wrong
selection). Results for bad performances show greater dispersion,
mostly peaking in the 10–15 frequency band.
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FIGURE 6 | Time-frequency analysis for Oz (upper panel) and PO8 (lower panel) epoched data (performance phase and SPEED = fast). For each subject, Phase

locking factor (PLF) is summarized along time using the median value. PLF associated with correct selections are summarized across subjects using median (black

dot-line) and minimum/maximum (shaded area) of subjects’ medians. Single lines (thick and thin) refers to subjects who did both correct (thick line) and wrong

selections (thin line). WH-CH, white character-speller; WH-IC, white icon-speller; GR-CH, green character-speller; GR-IC, green icon-speller.

3.4.3. Influence of the Information Embedded the N1

Component on Classifier Selection Accuracy
Results about the selection accuracy achieved using the reduced
data set, i.e., excluding Pz , PO7, and PO8., are reported inTable 5.
Classification accuracy seem mostly affected when factor SPEED
= fast: 75 and 62.5% of the participants shows a worsened
performance for factor COLOR = white and COLOR = green
respectively, regardless of stimulus type. The number of subjects

affected by change in accuracy is reduced when factor SPEED =
slow, nevertheless performance can bemore dramatically affected
and reach 100% reduction.

3.5. Usability Assessment
Results with respect to the Usability questionnaire are reported in
Figures 7, 8, which highlights changes in the level of agreement
expressed by participants after their BCI experiences. Each plot
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TABLE 5 | Influence of Pz , PO7, and PO8 on classification results.

Speed = FAST Speed = SLOW

Subject WH-CH GR-CH WH-IC GR-IC WH-CH GR-CH WH-IC GR-IC

S1 60 (40.0) 80 (20.0) 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0)

S2 20 (75.0) 100 (0.0) 60 (40.0) 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0)

S3 80 (20.0) 100 (0.0) 20 (80.0) 60 (40.0) 100 (0.0) 100 (0.0) 40 (60.0) 80 (20.0)

S4 40 (33.3) 80 (20.0) 40 (0.0) 60 (40.0) 60 (40.0) 80 (20.0) 100 (0.0) 100 (0.0)

S5 40 (60.0) 20 (80.0) 40 (33.3) 80 (20.0) 0 (100.0) 20 (66.7) 20 (66.7) 0 (100.0)

S6 100 (0.0) 80 (20.0) 60 (40.0) 60 (40.0) 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0)

S7 100 (0.0) 100 (0.0) 20 (75.0) 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0)

S8 60 (25.0) 40 (50.0) 20 (50.0) 20 (75.0) 60 (25.0) 80 (20.0) 80 (20.0) 100 (0.0)

Data refers to the selection accuracy achieved using the reduced data set, i.e., excluding Pz , PO7, and PO8. All values are expressed as percentages, in parentheses is reported the

reduction with respect to the selection accuracy obtained using the whole electrode set (0.0 means no reduction). Stimulus type: CH, character-speller, IC, icon-speller; Stimulus color:

WH, white, GR, green.

depicts the confusion matrix for the two groups. Rows and
columns refer to the level of agreement expressed after using
the icon- and the character-speller, respectively. Thus, bubbles
represent joint frequencies for each row/column combination,
with a diameter proportional to the absolute joint frequency
(also reported within the bubble). The color is related to the
group: violet for the group CH-IC and green for the group
IC-CH. Let’s consider, for instance, the subplot related to the
statement “It is useful” (domain: Usefulness, Figure 7), for
which all participants expressed a level of agreement above
“indifferent” (i.e., greater than 4): we can notice that the
level of agreement was higher after using the icon-speller,
regardless of the experimental sequence and that those who did
not change their agreement are equally divided between the
sequences. Overall, participants found neither speller particularly
pleasant to use: 75 and 62.5% of participants expressed a
level of agreement from “indifferent” (i.e., equal to 4) to
“strongly disagree” with the statement “It is pleasant to use”
for character- and icon-speller respectively. Nevertheless, they
were quite satisfied with both spellers (62.5 and 75% of
participants expressed a level of agreement above “indifferent”
(i.e., greater than 4) for character- and icon-speller respectively)
and found icon-speller more fun to use than character-speller
(Figure 7, domain: Satisfaction). They perceived the character-
speller as slightly easy to learn than the icon-speller (Figure 8,
domain: Ease of learning) and rated both BCI-spellers as
not particularly effortless to use (Figure 8, domain: Ease of
use).

