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The ability to interrogate total RNA content of single cells would
enable better mapping of the transcriptional logic behind emerging
cell types and states. However, current single-cell RNA-sequencing
(RNA-seq) methods are unable to simultaneously monitor all forms
of RNA transcripts at the single-cell level, and thus deliver only a
partial snapshot of the cellular RNAome. Here we describe Smart-
seq-total, a method capable of assaying a broad spectrum of cod-
ing and noncoding RNA from a single cell. Smart-seq-total does not
require splitting the RNA content of a cell and allows the incor-
poration of unique molecular identifiers into short and long
RNA molecules for absolute quantification. It outperforms current
poly(A)-independent total RNA-seq protocols by capturing tran-
scripts of a broad size range, thus enabling simultaneous analysis
of protein-coding, long-noncoding, microRNA, and other noncod-
ing RNA transcripts from single cells. We used Smart-seq-total to
analyze the total RNAome of human primary fibroblasts, HEK293T,
and MCF7 cells, as well as that of induced murine embryonic stem
cells differentiated into embryoid bodies. By analyzing the coex-
pression patterns of both noncoding RNA and mRNA from the
same cell, we were able to discover new roles of noncoding RNA
throughout essential processes, such as cell cycle and lineage com-
mitment during embryonic development. Moreover, we show that
independent classes of short-noncoding RNA can be used to deter-
mine cell-type identity.
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E fforts in characterizing transcriptional states of single cells
have so far mostly focused on protein-coding RNA (1–4).

However, a growing number of studies indicate that noncoding
RNAs (ncRNAs), are actively involved in cell function and special-
ization (5–8). Importantly, compared to the coding RNA, which
is transcribed from only ∼1 to 2% of the genome, ncRNA consti-
tutes a major fraction of all cellular transcripts and covers ∼70%
of the genomic content (9). The role of these transcripts in shap-
ing different cell types and states remain poorly understood.

Several groups have developed techniques to measure ncRNA
in single cells (10–15). The respective methods, however, are
designed to target only a subset of noncoding transcripts, which
are either short (∼18 to 200 nt; e.g., microRNA) (11, 16), long
(>200 nt, e.g., long ncRNA [lncRNA] or circular RNA [circRNA])
(10, 14, 17, 18), or limited to specific types of RNA molecules,
such as miRNA–mRNA pairs, for example (10, 12). None of the
existing methods are able to simultaneously quantify all RNA
types within a cell. This limits the ability to map the regulatory
connection between coding and noncoding transcripts within a
cell and motivates the need for the development of novel single-
cell technologies capable of assaying both poly(A)+ and poly(A)�

RNA, irrespective of transcript length.
In the present study we describe Smart-seq-total, a scalable

one-pot method designed to capture both coding and noncod-
ing transcripts regardless of their length. Inspired by the widely
used Smart-seq2 protocol (19), this method harnesses the
template-switching capability of MMLV reverse transcriptase to

generate full-length cDNA with high yield and quality. Smart-
seq-total captures nonpolyadenylated RNA through template-
independent addition of polyA tails and further oligo-dT priming
of all cellular transcripts. Because all RNA molecules are reverse
transcribed using oligo-dT, they can also be tagged with unique
molecular identifiers (UMIs) at that step. Therefore, Smart-seq-
total simultaneously quantifies the levels of mRNA alongside
other RNA types in the same cell, which permits: 1) the anno-
tation of cell types and states based on mRNA and integration
of this data with the existent single-cell RNA-sequencing
(scRNA-seq) datasets, and 2) the discovery of noncoding regula-
tory patterns of the respective states.

Results
Smart-seq-total relies on the ability of Escherichia coli poly(A)
polymerase to add adenine tails to the 30 prime of RNA mole-
cules. Total polyadenylated RNA is then reverse-transcribed
using anchored oligo dT, in the presence of the template switch
oligo (TSO) (20) (Fig. 1A). Compared to previous studies that
explored similar approaches to construct libraries from total
RNAs (21, 22), Smart-seq-total utilizes an optimized version
of the TSO (19), specifically engineered to be rapidly elimi-
nated from the reaction through enzymatic digestion directly
following the reverse transcription. This allows us to remove
the “contaminant” constructs, originating from polyA-tailing and
mispriming of TSO, which otherwise dominate the resulting
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sequencing library and render the short RNA transcripts unde-
tectable (SI Appendix, Fig. S1 A and B). Additionally, we employ
a CRISPR-mediated removal of overrepresented sequences,
which allows us to eliminate the majority of the sequences corre-
sponding to ribosomal RNA from the final library in a single-
pool reaction (23) (targeting rRNA regions and other abundant
RNAmolecules) (SI Appendix, Fig. S1 A and B and Table S1).

When applied to single HEK293T cells, Smart-seq-total iden-
tified the full complement of mRNA as well as a broad spectrum
of ncRNA genes, such as small nucleolar RNA (snoRNA), small
Cajal body-specific RNA (scaRNA), histone RNA, and lncRNA.
The majority of these molecules endogenously lack poly(A) tails
and thus cannot be captured through a direct polyA-priming
employed by Smart-seq2 (1) or other popular scRNA-seq methods
(SI Appendix, Fig. S1 C and D). Among other ncRNA detected by
Smart-seq-total are transfer RNAs (tRNAs) and mature miRNAs
(SI Appendix, Fig. S1 C and D). To facilitate the quantitative
comparison across RNA biotypes within a cell, we also imple-
mented a UMI-compatible version of Smart-seq-total (v2) (SI
Appendix, Fig. S2 A–C). Like Smart-seq3, Smart-seq-total (v2)
does not require a clean-up step after reverse transcription and
thus is also potentially subject to random UMI incorporation
during cDNA amplification (24). We show, however, that under
the current protocol conditions these events are negligible (SI
Appendix, Fig. S2 D–F). Both versions of Smart-seq-total are
compatible with the Tn5-based fragmentation of cDNA in order
to sequence full-length transcript coverage (SI Appendix, Fig. S3).

