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Abstract: Amylo-α-1,6-glucosidase (EC 3.2.1.33, AMY) exhibits hydrolytic activity towards α-1,6-
glycosidic bonds of branched substrates. The debranching products of maltodextrin, waxy corn starch
and cassava starch treated with AMY, pullulanase (EC 3.2.1.41, PUL) and isoamylase (EC 3.2.1.68,
ISO), were investigated and their differences in substrate selectivity and debranching efficiency
were compared. AMY had a preference for the branched structure with medium-length chains,
and the optimal debranching length was DP 13–24. Its optimum debranching length was shorter
than ISO (DP 25–36). In addition, the debranching rate of maltodextrin treated by AMY for 6 h
was 80%, which was 20% higher than that of ISO. AMY could decompose most of the polymerized
amylopectin in maltodextrin into short amylose and oligosaccharides, while it could only decompose
the polymerized amylopectin in starch into branched glucan chains and long amylose. Furthermore,
the successive use of AMY and β-amylase increased the hydrolysis rate of maltodextrin from 68%
to 86%. Therefore, AMY with high substrate selectivity and a high catalytic capacity could be used
synergistically with other enzyme preparations to improve substrate utilization and reduce reaction
time. Importantly, the development of a novel AMY provides an effective choice to meet different
production requirements.

Keywords: amylo-α-1,6-glucosidase; substrate selectivity; pullulanase; isoamylase; debranching efficiency

1. Introduction

Starch, the second-largest biomass resource on earth, is an essential raw material for
food manufacturing [1], paper [2], textile [3], and biofuel [4] industries. Starch consists
of two polymers, amylose and amylopectin [5]. Amylose is a polysaccharide chain of
D-glucosyl linked via α-1,4-glycosidic bonds [6], whereas amylopectin is a highly branched
polysaccharide with α-1,4-glucosidic linkages in the glucan chain and α-1,6-glucosidic
linkages at the branch points after every 20 to 30 glucose units [7].

At present, most amylases that hydrolyze α-1,4-glycosidic bonds cannot or can only
slowly cleave α-1,6-glycosidic bonds. Therefore, starch liquefaction products contain a
large amount of amylopectin and limit dextrin, resulting in a low starch utilization rate
and high amylase addition. However, debranching enzymes can efficiently hydrolyze the
α-1,6-glycosidic bonds in amylopectin and limit dextrin, thereby significantly improving
starch utilization and reducing the number of other enzyme preparations used [8]. There-
fore, the utilization of debranching enzymes that efficiently hydrolyze α-1,6-glycosidic
bonds is indispensable to enhancing the efficiency of amylopectin hydrolysis and has
been widely used in the industrial production, of glucose syrup [9], maltose syrup [10],
cyclodextrin [11,12] and resistant starch [13,14].
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Debranching enzymes usually include pullulanase (EC 3.2.1.41, PUL), isoamylase
(EC 3.2.1.68, ISO) and amylo-α-1,6-glucosidase (EC 3.2.1.33, AMY) [15]. In recent years, a
great deal of research has focused on PUL and ISO, which have different substrate specifici-
ties [16,17]. PUL can hydrolyze the α-1,6-D-glycosidic bonds in pullulan, β-limit dextrin,
and branched oligosaccharides, generating maltose, maltotriose and linear oligosaccha-
rides [17,18], whereas ISO cannot hydrolyze α-1,6-glycosidic bonds with only two glucose
groups. The smallest unit of the substrate side chain contains at least three or four glucose
residues [19]. These differences indicated that PUL selectively cleaved branched chains
with short-chain glucose residues, whereas ISO preferred branched chains with long chain
glucose residues. However, starch was hydrolyzed by α-amylase to produce branched
dextrin of small molecular weight, and medium length branched chains during the starch
liquefaction process. PUL and ISO could not effectively improve the raw material uti-
lization and production efficiency since the products of starch liquefaction were not their
optimal substrates. Therefore, this study aims to develop a novel debranching enzyme that
could specifically hydrolyze medium-length branched chains. By cloning and expressing
AMY in Escherichia coli and studying its substrate selectivity, it is expected to lay a solid
foundation for the industrial application of the enzyme.