4. DISCUSSION

The purpose of the present study was to analyze the within-
subjects variability in P300-BCI speller performances with
respect to both a character-speller and an icon-speller. We aimed
at:

• evaluating whether the issues in using the icon-speller
reported for a sample of disabled subjects are also observed
in the present sample of able-bodied participants,

• disentangling the visual cognition process underlying end-user
experience with a character- or an icon-speller by means of an
electrophysiological approach.

Hence, we designed a within-subject study interlacing a cross-
over approach with a factorial one. We considered two different
6×6 speller matrices: a standard character-speller (factor STIM
= CH) and an icon-based one (factor STIM = IC). We also
varied both stimulus COLOR (factor COLOR: white or green)
and stimulus rate (factor SPEED: fast or slow). In order to
allow comparisons with results on disabled subjects reported
in Carabalona et al. (2012), the same combination white×fast
as well as the same classifier (LDA) were chosen. Nevertheless,
because of the long duration of the whole data acquisition session,
we used shorter words and icon-strings to spell. The following
subsections discuss the results with respect to the aims of the
study.

4.1. Different End-Users, Same Issues
Neuropsychological assessments in the present sample indicate
no critical impairment in working memory and visual attention.
The same held for participants in the sample of Carabalona
et al. (2012) and none of the end-users in either sample had
previous experience in BCI-speller use. This allows a comparison
reasonably not biased by cognitive impairments or previous BCI
expertise.

Present results about time needed to scan still (i.e.,
not flashing) speller matrices also parallel those reported
in Carabalona et al. (2012), confirming that the scan and
comprehension of symbols embedded in the icon-speller matrix
was more demanding. In the present research we added the
Bells Test as a validation for the selective and sustained visual
attention component specifically for the icon-speller: Spearman’s
ρ correlation between timing for the Bells Test and time needed
to scan still speller matrices, although not statistically significant,
suggests a difference in perceptual and cognitive activity when
scanning the character- or the icon-speller.

Results reported in Figure 3 concern on-line selection
accuracy for the different spellers, and clearly show that
participants in the present study are more likely to experience
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FIGURE 7 | Usability Questionnaire, results related to domains Satisfaction (4 sentences) and Usefulness (2 sentences). For each sentence is reported a confusion

matrix, where rows and columns refer to the level of agreement for icon and character-speller respectively. Bubbles represent joint frequencies, with diameter

proportional to the number of respondents. Bubble colors refer to experimental group: violet, CH-IC and green, IC-CH.

an unsatisfactory interaction when using the white×fast icon-
speller. Moreover, results indicate that this difficulty is mitigated
for COLOR = white with slow stimulation timing and for both
levels in SPEED factor when using COLOR = green. Since the
experimental timeline is embedded in the way results are depicted
in Figure 3, it is apparent that the drop in performance occurs
whatever the experimental sequence is (CH-IC or IC-CH, i.e., first
character-speller and then icon-speller or the other way around),
in accordance with the results reported in Carabalona et al.
(2012). Unlike their results, however, the observed performance
drop for the white×fast spellers seems less pronounced in the
present sample and results are not statistically significant. Hence,
we could argue that, for the subjects in the present sample the
two speller experiences are not as dramatically diverse from each
other as for participants in the sample of Carabalona et al. (2012).
Nevertheless, the issue of within-subjects BCI illiteracy observed
in Carabalona et al. (2012) is also present here. Thus, the studies
actually share the critical point: other things being equal, in both
samples some end-users can experience unsatisfactory use of one
BCI-speller (mainly the icon-speller), while having a satisfactory

experience with the other one (mainly the character-speller). In
other words, a well performing end-user with one speller type
can turn into a bad and very unsatisfied one with another speller,
learned in the same way, but based on a different set of symbols.

