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The entire repertoire of antibodies in our serum, the IgOme, is a historical record of our past expe-
riences and a reflection of our immune status at any given moment. Understanding the dynamics of
the IgOme and how the diversity and specificities of serum antibodies change in response to disease
and maintenance of homeostasis can directly impact the ability to design and develop novel vac-
cines, diagnostics and therapeutics. Here we review both direct and indirect methodologies that
are being developed to map the complexity and specificities of the antibodies in polyclonal serum
– the IgOme.
� 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Over a Century has passed since the first Nobel Prize in Medi-
cine (1901) was awarded to Emil von Behring for ‘‘his work on ser-
um therapy . . . by which he opened a new road in the domain of
medical science and thereby placed in the hands of the physician
a victorious weapon against illness and death’’ [1]. Serum is indeed
a ‘‘victorious weapon’’ able to neutralize pathogens through the
exquisite specificity of its antibodies that seem endless in their
capacity to discriminate and bind the vast structural complexities
found in nature. Susumu Tonegawa’s Nobel Prize (1987) recog-
nized the elucidation of the genetic principles for the generation
of this antibody diversity [2]. Application of these principles allows
the derivation of the total ‘‘potential repertoire’’ of antibodies in
humans; the combinatorial multiplication of all the V, D, and J seg-
ments of the Heavy (H) chains times the combined product of the V
and J segments of the kappa and lambda Light (L) chains as well as
the contributions of the N and P nucleotides associated with the
junctional complexity – leading to an extraordinary vast theoreti-
cal number, 1011–1012, that far exceeds the total number of B-cells
in a person’s body [34,65]. More realistic is the ‘‘available reper-
toire’’ of variant B-cells that has been calculated to be in the order
of 107 per person [9]. How many of these B-cells subtypes are actu-
ally utilized for the production of distinct antibodies probably does
not exceed more than tens of thousands in a person’s life time. Sur-
prisingly, whereas pathogens come and go as they are cleared from
our bodies, the antibodies generated in response to immunological
insults are archived in our memory B-cells, the cells that orches-
trate the continuous production of antibodies found in serum over
the course of our lives. This entire utilized repertoire of antibodies
in our serum, the IgOme, is a historical record of our past experi-
ences and a reflection of our immune status at any given moment.

Understanding the IgOme, how homeostasis is maintained, how
‘‘serum memory’’ is affected by immunization, boosts, encounters
with pathogens, physiology and old age are all fundamental ques-
tions of great interest. The answers to these questions bear directly
on the development of novel vaccines, diagnostics and therapeu-
tics and in order to meet these challenges one must be able to pro-
file the IgOme. We need to be able to describe the IgOme in its
entirety at single antibody resolution in a manner that is cost effec-
tive and expedient. One could then imagine running IgOme screens
routinely in the course of personalized medical diagnosis and
treatment. Obviously, the challenge is formidable – just consider-
ing the diversity of antibodies and the dynamics of their expression
at any given moment and as a result to any given stimulus. Here
we review a variety of technical approaches designed to profile ser-
um antibody diversity in the quest of describing the complexity
and composition of the human IgOme.
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2. Direct and indirect analysis of the IgOme

Two basically different approaches have been employed in the
analysis of the antibody repertoire of serum. The ‘‘Direct’’ approach
goes to profile the antibodies or antibody-producing cells them-
selves. For this, one can catalogue antibodies based on proteomic
sequencing or achieve the same by genomic sequencing of anti-
body transcripts derived from peripheral B-cells. The ultimate goal
would be to rank the antibodies by relative concentration and cat-
egorize them by antigen specificity. The ‘‘Indirect’’ approach uses
surrogate measures to extrapolate antibody species based on pro-
teins or peptides they bind. Hence, the IgOme profile would be a
list of inferred antibody specificities. First we address the ‘‘Direct’’
analysis of the IgOme.
3. Direct IgOme profiling

3.1. Phage display of antibodies

Conceptually, profiling the IgOme in its entirety would be com-
plete were one able to systematically clone the antibodies in poly-
clonal serum, one by one and catalogue them by frequency of
usage along with their corresponding antigen specificities. Clearly,
classical methods for the production of monoclonal Antibodies
(mAbs) are not suitable for such massive comprehensive screening,
not in mice and definitely not for humans (see for example reviews
[40,58,97]).