The sensitivity of Smart-seq-total estimated based on external
RNA control consortium (ERCC) capture is comparable to
Smart-seq2 (SI Appendix, Fig. S3 E and F) (25). At the same time,
Smart-seq-total detects a broader spectrum of RNA types than
previous single-cell approaches and furthermore allows the incor-
poration of UMIs for absolute quantitation into both short and
long RNAmolecules (SI Appendix, Figs. S1 and S4).

To demonstrate the scalability of the method, we sequenced
total RNA from individual human primary dermal fibroblasts
(n = 277), HEK293T (n = 245), and MCF7 (n = 90) cells sorted
in 384-well plates and processed in one-tenth of the standard
Smart-seq2 volume (i.e., cells are sorted in 0.3 μL of lysis buffer
and RNA is reverse-transcribed in 1 μL) (Materials and Methods)
(19). We sequenced the libraries to obtain one to two million
reads per cell, mapped, and counted the reads using the refer-
ence that contains both coding and noncoding transcripts
(including miRNA, snoRNA, small nuclear RNA [snRNA],
tRNA, and so forth). Within all three cell types, we identified a
broad spectrum of transcripts, such as mRNA, miRNA,
lncRNA, and snoRNA in each profiled cell (Fig. 1B and SI
Appendix, Fig. S5). We found metazoan RNA7SK and RN7SL1,
which are involved in regulation of transcription and translation,
respectively (annotated as “miscellaneous RNA”-type [mis-
cRNA] in the GENCODE database) to be the most abundant
in our data comprising together ∼40% of all mapped reads
(Fig. 1B and SI Appendix, Fig. S6). We demonstrate that, if
desired, these molecules could also be depleted from the
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Fig. 1. Smart-seq-total performance. (A) Schematic comparison of Smart-seq2 and Smart-seq-total pipelines. Following cell lysis, total cellular RNA is poly-
adenylated, primed with anchored oligodT, and reverse transcribed in a presence of the custom degradable TSO. After reverse transcription, TSO is enzy-
matically cleaved, single-stranded cDNA is amplified and cleaned up. Amplified cDNA is then either tagmented or directly indexed, pooled, and depleted
from ribosomal sequences using DASH (23). The resulting indexed libraries are then pooled and sequenced on Illumina platform. (B) Distribution of
mapped reads across RNA types in human primary fibroblasts, HEK293T, and MCF7 cells. Percentage of total reads mapped to each RNA type. miscRNA
class is additionally split into RN7SK, RN7SL, and other miscRNA categories. (C) Examples of coding and noncoding marker genes for each cell type. Top
exemplary markers per biotype computed among cell types using Wilcoxon rank sum test. RNY1 belongs to miscRNA, SCARNA23 and SCARNA20 to
scaRNA, MT-TD to mitochondrial tRNA class. (D) t-SNE plots of three profiled human cell types generated using indicated subset of genes. From top to
bottom: protein coding, lncRNA, miRNA, and other small ncRNA (include snoRNA, snRNA, scaRNA, scRNA, and miscRNA). We have excluded histone cod-
ing genes from the protein coding (polyA+) set, since a large fraction of these RNAs are known to lack polyA tails (60).
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sequencing libraries at the rRNA depletion step using dedicated
CRISPR guides (SI Appendix, Fig. S1 A and B and Table S1).
Among cell-type–specific transcripts, we found well-characterized
marker genes for either fibroblasts (COL1A2, FN1, MEG3),
HEK293T (CKB, AMOT, HEY1), or MCF7 cells (KRT8, TFF1)
(Fig. 1C and SI Appendix, Fig. S8A), as well as transcripts that
belong to various types of ncRNA, such as microRNA,
snoRNA, and lncRNA (Fig. 1C and SI Appendix, Fig. S8). For
example, we found high levels of MIR222 in fibroblasts while
we could not detect it in MCF7 cells. We also observed that
oncogenic miRNA cluster MIR17HG is specific to HEK293T
cells, while not found in either fibroblasts or MCF7 cells. In
contrast, MCF7-specific transcripts include lncRNA, such as
LINC00052, as well as snoRNA, such as SNORD71 and
SNORD104.

Given the observed differences in the levels of ncRNA across
profiled cells, we next asked whether ncRNA alone could be
used to distinguish cell types. To answer this question, we per-
formed principal component analysis (PCA) followed by the
dimensionality reduction through t-distributed stochastic neigh-
bor embedding (t-SNE) on the genes corresponding to one or
multiple ncRNA types. Evaluation of the similarity between cells
in two-dimensional space revealed that, in addition to lncRNA
(26), miRNA taken alone separate the investigated cell types into
three distinct clusters. Combining snoRNA, scaRNA, snRNA,
and tRNA together allowed us to achieve similar results (Fig. 1D).
While the exact function of individual snoRNA and scaRNA
remains largely uncharacterized, these RNAs are believed to
play a vital role in posttranscriptional and posttranslation con-
trol (27–29). Here we show that their abundance is also cell-
type specific (SI Appendix, Fig. S8A).