With respect to Usability evaluation, participants rated the
icon-speller as more useful and fun to use than the character-
speller in accordance with the findings reported in Carabalona
et al. (2012) on disabled subjects. Contrary to the opinions
expressed by present end-users’ group, those end-users rated the
character-speller as slightly more easy and satisfying to use than
the icon-speller. In explaining this difference in agreement, we
should consider that participants in the study of Carabalona et al.
(2012) experienced only white×fast spellers. Thus, since subject’s
opinion could be biased by his/her performance with BCI-
spellers, ratings expressed by participants in present study could
have been influenced by the better performance they achieved
with the icon-spellers with green stimuli. Finally, participants
rated both spellers as not particularly effortless or pleasant to
use, whereas subjects in Carabalona et al. (2012) found character-
speller slightly effortless and both spellers quite pleasant to
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FIGURE 8 | Usability Questionnaire, results related to domains Ease of Use (5 sentences) and Ease of Learning (3 sentences). Conventions are the same as in

Figure 7.

use. In this case, the disagreement could be explained with
the use of both fast and slow stimulation timing, which led to
longer acquisition times and this is certainly more boring and
demanding than the use of fast flashing BCI-spellers only.

4.2. Electrophysiological Markers of Visual
Cognition Process Underlying End-User
Experience with BCI-Spellers
Unsatisfactory use of the white×fast icon-speller with respect
to the white×fast character-speller was observed also in the

present sample. Thus, there is experimental evidence suggesting
stimulus type as a source of within-subjects performance
variability and consequent within-subjects BCI-illiteracy. Given
the visual nature of the task associated with a BCI-speller
and the experimental evidence that we automatically categorize
visual items (Greene and Fei-Fei, 2014), we looked for
electrophysiological markers of visual object categorization
during BCI spelling considering two phases: training (learning
phase for end-user and classifier, thus no useful feedback is
provided by the BCI system) and performance (real usage with
meaningful feedback provided by the BCI system).
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4.2.1. Off-Line ERP Analysis − Slow Stimulation

Timing
In order to avoid confounding related to ERP distortion effects
arising with fast stimulation timing (flash time 60 ms, dark time
10 ms), we performed off-line analysis of target-ERP data related
to the different speller types under slow stimulation timing
condition (flash time 100 ms, dark time 900 ms) for both training
and performance phase.

With respect to the training phase, we observed a statistically
significant difference in posterior activity (N1 component for Pz
and PO7) highlighting more perceptual activity for icons than
for characters, which seems not to be related to COLOR type.
Furthermore, about 200 ms post stimulus, a divergence in Cz

activity between ERPs for icons and characters emerges, although
with no sufficient evidence for a STIM main effect for the P300
peaking on Cz .

Results of ERP data analysis related to the performance phase
showed a statistically significant effect for PO8 but not for PO7,
indicating a right lateralization in the posterior activity with
respect to the training phase. Moreover, we observed on PO8 a
N1 component more pronounced for characters than for icons,
contrary to the findings for the N1 component on PO7 with
respect to the training phase.