AMY has different substrate specificities from PUL and ISO, and little has been re-
ported in the literature. Previous studies mainly sought to explore the expression and
physicochemical properties of this enzyme. AMY from mammalian tissue and yeast have
been reported to have two distinct activities, maltooligosaccharide transferase and amylo-
1,6-glucosidase [20]. Furthermore, bacterial AMY has been documented to specifically
hydrolyze α-1,6-glycosidic bonds to release maltotetraose and maltodextrin [21–23]. In-
terestingly, Dauvillee et al. cloned and expressed the gene encoding GlgX and found
that the enzyme could specifically hydrolyze the side chains consisting of three or four
glucose residues [21]. Furthermore, Park et al. cloned and expressed the TreX gene derived
from Sulfolobus Solfataricus P2 in E. coli, which showed strong substrate specificity and
high selectivity for side chains consisting of six or more glucose residues [24]. Although
some genes encoding AMY from different sources have been cloned and expressed, the
properties of the related enzymes have not been elucidated. In particular, their selectivity
on substrate species and debranching length are unclear. We first cloned the amy gene
(NCBI number: NC_012804.1) from the archaea Thermococcus gammatolerans STB12 and
successfully expressed the amy gene in E. coli. The optimum temperature of AMY was
70 ◦C, and the optimum pH was 4.0, which met the requirements of heat resistance and
acid resistance of debranching enzymes in a saccharification reaction.

In this study, we analyzed the activity of the novel AMY against different substrates
to characterize their substrate specificity. We also compared the differences in hydrolytic
products of AMY, PUL, and ISO, illustrating the selectivity and debranching efficiency of
the debranching enzymes for different branched structures. Importantly, our results could
guide the selection of specific debranching enzymes for various industrial processes.

2. Materials and Methods
2.1. Materials

E. coli JM109 and E. coli BL21(DE3) strains were used for gene cloning and expres-
sion, respectively. The recombinant plasmid pET-20b(+) bearing the amy gene from
Thermococcus gammatolerans STB12 was constructed in this study. Maltodextrin (MW:
1.0 × 104–10.0 × 104 g/mol) was obtained from Roquette Frers (Lestrem, France), Pullulan
(MW: 1.0 × 103–10.0 × 103 g/mol) was obtained from Bailingwei Co., Ltd. (Shanghai, China),
waxy corn starch (MW: 1.0 × 106–10.0 × 106 g/mol) was obtained from Cargill Asia Pacific
Food Systems Co., Ltd. (Beijing, China), cassava starch (MW: 1.0 × 106–10.0 × 106 g/mol)
was obtained from Hongfeng Starch Co., Ltd. (Guangxi, China), and corn starch (MW:
1.0 × 106–10.0 × 106 g/mol) was obtained from Hebei Yufeng Industry Group Co., Ltd.
(Hebei, China). Glycogen (MW: 1.0 × 106–10.0 × 106 g/mol) and dimethyl sulfoxide (DMSO)
were purchased from Sinopharm Group Co., Ltd. (Shanghai, China). Klebsiella pneumoniae



Foods 2022, 11, 1442 3 of 13

pullulanase (EC 3.2.1.41, 3000 U/mL) and sodium acetate were purchased from Aladdin
Reagent Co., Ltd. (Shanghai, China). Maize amylopectin (MW: 1.0 × 107–10.0 × 107 g/mol)
(Cas: 9037-23-4), potato amylopectin (MW: 1.0 × 107–10.0 × 107 g/mol) (Cas: 9037-22-3),
Pseudomonas amyloderamosa isoamylase (EC 3.2.1.68, 10,000,000 U/mL), and sodium hydrox-
ide solution were purchased from Sigma-Aldrich Co. Ltd. (St. Louis, MO, USA). The barley
β-amylase (EC 3.2.1.2, 700,000 U/mL) was purchased from Yuanye Biotechnology Co., Ltd.
(Shanghai, China). All reagents were of analytical grade unless otherwise stated.

2.2. Expression and Purification of AMY

AMY was produced in the E. coli BL21(DE3)-harboring plasmid amy/pET-20b(+). The
crude enzyme was filtered by a 0.45 µm filter, and the His6-tagged AMY was purified with
HisTrap HP. The purification process was carried out as follows: (1) Equilibrate the nickel
column with buffer A (10 mM Tris-HCl, 500 mM NaCl, pH 7.5) at a flow rate of 2.0 mL/min.
After loading, continue to equilibrate with buffer A. (2) Elute the nickel column with buffer
B (10 mM Tris-HCl, 500 mM NaCl, 500 mM imidazole, pH 7.5) at a flow rate of 1.5 mL/min.
The eluent was collected and verified using SDS-PAGE. The concentration of AMY was
determined using a Bradford kit purchased from Generay (Shanghai, China), taking bovine
serum albumin (BSA) as standard.