After binning all the cells according to cell-cycle phases (30),
we observed that in addition to cell-type–dependent differences
in ncRNA, the abundance of certain noncoding transcripts also
changed throughout the cell cycle (Fig. 2A). In agreement with
previous bulk studies, which suggested the involvement or miRNA
in cell-cycle regulation (31, 32), we found that levels of a subset
of miRNAs in a cell dynamically change through the cell cycle,
peaking at either S, G2M, or G1 phase (Fig. 2A). For example,
our data showed that the levels of MIR16-2 in fibroblasts are
high during the S phase and later gradually decrease during
G2M and G1 phases (SI Appendix, Fig. S9). The opposite holds
true for MIR222, in both fibroblasts and HEK293T cells, which
is more abundant during cell proliferation (G1) and decays dur-
ing DNA replication (S) and cell division (G2M) phases (Fig. 2A
and SI Appendix, Fig. S10). Among miRNAs more abundant dur-
ing G2M phase, we identified MIR27A, MIR103A2, and MIR877
(SI Appendix, Figs. S9–S11). In addition to miRNA, a large num-
ber of lncRNA, snRNA, scaRNA, snoRNA, and miscRNA were
also up-regulated (log2 fold-change [FC] > 1, adjusted P < 0.01)
during the G2M phase (Fig. 2A and SI Appendix, Figs. S9–S11).
Given the active role of these RNA types in splicing and ribo-
some biogenesis, we suggest that they are produced by the cell in
response to a rapid demand for protein synthesis and cell growth
during the G2M phase.

To further link the observed ncRNA dynamics with the expres-
sion of well-characterized cell-cycle mRNA markers, we searched
for coregulated coding and noncoding genes throughout the cell
cycle. We identified 24 clusters comprised of coexpressed coding
and noncoding genes specific to either one or multiple cell types
(Fig. 2B, SI Appendix, Fig. S12, and Dataset S1). Two of these
mixed-gene clusters (33 genes up-regulated in the S phase and 53
genes up-regulated in the G2M phase) showed identical patterns
in all three profiled cell types. Interestingly, both clusters are
marked by landmark cell-cycle genes—such as CCNA2, MCM6,
and TOP2A—but also include miRNAs, lncRNAs, and snRNAs
previously unknown to follow a distinct expression pattern upon
transition between phases.

Histone RNA is another type of mainly nonpolyadenylated
RNA, which we observed to be strongly correlated with the cell
cycle. Consistent with prior studies (33, 34), histone RNA levels
sharply rise during the S phase in all three profiled cell types
(Fig. 2C). The ability to capture nonpolyadenylated histones also
has a strong impact on cell clustering, by introducing a cell-cycle
bias. Particularly, histones drive the separation of each cell type
into two distinct populations (SI Appendix, Fig. S13A), marked by
increased levels of the majority of histone genes during the DNA
replication phase (SI Appendix, Fig. S13B).

In addition to being expressed in a cell-cycle–dependent
manner, we also identified several histones to be cell-type spe-
cific. For example, HIST1H4L is expressed in fibroblasts but
absent in HEK293Tand MCF7 cells, while HIST1H1B is absent
in HEK293Tcells while present in the other two cell types (Fig.
2D). Given the importance of histones in establishing and
maintaining a distinct chromatin landscape of a cell, we antici-
pate that the ability to measure corresponding transcripts could
be valuable for predicting the epigenetic state of a cell.

In principle, Smart-seq-total is designed to broadly quantify
total cellular RNA content. However, we also show that short,
less abundant molecules, such as miRNAs (35), can be size-
selected from a UMI-tagged and indexed Smart-seq-total library
for further in-depth analysis (Fig. 2E). In the example of 24
HEK293T cells we demonstrate that this size-based enrichment
strategy yields results comparable to the state-of-the-art single-
cell small RNA-seq method (11) in terms of the number and
type of miRNAs detected per cell (Fig. 2F and SI Appendix,
Fig. S14 A–C). Among the most abundant miRNAs in profiled
HEK293T cells, we identified multiple members of the three
conserved paralog clusters—miR-17/92, miR106a/363, and miR-
10b/25 (36)—as well as various members of the let-7 miRNA
family (SI Appendix). We noted that levels of mature miRNAs
generally correlated better within a cluster rather than across
different clusters (SI Appendix, Fig. S14 D–F). However, the abun-
dance of mature forms largely varied across cluster members.
Specifically, we found that the levels of two mature miRNAs,
miR-92a-3p and miR-25-3p, were several folds higher than
those of any other cluster member (Fig. 2G). Selective retention
of miR-92a was previously observed at the tissue level in vivo (36)
and has been attributed to differential posttranscriptional process-
ing of cluster members (37, 38). Our data indicate that the phe-
nomenon of selective miRNA retention can be observed at the
single-cell level and that it extends beyond the 17/92 cluster.

While short RNAs are selected from a fully constructed UMI-
indexed Smart-seq-total library, the remaining total library can be
used to quantify mRNA counterpart of the same cells. We applied
this strategy to investigate the relationship of the retained miR-
92a-3p and miR-25-3p with the rest of the transcriptome at the
physiological cell state. Specifically, we generated a matching
miRNA–mRNA profile for ∼300 HEK 293T cells by sequenc-
ing the complete Smart-seq-total library, as well as its small
RNA fraction (SI Appendix). We used the obtained data to
perform a pair-wise correlation of miR-92a-3p and miR-25-3p
with the rest of the genes across profiled cells. Among the
most correlated and anticorrelated genes (Pearson’s r <�0.5
or > 0.5, adjusted P < 0.01), we identified several validated targets
of the respective miRNAs (Fig. 2H and SI Appendix, Fig. S15A).
Interestingly, we also found that several other genes, which are
neither known nor predicted to directly interact with the respective
miRNAs, correlate with either miR-92a-3p, miR-25-3p or both
([abs(r)] > 0.5, adjusted P value <0.01) (SI Appendix, Fig. S15A
and Dataset S2). Gene ontology (GO) analysis on top correlated
and anticorrelated genes (Materials and Methods) revealed
energy metabolism as well as RNA translation among their main
molecular functions (SI Appendix, Fig. S15B). The MiR-17/92
cluster has been previously shown to regulate tumor metabolic
reprogramming (39). The results of our miRNA–mRNA
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coanalysis align with those findings and indicate that miR-92a-3p
and miR-25-3p miRNA levels are linked to the expression of a
metabolic gene set at the physiological cell state.