In the present study, subjects carried out the performance
phase always after the training phase. The critical difference
between the two phases is that, during the training phase, each
symbol to spell was followed by a meaningless feedback (the
symbol “@,” defined as meaningless because it is not present
in the speller matrix), whereas during the performance phase
the participant received a meaningful feedback. This makes the
nature of the perceptual interaction with each symbol (character
or icon) less morphological and more functional: the selection
of one symbol is now really aimed at spelling a word or at
interacting with the environment. The provided feedback is
indeed meaningful because, after the on-line selection made
by the classifier embedded in the BCI-speller, the selected
symbol is printed on the PC-screen in front of the subject
spelling the word and, in case of the icon speller, resulted
also in an action in the smart home. This transition from
morphological to functional is a key element for real-world
expertise as pointed out in James and Cree (2010). In their
review about object recognition and expertise, they report
about the difference between birders and ornithologist: since
the birders identify the birds in the field, they are known to
have a pragmatic knowledge of the birds and their parts as
opposed to ornithologist, more trained in theoretical settings
about morphological differences. Gathering the role of the BCI-
feedback in the transition from a less morphological to a more
functional perceptual interaction with the fact that participants
in the present study can be considered real-world experts with
respect to characters and novices to icons, it becomes clear that
real-world expertise is relevant in discussing how present results
about training and performance phase parallel those of Tanaka
et al. (1999) and Tanaka and Curran (2001). In those studies,
subjects didn’t receive any special training in the Lab and,
after reading a list of items, were asked to categorize items at
different semantic levels without feedback. Moreover, only in the

second sample, subjects are explicitly engaged in their domain of
expertise.

During the training phase with a BCI-speller, subjects are
trained to perform the cognitive task required by the BCI
paradigm and, given the prevailing morphological nature of the
visual interaction with the speller items, they are engaged in a
perceptual task as in Tanaka et al. (1999). Thus, the congruence
with the findings reported in Tanaka et al. (1999) and our results
suggest that participants categorized characters at the basic and
icons at the subordinate level. Our findings are also corroborated
by the remarks of Palmeri and Gauthier (2004), who point out
that letters are identified without considering font and writing-
style variations, thus they are categorized at the basic and not at
the subordinate level. During the performance phase, subjects are
instead more explicitly engaged in their domain of expertise as
in Tanaka and Curran (2001), given that the BCI-speller usage
is mediated by a meaningful feedback making the perceptual
interaction more functional. Our findings parallel those reported
in Tanaka and Curran (2001) about real-world experts (bird-
and dog-watchers). Authors report both a right lateralization and
an enhancement in the N1 component when participants were
asked to categorize items in their domain of expertise relative to
when the task was to categorize items outside their domain of
expertise. Therefore, we can argue that the more pronounced N1
component observed on PO8 for characters is a marker for the
real-world expertise whereas the lesser activity observed for icons
is indicative of the novelty of the stimulus.

Finally, a relevant feature of BCI systems is the mutual-
learning of man and machine. Thus, we should also consider
the role of the feedback in fostering the learning process (Tarr
and Cheng, 2003). There is experimental evidence (Apitz and
Bunzeck, 2012) that training can modulate N1 amplitude when
objects are categorized at the basic level (as is the case for
character items) and Scott et al. (2006) showed likewise that early
stages of visual category processing can be influenced by feedback
during the training in the Lab. Nevertheless, as pointed out
in Scott et al. (2006) and Tanaka et al. (2005), simply perceptual
exposure is not enough to improve visual expertise.

4.2.2. Off-Line ERP Analysis − Fast Stimulation

Timing
The slow stimulation timing condition, in particular the 900
ms dark time window, enabled to highlight differences in the
semantic categorization levels used by subjects with respect
to character- and icon-speller. Nevertheless BCI systems are
expected to work faster in order to be really helpful in
communicating or operating the environment: in the present
study, we considered also fast stimulation timing, setting flash
and dark time as in Carabalona et al. (2012) for comparison
purposes. The chosen flash time (60 ms) and dark time
(10 ms) are also in line with the timing currently used for
BCI-spellers.