2.3. Enzyme Activity Assays

The AMY activity was determined according to the method described by Yoshinori
et al. [25], with a slight modification. The mixture containing 700 µL of 10 mg/mL DE6 (DE,
dextrose equivalent) maltodextrin and 150 µL of sodium acetate buffer (500 mM, pH 4.0)
was incubated at 70 ◦C for 10 min. Then, 150 µL AMY was added to the substrate solution
and mixed thoroughly. The reaction was conducted at 70 ◦C for 15 min and terminated
by boiling for 20 min. A color change was observed when 100 µL of the resulting solution
was mixed with an equal volume of 0.01 M iodine-potassium iodide solution, and diluted
with deionized water to 5.0 mL. The solution was allowed to stand for 15 min at room
temperature (25 ◦C) and then its absorbance was measured at 610 nm. One unit of enzyme
activity was defined as the amount causing an 0.1 increase in 1 h at A610 nm using DE6
maltodextrin. The sample without any enzyme was set as a control.

Units/mL =
(A610 nmTest − A610 nmBlank)(4)(5)

(0.1)(0.015)

where 5 = Total volume (in milliliters) of assay; 4 = Time (in minutes) conversion factor
from 15 min to 60 min; 0.1 = Increase in A610 nm per hour; 0.015 = Volume (in milliliter) of
enzyme used.

2.4. Analysis of Substrate Specificity

The substrate specificity was determined using glycogen, pullulan, rice starch, cassava
starch, wheat starch, potato amylopectin, maize amylopectin, waxy corn starch, corn starch,
DE2 maltodextrin, DE4 maltodextrin, and DE6 maltodextrin. The 3,5-dinitrosalicylic acid
(DNS) assay for reducing sugar was used to quantify the hydrolytic activity against different
substrates [26,27]. Assay mixtures contained 150 µL AMY and 850 µL 10 mg/mL dextrin
or starch solution, while the dextrin or starch solution was prepared with 100 mM sodium
acetate buffer (pH 4.0). The mixtures were incubated at 70 ◦C for 15 min, and the reaction
was terminated by adding 1 mL of DNS. The resulting solution was boiled in a boiling
water bath for 5 min and immediately cooled in ice water. Finally, the absorbance of this
mixture was measured at 540 nm. One unit (U) of enzyme activity was defined as the
amount required to produce 0.01 µmol of reducing sugar (in terms of glucose) per minute.
The highest activity assayed using the optimum substrate was set at 100%. The correlation
between glucose concentration and OD value can be expressed as follows:

Regression equation: y = 0.434x + 0.9037
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Correlation coefficient: R2 = 0.9939

2.5. Preparation of the Debranched Dextrin and Starch

DE6 maltodextrin, waxy corn starch, and cassava starch (1 g, dry basis) were dissolved
in deionized water (100 mL), gelatinized in boiling water at 100 ◦C for about 20 min, and
cooled at room temperature. The mixture was equilibrated at 40 ◦C, 45 ◦C, and 70 ◦C, in
the water bath for 10 min, then AMY (25 U/g, 70 ◦C, pH 4.0), PUL (2 U/g, 45 ◦C, pH
4.5) and ISO (10 U/g, 40 ◦C, pH 3.5) were added. Hydrolysis was carried out at different
temperatures for 24 h with constant shaking at 160 rpm. After incubation for 0, 6, and
24 h, the reaction was terminated in a boiling water bath for 20 min. The supernatant
was harvested by centrifugation at 5000× g (10,000 rpm) for 20 min; the final debranched
samples were collected by freeze-drying. The samples prepared without enzymes were set
as a control.

2.6. Chain Length Distribution Analysis

High-performance anion-exchange chromatography coupled with pulsed ampero-
metric detection (HPAEC-PAD) (Dionex ICS-5000, Thermo Scientific, Waltham, MA, USA)
was used to analyze the chain length distribution of the debranched products [28]. The
10 mg samples were dissolved in 2 mL ultra-pure water and heated in a boiling water bath
for 20 min. Subsequently, the liquid mixtures were centrifuged at 5000× g (10,000 rpm)
for 1 min, and the debranched samples passed through a 0.22 µm membrane filter. The
filtrate was injected into the HPAEC-PAD system equipped with a CarbopacTM PA200
(3 × 250 mm) column maintained at 35 ◦C using a flow rate of 0.5 mL/min. The column
was equilibrated in 250 mM sodium hydroxide, 1 M sodium acetate, and ultra-pure water.