Finally, we sought to understand whether the unique noncod-
ing signature acquired by different cell types is established dur-
ing early stages of cell development, and if so, how dynamic it is
with respect to cellular transcriptome. To address this question,
we referred to an in vitro model of early lineage commitment:
the differentiation of pluripotent stem cells into embryoid bodies
(EBs) (40). The role of ncRNA in maintaining stem cell pluripo-
tency and lineage commitment has been demonstrated

previously through bulk experiments (41, 42). Thus, we hypothe-
sized that applying Smart-seq-total to single cells at different
stages of EB formation would allow us to identify coexpressed
coding and noncoding transcripts within emerging lineages.
As such, we analyzed the RNAome of primed pluripotent
stem cells and that of individual cells obtained from dissociated
EB at days 4, 8, and 12 of culture (∼200 cells per each time
point, 913 cells in total) (Fig. 3A). Consistent with previous stud-
ies (43), the number of coding genes expressed by pluripotent
stem cells was also higher compared to differentiated progeni-
tors (SI Appendix, Fig. S16A). This was also the case for several
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Fig. 2. Dynamics of cellular noncoding transcripts throughout the cell cycle. (A) Cell-cycle–dependent expression of noncoding genes. Examples of
lncRNA, miRNA, and snoRNA differentially expressed throughout the cell cycle in human primary dermal fibroblasts. Circular charts depict average expres-
sion of a given gene across all cells identified to be in a certain phase of the cell cycle. (B) Cell-cycle–specific gene clusters comprised of coding and non-
coding RNA. Clusters were identified through hierarchical clustering of top 750 mRNA differentially expressed during the cell cycle and all noncoding
genes expressed in at least one phase. (C) Expression of known cell-cycle and histone genes across G1, S, and G2M phases. A curated list of histone RNA
detected in all three cell types is shown. (D) Examples of histone mRNA differentially expressed between three profiled cell types. Top three marker his-
tone genes per cell type are shown. (E) Size-selection of small RNA library fraction. Bioanalyzer traces corresponding to UMI-tagged and indexed Smart-
seq-total v2 library (Upper) and a size-selected library containing small RNA (Lower). (F) Number of detected miRNA. Comparison of miRNA detection by
Smart-seq-total v2 and a dedicated single-cell small RNA-seq method (11). (G) Cellular levels of mature miRNA members of miR-17/92, miR-106a/363 and
miR106b/25 clusters. Asterisks indicate the significance level estimated from Wicoxon rank sum test: ***<= 0.001,**<= 0.01,*<= 0.05 P value respectively.
(H) Pair-wise correlation scores computed for miR-92a-3p and miR-25-3p and their respective mRNA targets (both predicted and validated) across ∼300
HEK293T cells. P values of correlations were computed using t test and adjusted using Benjamini–Hochberg correction).
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Fig. 3. Coding and noncoding signature of differentiated single mESCs. (A) Microscope images and corresponding schematic representations of EB for-
mation at four sampled time points. Pie charts represent distribution of mapped reads across RNA types. Genes were assigned to a specific biotype based
on GENCODE M23 annotation for the reference chromosomes. tRNA was quantified by mapping the reads, nonmapping to any other RNA type, to the
high-confidence gene set obtained from GtRNAdb. (B) Exemplary coding and noncoding genes that are up- or down-regulated during EB formation. Sub-
panels are grouped according to RNA type. (C) UMAP plot of collected cells colored by timepoint. Cells were clustered using a k nearest-neighbor algo-
rithm and cell lineages were annotated based on the expression of marker genes within the identified clusters. (D) Lineage tree of EB differentiation.
Each dot represents a cell colored according to the assigned lineage. Cells are arranged according to the computed pseudotime. (E) UMAP plot of col-
lected cells colored by pseudotime. (F) Heatmap showing the variability in coding and noncoding gene expression across identified clusters. (G) Temporal
and lineage-specific expression of selected protein-coding, lncRNA, and miRNA genes. Each column from left to right shows genes specific to: pluripo-
tency state, ectoderm, mesoderm, or endoderm lineages.
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ncRNA types, such as lncRNA, miRNA, and scaRNA (SI
Appendix, Fig. S16B). Specifically, we observed that the levels of
certain snoRNAs (such as Snord17, Snora23, and Snord87), scaR-
NAs (such as Scarna13 and Scarna6), lncRNAs (Platr3, Lncenc1,
Snhg9, Gm31659, and so forth), and miRNAs (Mir92-2,
Mir302b, and Mir19b-2) go down (log2FC > 1, adjusted P < 0.
01) after cells exit pluripotency (Fig. 3B). In contrast, we also
identified that the levels of several lncRNAs (Tug1, Meg3,
Lockd) and miRNAs (Mir298, Mir351, Mir370) increase with
differentiation (Fig. 3B).

Louvain clustering of all collected cells revealed the pres-
ence of six molecularly distinct populations, which we assigned
to: primed mouse embryonic stem cells (mESC), pre-ectoderm,
ectoderm, endoderm, ectomesoderm, and mesoderm (Fig. 3C),
based on the expression of known lineage-specific marker genes
[e.g., Nanog and Pou5f1 for pluripotent cells, Pax6 and Olfr787
for ectoderm, Afp and Shh for endoderm, Acta2 and Col3a1 for
mesoderm (44)] (SI Appendix, Fig. S17 and Dataset S3). The
analysis of genes differentially expressed between primed
mESCs and each of the identified clusters showed that in addi-
tion to well-characterized lineage-specific mRNAs (SI Appendix,
Fig. S18A) (45, 46) and lncRNAs (Tug1 in ectodermal and Meg3
mesodermal lineages, respectively) (6), other ncRNA genes—such
as miRNAs, scaRNAs, snoRNAs, tRNAs, and histone RNAs—
are either specifically expressed or down-regulated within a
certain lineage (log2FC > 1, adjusted P < 0.05) (SI Appendix,
Fig. S18B and Dataset S3).