In using fast stimulation timing we have to deal with
distortion of target ERP morphology, affected by both overlap
and refractory effects (Martens et al., 2009). Target ERPs are also
affected by the fast flashing of non-target (DiRusso et al., 2003)
and the presence of steady state visual evoked potentials (SSVEP)
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data is acknowledged in the BCI community (Sellers et al., 2006;
Treder and Blankertz, 2010; Sellers, 2013). Therefore, in case
of fast stimulation, we cannot rely on time-domain methods
to study N1 modulation observed for slow stimulation timing
because ERP waveform is dramatically distorted. Nevertheless,
it seems reasonable to assume that the cognitive process of
visual stimulus categorization per-se, as it emerged from slow
stimulation timing analysis, is the same also for the fast
stimulation timing. Therefore, since our aim is to understand
why some well performers can become BCI-illiterate depending
on speller type, we capitalized on results obtained for slow
stimulation timing and analyzed only the performance phase
using a time-frequency approach. As mentioned in the Methods
section, flash and dark times have been designed to be 60 ms and
10 ms respectively. Nevertheless, we have to deal with the non
real-time nature of the BCI-system and with monitor refresh rate
(60 Hz, i.e., every 16.66 ms). This means that the actual target
stimuli exposure duration is 66.64 ms and that the actual SSVEP
associated with non-target stimuli, depending from dark time
also, ranges from 12 to 15 Hz. Phase locking observed for non-
target data on Oz , where the SSVEP is maximally expected, is in
accordance with this range. Moreover, we observed a modulation
of phase locking also for target data confirming the effect of
fast flashing non-target also on target stimuli. With respect to
wrong selections, we can distinguish medium performers (i.e.,
those with a selection accuracy ranging from 80 to 60%) and bad
performers (i.e., those with 40% selection accuracy). For medium
performers we observed a paradoxical increment of phase locking
in the SSVEP range. We use the term paradoxical because SSVEP
is supposed to be enhanced by attention (Morgan et al., 1996).
The point here is that the SSVEP induced by the flashing of non-
target items should be more similar to an irrelevant stimulus
when the subject is actively engaged in the BCI task. Silberstein
et al. (1990) demonstrated that the SSVEP to irrilevant flickering
background (13 Hz) was reduced when subjects performed an
active target detection in comparison to when no target was
expected, thus the observed increment along with the wrong
selection is more indicative of disengagement. Nevertheless, we
observed a decrease in phase locking in the SSVEP frequency
range for bad performers, which seems to be inconsistent with
previous results.

We speculate that disengagement plays a key role in explaining
both observed increment and reduction. When disengagement
occurs the subject enters a state of mind-wandering and
this has diverse implications. The first one is related to
pupillary dinamics: recent results show that task-disengagement
is associated with both decreased baseline pupil diameter and
diminished stimulus-evoked pupil dilation (Gilzenrat et al., 2010;
Hopstaken et al., 2015). The second one is related to the role
of alpha rhythm in both visual perception performances and
mind-wandering. Experimental evidence shows that perceptual
performance is related to alpha power and phase locking.
Hanslmayr et al. (2005) showed that good perception performers
exhibited higher P1 and N1 as well as significant higher
post stimulus phase locking in the frequency range form 8
to 14 Hz than bad performers. Moreover, Hanslmayr et al.
(2005) and Ergenoglu et al. (2004) observed lower alpha

amplitude in the reference (baseline) period preceding task
performance. These results are interpreted in terms of cortex
activation as enabling perceptual performance and are also
in line with the results of Cooper et al. (2003), which
relate alpha synchronization/desynchronization with internal
and external directed attention. Finally, there is experimental
evidence supporting the theory that mind wandering can occur
at different levels instead of being a dichotomous phenomenon
occurring in a all-or-none fashion (Schad et al., 2012). Gathering
these results, we propose that the end-user can enter different
levels of mind-wandering. Since there is partial overlapping
between alpha range and SSVEP frequency range, this results in
a modulation of the SSVEP effect in both target and non-target.
We interpret the presence of a high SSVEP-like component in
both target and non-target corresponding to wrong selections as
a marker of a mild-wandering state, during which the subject is
not fully engaged and therefore all stimuli (i.e., both non-target
and target) contribute to the SSVEP. The reduction on the SSVEP
effect with respect to worse performers should then be related
to a deeper mind-wandering, a state in which the participant is
disconnected to the external SSVEP.