2.7. Molecular Weight Distribution Analysis

Gel permeation chromatography (GPC) was used to determine the molecular weight
distribution (MWD) of the substrates treated with different debranching enzymes. MWD
was measured according to the method reported by Liu et al. [29] with some modifications.
The phenogel columns used were Styragel HR3 (MW: 500–30,000), Styragel HR4 (MW:
5000–600,000), and Styragel HMW7 (MW: 500,000–1 × 108) (Waters, Inc., Torrance, CA,
USA), the flow rate of the eluent was 0.5 mL/min, the eluent comprised 99.5 wt% DMSO
and 0.5 wt% LiBr, and the column temperature was maintained at 50 ◦C. The 10 mg
debranched samples were dissolved in 2 mL of the eluent and heated in a boiling water
bath for 12 h by continuous stirring. The debranched samples were passed through a
0.22 µm nylon filter, and the filtrate was injected into a Shimadzu HPLC/GPC instrument
(CTO-20A; Shimadzu Corporation, Kyoto, Japan) equipped with a RI detector (Wyatt
Technologies, Santa Barbara, CA, USA).

2.8. β-Amylolysis Limit Analysis

The degree of β-amylolysis was determined according to the method described by
Kong et al. [30]. Each debranched sample (10 mg) was dissolved in 2 mL 50 mM acetate
buffer (pH 5.0) by heating in a boiling water bath for 30 min, and stirring continuously.
After incubation at 50 ◦C for 10 min, the products were further hydrolyzed at 50 ◦C for 24 h
by adding β-amylase (50 U/mg substrates). All reactions were terminated by boiling for
20 min. The maltose content in each sample was determined using HPAEC-PAD [31]. The
β-amylolysis limit was calculated according to the formulas established by Shen et al. [32].
The degree of β-amylolysis was calculated by the ratio of the total mass of maltose produced
over to the total mass of total carbohydrates (dry basis).

2.9. Statistical Analysis

The result was expressed as mean ± standard deviation (SD) from triplicate experi-
ments. The statistical analysis was conducted with SPSS statistical software version 25.0
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(SPSS Inc., Chicago, IL, USA). The comparison of treatment means was determined using
Duncan’s test at a 5% level of significance.

3. Results and Discussion
3.1. Expression and Purification of AMY

The SDS-PAGE of AMY was purified using the HisTrap HP affinity columns as shown
in Figure 1. The protein band is single and clear, achieving electrophoresis purity. The
molecular weight (about 66 kDa) is close to the theoretical molecular weight. The enzyme
activity and protein concentration of AMY were measured, and the calculation results are
shown in Table 1. The specific activity of AMY purified by HisTrap was 733.3 U/mg, and
the recovery rate was 37.2%.

Foods 2022, 11, x FOR PEER REVIEW 5 of 13 
 

 

h by adding β-amylase (50 U/mg substrates). All reactions were terminated by boiling for 
20 min. The maltose content in each sample was determined using HPAEC-PAD [31]. The 
β-amylolysis limit was calculated according to the formulas established by Shen et al. [32]. 
The degree of β-amylolysis was calculated by the ratio of the total mass of maltose 
produced over to the total mass of total carbohydrates (dry basis). 

2.9. Statistical Analysis 
The result was expressed as mean ± standard deviation (SD) from triplicate 

experiments. The statistical analysis was conducted with SPSS statistical software version 
25.0 (SPSS Inc., Chicago, IL, USA). The comparison of treatment means was determined 
using Duncan’s test at a 5% level of significance. 

3. Results and Discussion 
3.1. Expression and Purification of AMY 

The SDS-PAGE of AMY was purified using the HisTrap HP affinity columns as 
shown in Figure 1. The protein band is single and clear, achieving electrophoresis purity. 
The molecular weight (about 66 kDa) is close to the theoretical molecular weight. The 
enzyme activity and protein concentration of AMY were measured, and the calculation 
results are shown in Table 1. The specific activity of AMY purified by HisTrap was 733.3 
U/mg, and the recovery rate was 37.2%. 

 
Figure 1. SDS-PAGE analysis of purified AMY. M: Molecular weight marker; 1: Crude enzyme; 2: 
Elution by 30% buffer B. 

Table 1. Purification of AMY. 

Component Total Enzyme 
Activity (U) 

Total Protein 
Content (mg) 

Specific Enzyme 
Activity (U/mg) 

Recovery 
Rate (%) 

Crude enzyme 9853.0 42.0 234.6 - 
HisTrap 3666.5 5.0 733.3 37.2 

3.2. Analysis of Substrate Specificity 
The substrate specificity of AMY was analyzed using different substrates such as 

maltodextrin, starch, pullulan, and glycogen (Figure 2). The optimal AMY activity (360 
U/mg) towards DE6 maltodextrin was obtained at pH 4.0 and 70 °C. The enzyme activity 
assayed using DE6 maltodextrin was defined as 100% activity, and the relative activities 
using DE4 maltodextrin and DE2 maltodextrin were 75% and 61%, respectively. However, 
the relative activity of AMY was below 50% when starch was used as the substrate. The 
results illustrated that AMY had a low affinity on large molecular weight substrates; the 
relative activity of AMY to glycogen was 57%, which was less than the relative activity for 
maltodextrin due to the fine structure of glycogen with high branching density and short 
branched chains [33,34]. In a nutshell, AMY showed high substrate selectivity; it 
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2: Elution by 30% buffer B.