We next used PAGA (47) to infer a developmental trajectory
and compute pseudotime coordinates for each cell in our data-
set (Materials and Methods and Fig. 3 D and E). Aligning cells in
pseudotime within each lineage further confirmed the existence
of expression gradient within different RNA types (Fig. 3F).
Furthermore, we found that the majority of identified variable
noncoding transcripts were germ-layer specific. Examples of such
transcripts include Mir2137, Mir320, Gm49024, and Gm38708 in
ectoderm; Mir351, Mir370, and Meg3 in mesoderm; as well as
Neat1 in endoderm. Mir296 and Mir298 were expressed in both
mesoderm and endoderm but were absent in ectoderm (Fig. 3G,
SI Appendix, Fig. S18B, and Dataset S3).

Finally, to understand the relationship between mRNA and
ncRNA genes, we performed a pairwise correlation analysis of
gene expression across all sampled cells. This analysis showed
that germ layer-specific miRNAs are correlated with gene sets
associated with the proliferation of certain cell lineages (SI
Appendix, Fig. S19A and Dataset S4). For example, miR-370
positively correlated with genes involved in the regulation of
nervous system development and miR-351 correlated with genes
associated with smooth muscle cell migration and osteoblasts
differentiation (SI Appendix, Fig. S19). In addition, the expres-
sion of ∼50% of identified histone-coding genes correlated with
the expression of other protein-coding genes (Spearman’s ρ > 0.5)
(SI Appendix, Fig. S19). Overall, we found that multiple ncRNAs
from all assayed RNA types (e.g., miRNA, snoRNA, snRNA, and
so forth) are either positively or negatively correlated with the
expression of protein-coding genes (SI Appendix, Fig. S19). Most
of these ncRNAs represent putative uncharacterized regulators of
lineage commitment.

Discussion
Altogether, Smart-seq-total enables an unbiased exploration of a
broad spectrum of coding RNA and ncRNA transcripts in indi-
vidual cells. Current limitations of Smart-seq-total are: 1) the
inability to assay circRNA and 2) the loss of the endogenous poly-
adenylation status of transcripts. Further modifications to Smart-
seq-total can include the selection for a specific transcript length
(short vs. long) and depletion of a wider range of overrepresented
RNA. We anticipate that Smart-seq-total will facilitate the

identification of noncoding regulatory patterns and their func-
tional roles in regulating cellular functions and shaping cellular
identity. This could also shift the current protein-centered view of
gene regulation toward comprehensive maps featuring both pro-
tein and RNA regulators.

Materials and Methods
Cell Culture. HEK293T cells were cultured in complete DMEM high-glucose
medium (ThermoFisher, 11965092) supplementedwith 5% FBS (ThermoFisher,
16000044), 1 mM sodium pyruvate (ThermoFisher, 11360070), and 100 μg/mL
penicillin/streptomycin (ThermoFisher, 15070063). Human primary dermal
fibroblasts were obtained from ATCC (PCS-201-012). Cells were cultured and
passaged four times in fibroblast basal medium (ATCC, PCS-201-030) supple-
mented with 5 ng/mL human recombinant FGF (rhFGF) β, 7.5 mM L-glutamine,
50 μg/mL ascorbic acid, 5 μg/mL human i recombinant nsulin, and 1% FBS
(Fibroblast Growth kit low serum, ATCC PCS-201-041). MCF7 cells (ATCC,
HTB22) were cultured in complete DMEM high-glucose medium (Thermo-
Fisher, 11965092) supplemented with 10% FBS (ThermoFisher, 16000044), 1
mM sodium pyruvate (ThermoFisher, 11360070), and 100 μg/mL penicillin/
streptomycin (ThermoFisher, 15070063). Cells were collected 2 to 4 h after pas-
saging, dissociated using 0.25% trypsin-EDTA (ThermoFisher, 25200056) for 2
to 4 min at 37 °C, and sorted in either 96-well plates containing 3 μL lysis
buffer or 384-well plates containing 0.3 μL of lysis buffer in eachwell.

mESCs weremaintained and differentiated as described previously (40, 48).
Briefly, mESCs were grown in serum-free 2i+LIF medium (complete medium:
DMEM/F12 glutaMAX [Gibco, ThermoFisher, 10565018], 1% N2 supplement
(Gemini Bio), 2% B27 supplement (Gemini Bio), 0.05% BSA fraction V (Ther-
moFisher, 15260037), 1% MEM-nonessential amino acids (ThermoFisher,
11140050), and 110 μM 2-mercaptoethanol (Pierce); supplemented with MEK
inhibitor PD0325901 (0.8 μM), GSK3β inhibitor CHIR99021 (3.3 μM), and 10 ng/
mL mouse LIF (Gibco, PMC9484)] in tissue culture (TC) dishes pretreated with
7.5 μg/mL poly-L-ornithine (Sigma) and 5 μg/mL laminin (BD). To induce spon-
taneous EB formation, cells were washed with PBS, dissociated with StemPro
Accutase (ThermoFisher, A1110501) following the manufacturer’s protocol,
transferred to serum-rich medium (complete medium: DMEM/F12 glutaMAX
[Gibco], 1% N2 supplement [Gemini Bio], 2% B27 supplement [Gemini Bio],
0.05% BSA fraction V, 1% MEM-nonessential amino acids, and 110 μM
2-mercaptoethanol; supplemented with 10% FBS [ThermoFisher, 10439001]),
and diluted to 106 cells/mL. Each 10 μL of cell suspension were plated as a
hanging drop in 10 cm2 TC dishes (15 to 20 drops per dish). Ten microliters of
fresh serum-rich media was added to each drop on the day 4 postseeding.
PrimedmESCs were collected 6 h after seeding. EBs were collected and dissoci-
ated at days 4, 8, and 12 of culture.