The point is now how stimulation timing can affect subjects’
engagement. A direct relation would imply that boredom and
disengagement are more likely for the slow stimulation timing
but results on selection accuracy show a level of homogeneity
in contradiction with that assumption. Moreover, selection
accuracy for fast spellers also indicate that the relation between
timing and engagement is not direct and that we have to
consider the interplay between stimulus type and timing, i.e.,
the relation between semantic categorization levels and exposure
time. Experimental results indicated a different effect of exposure
time on categorization levels. Jolicoeur et al. (1984) used
1,000 and 75 ms as long and short exposure times in a
research involving sixteen healthy subjects in a picture naming
experiment. In particular, the 75 ms threshold resulted critical for
subordinate, but not for basic and superordinate categorization
levels. Tanaka (2001) further discusses the entry-point concept
for face recognition, showing that a short exposure time (below
the 75 ms threshold) impairs categorization at subordinate level
only for non-face objects. With respect to stimulus exposure for
BCI-spellers, 100 ms is a typical flashing time but there is also
evidence regarding faster stimulation timing: in a study involving
both healthy and ALS subjects, McFarland et al. (2011) used
a wide range for exposure time (from 250 to 31.25 ms) and
dark time (from 125 to 15.625 ms, respectively). Nevertheless,
they only considered character-spellers, proving the superiority
of slower stimulation rates. Münßinger et al. (2010) and Zickler
et al. (2013) performed experiments with ALS as well as healthy
participants using both a classical character-speller and a Brain
Painting BCI system. They used a fast stimulation timing (62.5
ms for both flashing and dark time) for either speller and results
showed a drop in accuracy for the Brain Painting, which was
then mitigated in a second experiment where participants used
a Brain Painting interface based on different icons. Finally, new
emerging paradigms for BCI-spellers based on flashing faces
superimposed on characters (Kaufmann et al., 2011, 2013) use
also very short exposure times (31.25 ms with 125 ms dark time)
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and seem to improve performances when compared to plain
character-spellers. Thus, if we choose fast stimulation timing,
overlap and refractory effects seem to be more responsible
for performance variability in using a character-speller and, in
accordance with the results of Tanaka (2001), no detrimental
effect seems to emerge for fast flashing faces. But if we are
using icon-spellers, the critical role of the “75 ms threshold”
becomes evident. In our fast stimulation timing condition,
the actual exposure time is 66.64 ms: we also considered the
possibility of two consecutive target-flashes, which could led
to longer exposure times (133.28 ms). Our data shows that,
in the worst case, the likelihood was 20% for a trial of 30
targets. Moreover, this target “repetion effect” was not related to
performance. In conclusion, by using slow stimulation timing, we
prevented modifications on ERP morphology and showed that
icons are categorized at a subordinate level. Short exposure time
is expected to affect target ERP morphology at the same extent
for both icon- and character-speller, but the under-threshold (i.e.,
under 75 ms) stimulation timing only impairs icons perception
and, at the end, can have a detrimental effect inducing subject’s
disengagement.

4.2.3. Influence of the Information Embedded the N1

Component on Classifier Selection Accuracy
We also considered the influence of the N1 component on
BCI performance. Since the information carried by the N1
component is related to Pz , PO7, and PO8, we assessed the effect
of excluding these three electrodes on classification accuracy for
both slow and fast stimulation timing. The importance of Pz ,
PO7, and PO8 is confirmed by the results, with a more marked
effect for the fast than for the slow stimulation timing. Results
for slow stimulation timing highlight that well performers can
rely also only on the P300, but also that N1 becomes relevant
for medium to bad performers. This means that EEG data
in well performers lead to well separated classes, which can
overcome the loss if information occurring when we use the
reduced electrode set. The same is not true for medium to bad
performers. In order to clarify this, we have to recall that the
selection of one item in the speller is based on the weighting
of rows and columns elements in the speller matrix. Thus, the
change in selection accuracy arises from a change in the weights
computed in the reduced electrode set with respect to those
computed for the full electrode set. Since weights are calculated
as the cumulative sum (over the number of row and column
flashes, respectively) of posterior probabilities for target-class
membership, each weight evolves as a monotonic nondecreasing
function. Thus, the more one single function (i.e., weight of one
row or column) is monotonically increasing with respect to the
remaining five, the better we distinguish that row (or column)
from the remaining five. In case of well performers, we actually
observed that the weight for the target row/column is clearly
separated and monotonically prevailing over the remaining five.
Reducing the electrode set erodes this gap, which is however
wide enough to lead also in this case to the correct selection. In
case of medium to bad performers, we observed that there is no
clear monotonic prevalence of one weight on the remaining five.
Excluding Pz , PO7, and PO8 has therefore a more dramatic effect,