Table 1. Purification of AMY.

Component Total Enzyme
Activity (U)

Total Protein
Content (mg)

Specific Enzyme
Activity (U/mg)

Recovery Rate
(%)

Crude enzyme 9853.0 42.0 234.6 -
HisTrap 3666.5 5.0 733.3 37.2

3.2. Analysis of Substrate Specificity

The substrate specificity of AMY was analyzed using different substrates such as mal-
todextrin, starch, pullulan, and glycogen (Figure 2). The optimal AMY activity (360 U/mg)
towards DE6 maltodextrin was obtained at pH 4.0 and 70 ◦C. The enzyme activity assayed
using DE6 maltodextrin was defined as 100% activity, and the relative activities using
DE4 maltodextrin and DE2 maltodextrin were 75% and 61%, respectively. However, the
relative activity of AMY was below 50% when starch was used as the substrate. The
results illustrated that AMY had a low affinity on large molecular weight substrates; the
relative activity of AMY to glycogen was 57%, which was less than the relative activity
for maltodextrin due to the fine structure of glycogen with high branching density and
short branched chains [33,34]. In a nutshell, AMY showed high substrate selectivity; it
preferentially cleaved maltodextrin with moderate molecular weight and medium-length
branched chains, while it exhibited low hydrolysis activity on starch and pullulan.
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3.3. Chain Length Distribution

The chain length distribution of the DE6 maltodextrin debranched by AMY, PUL and
ISO was analyzed using HPAEC-PAD. The profiles are shown in Figure 3. According
to the degree polymerization (DP), the amylopectin side chain can be divided into four
fractions: A chains (DP 6–12), B1 chains (DP 13–24), B2 chains (DP 25–36), and B3 chains
(DP ≥ 37) [35,36]. The proportions of each fraction in debranched samples are listed
in Table 2. Compared to the control, the chain length distribution and average chain
length (CL) significantly changed after AMY treatment. During the early stages, the
proportions of DP < 6 and DP 6–12 fractions significantly decreased from 38.57% to 31.74%
and 43.20% to 42.20%, respectively. In addition, the proportion of DP 13–24 fractions
significantly increased from 17.09% to 23.12%. As the reaction continued, the proportion of
DP 13–24 fractions decreased, while DP < 6 fractions increased significantly. In contrast,
AMY had a limited hydrolytic effect on waxy corn starch and cassava starch, and the chain
length distribution could not be detected by HPAEC-PAD (data not shown). This finding
was due to the high branching density and long branched chains of waxy corn starch
and cassava starch [37], thus resulting in steric hindrance between enzyme and substrate.
The results suggested that the AMY could selectively hydrolyze α-1,6-glycosidic bonds,
and showed vigorous hydrolysis activity on maltodextrin. Furthermore, AMY selectively
cleaved side chains with DP 13–24.

Table 2. Chain length distribution of hydrolysates was obtained by debranching DE6 maltodextrin
with AMY, PUL, and ISO, respectively.

Sample Time
Chain Length Distribution (%) 1

CL 3

DP 2 < 6 DP 6–12 DP 13–24 DP 25–36 DP ≥ 37

AMY
0 h 38.57 ± 0.27 a 43.20 ± 0.15 b 17.09 ± 0.34 d 1.13 ± 0.12 e 0.05 ± 0.01 d 7.97 ± 0.27 c

6 h 31.74 ± 0.65 d 42.20 ± 0.48 c 23.12 ± 0.22 b 2.76 ± 0.17 e 0.19 ± 0.02 d 9.27 ± 0.41 b

24 h 33.68 ± 0.37 c 41.89 ± 0.61 c 21.88 ± 0.27 c 2.39 ± 0.19 d 0.14 ± 0.01 d 9.37 ± 0.39 b

PUL
0 h 38.57 ± 0.27 a 43.20 ± 0.15 b 17.09 ± 0.34 d 1.13 ± 0.12 d 0.05 ± 0.01 d 7.97 ± 0.27 c

6 h 29.36 ± 0.31 e 32.16 ± 0.28 d 27.53 ± 0.16 a 8.22 ± 0.47 b 2.76 ± 0.38 a 12.02 ± 0.62 a

24 h 28.90 ± 0.42 e 32.41 ± 0.37 d 27.53 ± 0.39 a 8.30 ± 0.27 b 2.88 ± 0.19 a 12.11 ± 0.50 a