Cell Sort. Lysis plates were prepared by dispensing 0.3 μL lysis buffer (4 U
recombinant RNase inhibitor [RRI; Takara Bio, 2313B], 0.12% TritonX-100
[Sigma, 93443-100ML] in dH2O, 1 μM Smart-seq-total oligo-dT primer (50-
Biotin-/5BiosG/CATAGTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGT30VN-30;
IDT) in TE buffer (IDTE [10 mM Tris, 0.1 mM EDTA], IDT) (see SI Appendix,
Table S2 for a full list of oligos used in the present study) into 384-well hard-
shell PCR plates (Bio-Rad HSP3901) using Mantis liquid handler (Formulatrix).
For the comparison with Smart-seq2 (see Comparison of Smart-seq2 and
Smart-seq-total, below), 96-well lysis plates were prepared with 3 μL lysis
buffer. All plates were sealed with AlumaSeal CS Films (Sigma-Aldrich,
Z722634), spun down, and snap-frozen on dry ice.

Cells were stained with calcein-AM and ethidium homodimer-1 (LIVE/
DEAD Viability/Cytotoxicity Kit, ThermoFisher, L3224) following the manufac-
turer’s protocol and individual live cells were sorted in 384-well lysis plates
using SONY sorter (SH800S) with a 100-μm nozzle chip. Plates were spun
down and stored at�80 °C immediately after sorting.

Generation of Smart-seq-total v1 Libraries. To facilitate cell lysis and denatur-
ation of the RNA, 384-well plates were incubated at 72 °C for 3 min, and
immediately placed on ice afterward. Next, 0.2 μL of polyA tailing mix, con-
taining 1.25U E. coli PolyA (New England Biolabs, M0276S), 1.25× PolyA buffer
(New England Biolabs), 1.25 mM ATPs (New England Biolabs) and 4 U of RRI
(Takara) were added to each sample. PolyA tailing was carried out for 15 min
at 37 °C followed by 72 °C for 30 sec. After polyA tailing plates were immedi-
ately placed on ice for 2 to 5 min, 1 μL of reverse-transcription mix, containing
15 U SuperScript II (ThermoFisher), 4 U RRI (Takara), 1.5× First-Strand Buffer,
1.5 μM TSO (Exiqon, 50-biotin-UCGUCGGCAGCGUCAGUUGUAUCAACUCAGAC
AUrGrG+G-30), 7.5 mM DTT, 1.5 M Betaine (Sigma, B0300-5VL), 10 mM MgCl2
(Sigma, M1028-10X1ML), and 1.5 mM dNTPs (ThermoFisher, 18427013) was
added to each well. Reverse transcription was carried out at 42 °C for
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90 min, and terminated by heating at 85 °C for 5 min. Subsequently, 0.3 μL
of TSO digestion buffer containing 1 U Uracil-DNA glycosylase (UDG, New
England Biolabs, M0280S) were added to each well. Plates were incubated
for 30 min at 37 °C. PCR preamplification was performed directly after TSO
digestion by adding 3.2 μL of PCR mix to each well, bringing the reaction
concentration to 1× KAPA HiFi MIX (Roche), 0.5 μM forward PCR primer
(50-TCGTCGGCAGCGTCAGTTGTATCAACT-30; IDT), 0.5 μM reverse PCR primer
(50-GTCTCGTGGGCTCGGAGATGTG-30; IDT). PCR was cycled as follows: 1) 95 °C
for 3 min; 2) 21 cycles of 98 °C for 20 s, 67 °C for 15 s, and 72 °C for 6 min; and
3) 72 °C for 5 min. The amplified product was cleaned up using 1× ratio of
AMPure beads on Bravo liquid handler platform (Agilent). Concentrations of
purified product were measured with a dye-fluorescence assay (Quant-iT
PicoGreen dsDNA High Sensitivity kit; Thermo Fisher, Q33120) on a Spectra-
Max i3x microplate reader (Molecular Devices). Samples were then diluted to
0.2 ng/uL. To generate sequencing libraries, 1.5 μL of diluted samples was
amplified in a final volume of 5 μL using 2× KAPA mix and 0.4 μL of 5 μM i5
indexing primer, 0.4 μL of 5 μM i7 indexing primer. PCR amplification was car-
ried out using the following program: 1) 95 °C for 3 min; 2) 8 cycles of 98 °C
for 20 s, 65 °C for 15 s, and 72 °C for 4 min; and 3) 72 °C for 5 min.

To perform the library preparation in 96-well plates, we followed the
above-described protocol, except that all volumes were scaled up 10 times.