The introduction of phage display libraries of antibodies, how-
ever, provided a breakthrough in that one could, in theory, pre-
serve the entire repertoire of the Heavy (H) and Light (L) chains
of a person to be later screened for various antigen specificities
[16,43a,60]. Two types of antibody phage display libraries can be
constructed: ‘‘naïve’’ and ‘‘immunized’’ libraries. Both types of li-
braries are generated to discover details of the immune response
to a given pathogen, autoimmune disease or cancer
[5,20,21,26,46,56,86,102]. Naïve libraries generated from random
donors are presumed to represent the ‘‘healthy’’ human repertoire
of antibodies in general. In principle, naïve libraries offer the pos-
sibility of selection of high affinity antibodies of any desired spec-
ificity without the need for selectively stimulating the immune
response with a specific antigen. Using naïve libraries, there has
been considerable success for isolating mAbs against various
pathogens, such as SARS-CoV [69,86], WNV [37], and HBV [49].
The second class of library, the ‘‘immunized phage-displayed anti-
body library’’ is constructed from the mRNA from a donor who was
exposed to infection/vaccination with a defined antigen, therefore
his immune response has been specifically stimulated. For immu-
nized libraries, it is generally preferable to use a donor with a high
serum antibody titer for the antigen/pathogen of interest. A high
serum titer is presumed to reflect relatively high levels of Ab pro-
duction and therefore higher levels of specific mRNA should be
obtainable for the generation of the library [17]. This approach
has been successful for isolating mAbs specific for diverse patho-
gens, such as, H5N1 [46,90], foot and mouth disease [31] and
HIV [6,23,41,64,101,102].

In the matter of HIV-1, isolation of potent neutralizing mAbs
has only been successful using immunized libraries (as compared
to naïve libraries). These have been constructed from selected do-
nors that have proven neutralizing activity. A case in point is the
study by Burton and Barbas where an antibody library was pro-
duced from a 31-year old, HIV-1 positive, homosexual male, who
had been asymptomatic for six years [5,16]. A Fab library was con-
structed on the surface of filamentous phage which comprised 107

members. This library was then screened against monomeric
glycosylated HIV-1 gp120IIIB from which a collection of 20 phage
displayed mAbs was isolated. The most potent was mAb b12,
which competes for the binding site of HIV-1 gp120 receptor
(CD4) and thus prevents virus binding to its target cell. Co-crystal-
lization of this mAb with core gp120 confirmed the epitope overlap
with the CD4 binding site [105]. Moreover, these b12 studies were
revealing of two major drawbacks of the phage display technology:
(i) This methodology is still relatively time consuming, tedious, and
somewhat inefficient. Typically in standard experiments only tens
of mAbs are isolated which are specific towards the antigen against
which they were screened. (ii) The natural pairing of immunoglob-
ulin H and L chains is lost in the construction of the library, thus
the vast majority of the antibodies produced are the result of ran-
dom, arbitrary pairing which does not reflect the natural H:L pair
of the B-cell clone that produced them. Indeed, the co-crystalliza-
tion of mAb b12 shows that the L chain does not contribute to
gp120 recognition at all. All the contacts are made exclusively via
the H chain [105]. Thus, indicating that the L chain used is most
probably not the H chain’s natural partner. Generally, it has been
estimated that when constructing an Ab phage display library from
total H and L chain cDNAs derived from Peripheral Blood Mononu-
clear Cells (PBMCs) and generating a complexity of 108 phage dis-
played antibodies, only 10000 mAbs are expected to maintain their
native H:L pair [40].

Another drawback of the phage display antibody system is that
some VH:VL pairs may be toxic and impair bacterial growth. This in
turn may lead to a very biased representation of antibodies when
phage display is used for antibody expression [75].

Nonetheless, the power of phage-displayed antibody libraries is
the ability to immortalize the entirety of the available naïve poten-
tial of H and L chains and even expand upon it by generating novel
pairs that do not naturally exist in the donor’s repertoire.

3.2. Next Generation Sequencing of antibody H and L chain mRNAs

The premise for these analyses is that one can apply Next Gen-
eration Sequencing (NGS) to catalogue the entire complexity of
antibody related transcripts of a given individual [13,34,96]. For
this, high throughput sequencing is typically performed using the
454 pyrosequencing analyses that currently generate >106 se-
quences of 400–500 bp long. Thus, one can read beyond the three
CDRs of a chain in a single run [3,8,13,34,96,100,106].