ISO
0 h 38.57 ± 0.27 a 43.20 ± 0.15 b 17.09 ± 0.34 d 1.13 ± 0.12 e 0.05 ± 0.01 d 7.97 ± 0.27 c

6 h 34.10 ± 0.67 c 44.94 ± 0.47 a 12.45 ± 0.37 e 7.76 ± 0.19 c 0.75 ± 0.01 c 9.33 ± 0.47 b

24 h 35.29 ± 0.52 b 43.45 ± 0.38 b 9.61 ± 0.21 f 10.27 ± 0.23 a 1.38 ± 0.02 b 9.86 ± 0.34 b

1 Distributions were calculated as the relative peak area (%); 2 DP, degree of polymerization; 3 CL, average chain
length. All data are means ± SD (n = 3). Means with different letters within the same column are significantly
different (p < 0.05).
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Compared with AMY, PUL and ISO had different debranching specificities. The chain
length distribution and average chain length changed significantly after PUL treatment,
which resulted in an altered maximum peak value. Interestingly, the glucose content
increased dramatically after PUL treatment, indicating that PUL hydrolyzed not only α-
1,6-glycosidic bonds but also α-1,4-glycosidic bonds [38]. The proportion of DP 13–24, DP
25–36, and DP ≥ 37 fractions increased significantly with increasing PUL treatment time. A
reasonable explanation may be that PUL randomly cleaved α-1,6-glycosidic bonds at the
branching points and α-1,4-glycosidic bonds in the linear chain, generating a mixture of
linear chains with different degrees of polymerization. On the other hand, the debranching
products of ISO contained a greater proportion of long linear chains than AMY. The
proportion of DP 25–36 fractions increased significantly from 1.13% to 10.27%, while the
glucose content did not change significantly. The results indicated that ISO tended to cleave
α-1,6-glycosidic bonds of the long branched chain in amylopectin, and has no hydrolytic
activity on α-1,4-glycosidic bonds. The optimum debranched chain length was DP 25–36.

3.4. Molecular Weight Distribution

The MWD of dextrin and starch debranched by AMY, PUL and ISO were determined
using GPC. The molecular weight curves are shown in Figure 4. Two peaks were observed
in the debranched samples; peak 1 represents the unit chains released by debranching, and
peak 2 corresponds to the branched molecules [39]. DE6 maltodextrin was an intermediate
product of starch hydrolysis, which contained a certain amount of amylose. The elution
behavior of untreated DE6 maltodextrin showed a typical bimodal molecular weight
distribution. Waxy corn starch contained almost 100% amylopectin [40], and the elution
behavior of amylopectin showed a unimodal distribution, which was different from the
typical bimodal molecular weight distribution of normal corn starch containing a high
proportion of amylose [41]. Cassava starch has about 80–85% of amylopectin, and a typical
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bimodal molecular weight distribution was observed due to the presence of a certain
proportion of amylose [42].
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maltodextrin, waxy corn starch, and cassava starch using AMY, PUL, and ISO, respectively. The
substrates of (a,d,g) were DE6 maltodextrin, (b,e,h) were waxy corn starch, (c,f,i) were cassava starch.

The MWD of hydrolysates is listed in Table 3. AMY, PUL, and ISO exhibited capacity
activity on DE6 maltodextrin, waxy corn starch, and cassava starch; however, all debranch-
ing products demonstrated varying degrees of degradation compared to the control. As
shown in Figure 4a–c, debranching products of DE6 maltodextrin cleaved by AMY had a
relatively narrow molecular weight range and a smaller molecular weight corresponding
to the amylopectin peak (peak 2). In addition, the amylopectin was hydrolyzed to pro-
duce a large number of linear short amylose and oligosaccharides. On the contrary, AMY
debranched waxy corn starch and cassava starch which had a relatively wide molecular
weight range and a larger molecular weight corresponding to the amylopectin peak. The
molecular weight did not decrease significantly; however, it shifted to the left. The reason
was that the amylopectin in waxy corn starch and cassava starch had a fine structure con-
sisting of high branching density and long side chains which resulted in partial hydrolysis
of amylopectin to produce branched dextran chains and long amylose [43].
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Table 3. Molecular weight distributions of hydrolysates were obtained by debranching DE6 mal-
todextrin, waxy corn starch, and cassava starch with AMY, PUL, and ISO, respectively.