Generation of Smart-seq-total v2 Libraries. Smart-seq-total v2 libraries were
generated using similar to v1 protocol with a few modifications. Specifi-
cally, 0.1 μL of ERCCs (1:300,000 dilution, ThermoFisher) were added to
each well, 384-well plates were incubated at 72 °C for 3 min, and immedi-
ately placed on ice afterward. Next, 0.2 μL of polyA tailing and 50-prime
capping mix, containing 0.1 U E. coli PolyA (New England Biolabs, M0276S),
1.25× PolyA buffer (New England Biolabs), 0.1 mM ATPs (New England Biol-
abs), 4 U of RRI (Takara), 0.1 U of Vaccina Capping enzyme (New England
Biolabs, M2080S), 2.5 nM SAM, and 0.05 mM GTP were added to each sam-
ple. PolyA tailing and 50 prime capping was carried out simultaneously for
15 min at 37 °C followed by 72 °C for 30 sec. After polyA tailing, plates were
immediately placed on ice for 2 to 5 min, 1 μL of reverse-transcription mix, con-
taining 15 U SuperScript II (ThermoFisher), 4 U RRI (Takara), 1.5× First-Strand
Buffer, 1 μMTSO v2 (Exiqon, 50-biotin-AdUGGCdUCGGAGAdUGdUGdUAdUAA
GAGACAGdUCdUrGrG+G-30), 7.5 mM DTT, 1.5 M Betaine (Sigma, B0300-5VL),
10 mM MgCl2 (Sigma, M1028-10X1ML), and 1.5 mM dNTPs (ThermoFisher,
18427013) was added to each well. Reverse transcription was carried out at
42 °C for 90 min, and terminated by heating at 85 °C for 5 min. Subsequently,
0.3 μL of TSO digestion buffer containing 2 U UDG (New England Biolabs
M0280S) were added to each well. Plates were incubated for 60 min at 37 °C.
PCR preamplification was performed directly after TSO digestion by adding
3.2 μL of PCR mix to each well, bringing the reaction concentration to 1× KA
PA HiFi MIX (Roche), 0.5 μM forward PCR primer (50-GCTCGGAGATGTGTA
TAAGAGACAG-30; IDT), 0.5 μM reverse PCR primer (50- TCGTCGGCAGCGTCA
GTTG-30; IDT). PCR was cycled as follows: 1) 95 °C for 3 min; 2) 21 cycles of
98 °C for 20 s, 65 °C for 15 s, and 72 °C for 5 min; and 3) 72 °C for 5 min. The
amplified product was cleaned up using 1.8× ratio of AMPure beads on Bravo
liquid handler platform (Agilent). Concentrations of purified product were
measured with a dye-fluorescence assay (Quant-iT PicoGreen dsDNA High
Sensitivity kit; Thermo Fisher, Q33120) on a SpectraMax i3x microplate reader
(Molecular Devices). Samples were then diluted to 0.2 ng/uL.

To generate sequencing libraries through direct indexing, 1.5 μL of diluted
samples was amplified in a final volume of 4 μL using 2× KAPA mix, 0.025 μL
of 1 μM Smart-seq-total index Amp primer (50- GTCTCGTGGGCTCGGAGATGT
GTATAAGAGACAGTC-30), and 0.4 μL of 5 μM i5 indexing primer, 0.4 μL of
5 μM i7 indexing primer. PCR amplification was carried out using the follow-
ing program: 1) 95 °C for 3 min; 2) 10 cycles of 98 °C for 20 s, 62 °C for 15 s, and
72 °C for 5 min; and 3) 72 °C for 5 min.

To generate libraries through tagmentation, we followed previously
described procedure (49).

Library Pooling, Ribosomal Sequence Digestion, and Sequencing. After library
preparation, wells of each library plate were pooled using a Mosquito liquid
handler (TTP Labtech). If pooling tagmented and nontagmented libraries, the
two types of libraries weremixed in ∼1:1 molar ratio. Pooling was followed by
a purification with 0.8× AMPure beads (Fisher, A63881). Ribosomal reads
were digested using DASH (depletion of abundant sequences by hybridiza-
tion), as described previously (23) (see SI Appendix, Supplementary Protocol
for details). Briefly, the guides designed to target 45S rRNA and other abun-
dant sequences (SI Appendix, Table S1) were combined with tracer RNA and
assembled with Cas9 protein in 2:1 ratio. The assembled complexes were incu-
bated with the sequencing library in 1× Cas9 buffer (SI Appendix, Table S1) for
1 h at 37 °C. Following rRNA sequence digestion, Cas9 was inactivated through

incubation with proteinase K for 15min at 50 °C. The library was then purified
twice, first using 1.2× AMPure beads to DNA ratio. then using 2% Pippin Prep
gels (Sage Sciences) in the 210- to 600-bp range.

Library quality was assessed using capillary electrophoresis on a Fragment
Analyzer (AATI), and libraries were quantified by qPCR (Kapa Biosystems,
KK4923) on a CFX96 Touch Real-Time PCR Detection System (Bio-Rad). Plate
pools were normalized to 2 nM and equal volumes from eight plates were
mixed together to make the sequencing sample pool. A PhiX control library
was spiked in at 10% before sequencing. Smart-seq-total v1 libraries were
sequenced on the NovaSEq. 6000 Sequencing System (Illumina) using 1 × 75-
or 1 × 100-bp single-end reads (using custom Read 1 sequencing primer:
50- TCGGCAGCGTCAGTTGTATCAACTCAGACATGGG-30) and 2 × 12-bp index
reads. Smart-seq-total v2 libraries were sequenced on the NextSEq. 500
Sequencing System (Illumina) using 1 × 30- and 1 × 112-bp paired-end reads
(using custom Read 1 sequencing primer: 50-TCGTCGGCAGCGTCAGTTGTAT
CAACTCAGAC-30) and 2 × 12-bp index reads (using custom Index 2 sequenc-
ing primer: 50- GTCTGAGTTGATACAACTGACGCTGCCGACGA-30).

Data Processing. Sequences from the NovaSeq were de-multiplexed using
bcl2fastq v2.19.0.316. The analysis of Smart-seq-total v1 and Smart-seq-total
v2 data were carried out as described in GitHub Smart-seq-total page (https://
github.com/aisakova/smart-seq-total/blob/master/README.md). Briefly, for
Smart-seq-total v1, reads were trimmed from polyA tails using cutadapt v1.18
with the following parameters: -m 18 -j 4 -a AAAAAAAAAA -a TTTTTTTTTT.
Reads were then aligned to the human (GRCh38) or mouse (GRCm38) genomes
using STAR v2.7.0d (50) with the following parameters: –outFilterMismatch
NoverLmax 0.05 –outFilterMatchNmin 18 –outFilterMatchNminOverLread
0 –outFilterScoreMinOverLread 0 –outMultimapperOrder Random. Reads map-
ping to multiple locations were assigned either to a location with the best
mapping score or, in the case of equal multimapping score, to the genomic
location randomly chosen as “primary.”