since it erodes an already narrower gap and can more likely lead
to a wrong classification.

Finally, the observed reductions in case of fast stimulation
timing seem to be more related to stimulus color than to stimulus
type. Since we considered both parietal and parieto-occipital
electrodes, we actually eliminated information related to both the
dorsal and ventral pathways, thus reducing the mitigation effect
of COLOR observed for selection accuracy obtained for the whole
electrode set.

4.3. Study Limitations
Some limitations exist in our study. Notwithstanding that
participants are balanced with respect to demographic
characteristics, our sample size is the minimum required
by the study design. Thus, although we managed statistical
analysis according to a non parametric approach and used
permutational methods with correction for multiple testing, the
small sample size limits the strength of our results. A different
and more “intrinsic” limitation is related to the stratified and
diverse analysis of electrophysiological data we performed
according to SPEED factor. We decided to evaluate the two levels
separately because we had to take into account the distortion
effects arising in case of fast stimulation timing. Therefore, even
if this choice prevented us from exploring interactions between
the factor SPEED and the other two factors, we were able to
control the misleading picture originating from the notable
differences in epoched EEG data for the two levels of stimulation
timing.

5. CONCLUSIONS

Despite research efforts, variability in performance and BCI-
illiteracy are still critical issues for real world BCI applications.
A quite unaddressed kind of BCI-illiteracy becomes apparent
when the same end-users operate spellers aimed at different
applications. In the present study, we considered a sample
of healthy subjects using both character- and icon-spellers.
We designed a within-subjects study interlacing a cross-
over approach with a factorial one and manipulated stimuli
type (factor STIM: characters, icons), color (factor COLOR:
white, green) and timing (factor SPEED: fast, slow). For
the combination fast×white, performance worsening for the
icon-speller with respect to the character-speller seems to be
independent from end-users’ sample, since results are consistent
with those reported in a previous study on disabled subjects using
the same speller types. The worsening in on-line classification
accuracy seems to be mitigated for fast spellers when COLOR
= green or when using slow spellers. Moreover, the use of
slow stimulation timing shed a new light on the perceptual and
cognitive phenomena related to the use of a BCI-speller and
their neurophysiological bases. Regardless of the factor COLOR,
we observed visual cognition effects related to the use of either
speller. Our findings are consistent with existing results on ERP
tracking of object categorization and indicate that participants
used different semantic categorization levels: subordinate for
icons, and basic for characters. This difference in categorization
levels becomes critical in case of fast stimulation timing, where
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an exposure time threshold (75 ms) for effective subordinate
level categorization for non-face objects seems to exist. Thus,
the role of this threshold becomes critical for icon-spellers:
flashing stimuli categorized at the subordinate level under the “75
ms threshold” could be detrimental for end-user’s performance
because this categorization level is more perceptually demanding.
Moreover, subjects’ disengagement effects might occur because of
the perceptual difficulty. Hence, for a BCI-speller to be usable, it
is relevant to take into account also at which semantic level the
items used in the speller matrix are categorized and the interplay
between stimulus type and timing.

Our findings are also in line with growing methodological
evidence about optimal electrode selection and provide some new
experimental results regarding the fundamental role of parieto-
occipital electrodes for BCI classifier selection accuracy, which
can contribute to a deeper understanding of the “BCI-speller
experience.”
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