Sample Time

DE6 Maltodextrin Waxy Corn Starch Cassava Starch

Peak1 MW
1

(×103)
Peak2 MW

(×104)
Peak1 MW

(×105)
Peak2 MW

(×106)
Peak1 MW

(×105)
Peak2 MW

(×106)

AMY
0 h 6.21 ± 0.13 5.30 ± 0.21 n.d. 2 7.44 ± 0.67 3.40 ± 0.57 9.84 ± 0.76
6 h 5.81 ± 0.16 5.24 ± 0.19 0.57 ± 0.09 2.16 ± 0.11 0.58 ± 0.86 1.28 ± 0.22

24 h 5.31 ± 0.11 4.26 ± 0.15 0.36 ± 0.13 0.94 ± 0.34 0.39 ± 0.23 0.94 ± 0.34

PUL
0 h 6.21 ± 0.13 5.30 ± 0.21 n.d. 7.44 ± 0.67 3.40 ± 0.57 9.84 ± 0.76
6 h 5.48 ± 0.23 5.31 ± 0.18 0.07 ± 0.05 0.11 ± 0.08 0.07 ± 0.02 0.90 ± 0.42

24 h 5.51 ± 0.27 n.d. 0.07 ± 0.03 0.08 ± 0.02 0.07 ± 0.01 0.87 ± 0.22

ISO
0 h 6.21 ± 0.13 5.30 ± 0.21 n.d. 7.44 ± 0.67 3.40 ± 0.57 9.84 ± 0.76
6 h 5.52 ± 0.17 1.97 ± 0.24 0.01 ± 0.00 0.02 ± 0.01 0.09 ± 0.07 0.42 ± 0.15

24 h 5.53 ± 0.22 1.66 ± 0.35 0.01 ± 0.00 n.d. 0.06 ± 0.22 0.08 ± 0.05
1 MW: weight-average molar mass; 2 n.d., not detectable. All data are means ± SD (n = 3).

Compared with AMY, the molecular weight of the products debranched by PUL
shifted to a lower molecular weight in Figure 4d–f, while the molecular weight of the
amylopectin peak (peak 2) decreased (Table 3). After DE6 maltodextrin was treated with
PUL for 24 h, its amylopectin peak disappeared, and the polymerized amylopectin was
completely decomposed into amylose. In addition, the molecular weight of waxy corn
starch hydrolyzed by PUL decreased sharply and switched from a unimodal to a bimodal
distribution. The debranched cassava starch also showed the same tendency. The amy-
lopectin was degraded to linear chains, which could be attributed to the fact that PUL not
only cleaved a-1,6-glycosidic bonds at the branch points but also randomly hydrolyzed
a-1,4-glycosidic bonds, resulting in a significant reduction in molecular weight.

On the contrary, ISO exhibited different substrate selectivity compared with AMY. As
shown in Figure 4g–i, ISO had higher hydrolytic efficiency on starch than maltodextrin. The
molecular weights of debranched waxy corn starch and cassava starch were significantly
decreased. The amylopectin in the waxy corn starch was completely degraded after
debranching for 24 h by ISO, whereas ISO showed significantly lower hydrolytic activity
on DE6 maltodextrin than AMY. These results indicated that ISO had a high affinity for
amylopectin molecules and selectively hydrolyzed the high molecular polymer. Our results
were consistent with the findings reported in the literature [19,44].

3.5. Analysis of Debranching Efficiency

According to the MWD curves of the debranching products, the ratio of peak 1’s area
to the total area represented the relative content of the linear chains. By calculating the
percentage of the area under the curve of peak 1 (amylose) to the whole distribution curve
(amylose and amylopectin) [40], the debranching efficiencies of AMY, PUL and ISO were
obtained. As shown in Figure 5, AMY could hydrolyze most of the amylopectin in DE6
maltodextrin in a short time, and the debranching rate reached 80% at 6 h. As the reaction
continued, the hydrolysis rate of AMY increased slowly, and the debranching rate was
88% at 24 h. AMY could not completely hydrolyze the polymerized amylopectin in DE6
maltodextrin because its branched chain included a portion of long or short side chains in
addition to medium-length side chains [45]. Furthermore, AMY could slightly hydrolyze
waxy corn starch and cassava starch, and the debranching rates were only 24% and 30%
for 24 h, respectively. These results showed that AMY tended to hydrolyze the branched
chains with medium length (DP 13–24), and a higher proportion of branched chains with
medium length would undergo a higher degree of hydrolysis. The rapid hydrolysis of
DE6 maltodextrin, waxy corn starch and cassava starch by PUL could be mostly attributed
to PUL removing linear glucans from the non-reducing ends of chains by hydrolyzing
α-1,4-glycosidic bonds. The presence of numerous short-branched chains promoted the
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specific binding of PUL with short-branched substrates. Remarkably, the ISO debranching
efficiency on DE6 maltodextrin was significantly lower than AMY during the same reaction
time. The debranching rate at 6 h and 24 h was 60% and 67%, respectively, which was 20%
lower than that of AMY. However, ISO exhibited a strong hydrolytic ability to waxy corn
starch and cassava starch, with debranching rates of 100% and 85% for 24 h, respectively.
In the process of starch hydrolysis, a large amount of linear amylose and a small number of
branched dextran chains exist in the ISO hydrolysate, while a large amount of polymerized
amylopectin and a small amount of linear amylose exist in the AMY hydrolysate. It is
speculated that ISO randomly hydrolyzes α-1,6-glycosidic bonds at branch points from the
outside and inside of amylopectin [13], while AMY slowly hydrolyzes amylopectin from
the outside and has little effect on the inside branch points.
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Figure 5. Debranching degree of dextrin and starch by AMY, PULand ISO under different treatment
times. (A) debranched for 6 h; (B) debranched for 24 h. Means with the asterisk within the same
group are significantly different (p < 0.05).