Transcripts were counted using featureCounts v1.6.1 (51) with the following
parameters: -M –primary -s 1. GENCODE v32 and GENCODE M23 (52) annota-
tions were used for human andmouse reads, respectively. tRNAwas quantified
using high-confidence gene set obtained fromGtRNA (53). To account for mul-
timappers, “primary” alignment reported by STAR was counted. For miRNA
and tRNA, all reads mapping to arms or the stem loop were summed to quan-
tify the expression at the gene level.

Comparison of Smart-seq2 and Smart-seq-total. HEK293T cells were sorted in
96-well plates containing 3 μL of lysis buffer (as described above). The reaction
volumes for Smart-seq-total were scaled up 10 times compared to 384-plate
format (i.e., RNA from each cell was polyadenylated in 5 μL, reverse-transcribed
in 15 μL, and cDNA was preamplified in 15 μL total volume). We retrieved
Smart-seq2 data from Picelli et al. (19) (GSE49321). Smart-seq2 and Smart-
seq-total reads were mapped using STAR and counted using featureCounts,
as described above. Comparisons between protocols in SI Appendix, Fig. S1C
were generated on depth-normalized libraries, using 2.5 million randomly
selected reads per adaptor-trimmed library (or all reads for libraries that
had less than 2.5 million reads) to compute expression levels (counts per
million, cpm).

Unsupervised Clustering and Dimensionality Reduction Analysis of Human Cell
Types. Standard procedures for filtering, variable gene selection, dimensional-
ity reduction, and clustering were performed using the Seurat package v3.1.4
(54). Cells with fewer than 2,000 detected genes and thosewithmore than two
Mio reads were excluded from the analysis. Counts were log-normalized for
each cell using the natural logarithm of 1 + cpm. Variable genes were selected
based on overdispersion analysis and projected onto a low-dimensional sub-
space using PCA. The number of PCs was selected on the basis of inspection of
the plot of variance explained. Cells were visualized using a two-dimensional
t-SNE of the PC-projected data. Dimensionality reduction parameters for t-SNE
(resolution and number of PCs) were adjusted on a per cell type and per bio-
type basis and can be viewed in the Rmd files available on GitHub. Cells were
assigned a cell cycle score using Seurat’s CellCycleScoring() function using cell
cycle markers described in Tirosh et al. (30).

Clustering of Coding and Noncoding Genes. Clusters of coding and noncoding
genes shown in Fig. 2B were computed and visualized using the DEGreport R
package (55). The top 250 marker genes for each cell-cycle phase and all non-
coding genes with average expression ln(cpm+1) > 0.05 in at least one phase
were used for this analysis. Gene-expression valueswere normalized using var-
iance stabilizing transformation (56) before clustering. Further details of the
analysis can be viewed in the Rmd files available on GitHub.
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Correlation between Mature miRNAs and mRNA. Total RNA fraction and a
corresponding small RNA fraction of a Smart-seq-total v2 library were
sequenced separately on NextSeq 500 sequencer. Sequencing data from both
libraries was processed as described above (also see https://github.com/
aisakova/smart-seq-total/blob/master/README.md). Small RNA and total RNA
count tables were normalized and log-transformed separately. Pearson
coefficients were computed for all pair-wise correlations between miRNAs
and all other genes detected in ∼300 HEK293T cells [present in at least 30 cells,
ln(cpm+1) > 1]. Predicted and validated targets were annotated using
multiMiR pipeline (scanning predictions from various databases, such as
TargetScan, mirTarBase, miRanda, and so forth) (57). Predicted targets
were limited to those listed in two or more external databases. Validated
targets with “weak” evidence were excluded from the analysis [(abs(r)) >0.5,
adjusted P value <0.01] (SI Appendix, Fig. S15A). GO was performed on
∼100 to 200 top correlated (r > 0.3, adjusted P < 0.01) or ∼100 anticorre-
lated (r < �0.3, adjusted P < 0.01) genes. The 10 GO terms with lowest P value
in Kolmogorov–Smirnov test were used (SI Appendix, Fig. S15B)

Preprocessing and Clustering of mESCs. Standard procedures for filtering,
variable gene selection, dimensionality reduction, and clustering were per-
formed using the Seurat package v3.1.4 (54). Cells with fewer than 1,000
detected genes and those with more than two Mio reads were excluded
from the analysis. Counts were log-normalized for each cell using log1p(-
counts) and 1e4 scale factor. Variable genes were projected onto a low-
dimensional subspace using PC analysis. The number of PCs was selected
on the basis of inspection of the variance explained plot. A shared nearest-
neighbor graph was constructed on the basis of the Euclidean distance in
the low-dimensional subspace spanned by the top PCs. Cells were visual-
ized using the uniform manifold approximation and projection (UMAP)
algorithm (58) of the PC-projected data. Clusters were annotated based on

the expression of known marker genes corresponding to one of the three
germ layers. Cells were assigned a cell-cycle score using Seurat’s CellCycleS-
coring() function and cell-cycle markers described in Tirosh et al. (30)

Developmental Trajectory Inference of EB Differentiation. Developmental
trajectory of mESC differentiation was inferred using PAGA through dyno-
verse wrapper (59). Pseudotime coordinates computed from the trajectory
were appended to Seurat object and further used to generate Fig. 3 C–F.

Correlation between Coding and Noncoding RNA Levels. Spearman coeffi-
cients were computed for all pair-wise correlations of expressed genes
[average ln(cpm+1) > 2 across all cells]. The resulting matrix was subset to
only mRNA:ncRNA correlations. Pairs with Spearman’s ρ > 0.5 were used
to generate a chord diagram shown in SI Appendix, Fig. S17A and pairs
with Spearman’s ρ < �0.5 were used to generate a chord diagram shown
in SI Appendix, Fig. S17B.

Data Availability. The data reported in this paper have been deposited in the
Gene Expression Omnibus (GEO) database, https://www.ncbi.nlm.nih.gov/geo
(accession no. GSE151334) (61). All code used for analysis is available on
GitHub (https://github.com/aisakova/smart-seq-total/).
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