3.6. Analysis of β-Amylolysis Limit

β-amylase is an exo-amylase, which has been reported to remove maltose units from
the non-reducing ends of starch molecules through hydrolysis of α-1,4-glycosidic bonds
but could not hydrolyze or stride α-1,6-glycosidic bonds [46]. Therefore, the hydrolysis rate
of β-amylase could reflect the debranching degree of substrate molecules, thus mirroring
the debranching activity of AMY, PUL, and ISO. As shown in Figure 6, the β-amylase
hydrolysis rate of the DE6 maltodextrin was 68%, and the β-amylase hydrolysis rate of the
DE6 maltodextrin debranched by AMY and PUL increased to 86% and 94%, respectively.
However, no significant change in β-amylase hydrolysis rate was observed when DE6
maltodextrin was debranched by ISO. The β-amylase hydrolysis rates of the waxy corn
and cassava starch were 63% and 61% lower than DE6 maltodextrin (68%), respectively.
There was no significant change observed for waxy corn and cassava starch treated by
AMY; however, the β-amylolysis rate of waxy corn starch and cassava starch debranched
by ISO increased to 92% and 86%, respectively. These results were also in agreement
with the findings of the debranching efficiency analysis. It proved that AMY had strong
substrate selectivity, and specifically hydrolyzed α-1,6-glycosidic bonds in maltodextrin
with medium molecular weight, while it exerted no hydrolytic ability on α-1,4-glycosidic
bonds. In theory, PUL could not penetrate the interior of the amylopectin molecule due
to the dense branching structure, and it was inclined to hydrolyze low molecular weight
substrates such as limit dextrin and pullulan. However, PUL could hydrolyze α-1,4-
glycosidic bonds randomly and produce a large number of short branched chains, which
substantially improved the β-amylolysis efficiency. Importantly, ISO could simultaneously
hydrolyze the inner and outer branching points of amylopectin, and its catalytic activity
was not inhibited by maltose.
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Figure 6. Degree of β-amylolysis limit of hydrolysates obtained by debranching DE6 maltodextrin,
waxy corn starch, and cassava starch using AMY, PUL, and ISO, respectively. The substrate of (A) was
DE6 maltodextrin, (B) was waxy corn starch, and (C) was cassava starch. Means with different letters
within the same group are significantly different (p < 0.05).

4. Conclusions

In this study, the hydrolysis activity of AMY to different substrates showed obvious
differences, and the most suitable substrate was maltodextrin. AMY could hydrolyze most
of the α-1,6-glycosidic bonds in maltodextrin and hydrolyze the polymerized amylopectin
to form small molecular linear glucans and oligosaccharides, but could not hydrolyze
α-1,4-glycosidic bonds. AMY had a strong substrate selectivity, which tends to hydrolyze
medium-length branched structures. The synergistic effect of AMY and β-amylase on
DE6 maltodextrin could increase the hydrolysis rate to 86%, but there was no significant
difference between the hydrolysis rate of waxy corn starch and cassava starch. The optimal
debranching length of AMY was DP 13–24, which is more concentrated than that of PUL
and shorter than that of ISO. In the production of different starch sugars, it could be
necessary to add debranching enzymes with different substrate specificities to significantly
improve the saccharification efficiency. However, the substrate of the saccharification is not
the optimal substrate for ISO, and ISO cannot achieve its maximum debranching efficiency;
the glucose produced by PUL debranching could inhibit the conversion of non-glucose
starch sugars. The optimal debranching length of AMY was consistent with the branching
length of the glycated substrate. In the production of oligosaccharides, the synergistic effect
of AMY and glucoamylase could effectively relieve the blocking effect of branch points on
α-1,4-glycoside hydrolase, thereby improving the yield of oligosaccharides.
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