When total PBMCs are used, such analyses typically address the
available repertoire and not necessarily the utilized repertoire.
Thus for example, Glanville et al. conducted their analyses on
pooled phage displayed IgM antibodies derived from 654 healthy
human donors [34]. This study serves as a comprehensive and de-
tailed analysis of the ‘‘available IgOme’’ and produces a baseline of
sorts for the ‘‘average’’ human repertoire. The total diversity of the
combinatorial Ab library was calculated to be 3.5 � 1010. This li-
brary, when screened using 16 different antigens, produced a col-
lection of antigen specific antibodies that when analyzed using
NGS, were found to comprise all the human germline VDJ and VJ
segments as expected. Moreover, this analysis provides insights
to the relative frequency of the usage of V segments.

Application of NGS to the study of antibodies has increased our
understanding of the general physical traits of antibodies produced
in humans, such as: prevalence of usage of various germline V, D
and J segments, for a given class of antigen [100]. Another subject
of interest has been the specific focus on the characterization of
HCDR3 loops, regarding their amino acid lengths and the number
of ‘‘in-dels’’ detected in the generation of extended CDR3 loops
[3,14,20,34,100]. Moreover, it emphasizes the power of NGS tech-
nology that provides a quality assurance to identify and correct
biases that may be introduced during the procedure of library con-
struction such as over representation or the absence of a specific
segment [34].
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Furthermore, in conducting such analyses, one can identify clo-
notypes of B-cells which have been defined as those transcripts
that have identical germline V and J segment usage, identical
CDR3 amino acid length and at least 80% amino acid homology
[62,68,98]. The clonotypes can then be ranked based on their fre-
quency in any given serum sample. Moreover, it has been sug-
gested that by ranking the frequency of H clonotypes vs. L
clonotypes, one can infer natural H:L pairs [70].

For analysis of the ‘‘utilized repertoire’’ one must resort to other
methods, such as sorting memory B-cells as the source of the
mRNA transcripts, or comparing transcripts corresponding to IgM
vs. IgG [11,51–53,67]. An example is the study of Wu et al. [100]
in which NGS analyses of two HIV infected individuals (ca.
>220000 sequences for each) were utilized to identify VH se-
quences which resemble the sequence of the highly potent neutral-
izing mAb VRC01 [99]. By comparing the sequences obtained from
both patients to the VRC01 sequence, they could follow the affinity
maturation pathway leading to this unique class of antibodies.
Similar studies using NGS and addressing the maturation of HIV
specific mAbs have been reported by others [14,20,100,106].

Although such NGS analyses of total RNA do not allow natural
pairing of the VH and VL chains or determine antibody specificity,
they do teach general structural characteristics of the antibody
repertoire in a given person and the response in a given clinical sta-
tus. Thus for example, sera of people infected by specific pathogens
or suffering from cancer or autoimmunity disease, can be com-
pared to control-sera which might lead to the identification of spe-
cific markers which can be used, for example, in diagnostic
applications [13,25,57,100].

3.3. Single cell cloning

Since 2009, several new and improved techniques for isolation
of human mAbs have emerged. Within a very limited period, there
has been a burst of innovation that has driven the field from the
isolation of a limited few to the production of hundreds of mAbs
[38,77,79,94,99]. These all start from sorting of antigen-specific
memory B-cells, the ability to perform single cell PCR transcript
amplification, and eventual effective cloning and expression of Ig
H and Ig L genes derived from individual B-cells. The success of
these novel technologies is based primarily on two major develop-
ments and improvements:

(i) The source of mRNA – using single cell memory B-cells as the
source of RNA. Of particular significance is the work of
Lanzavecchia and co-workers who discovered that memory
B-cells proliferate and secrete antibody in response to CpG
oligonucleotides, without the need of antigenic stimulation
[52,91]. Furthermore, memory B-cells can be efficiently
sorted based on the surface markers they display such
as: IgG+ or IgA+, CD19+, CD27+ and lack of ABCB1
[11,51–53,67]. This has paved the way to what has proven
to be the most effective method for selecting antigen specific
mAbs from a given individual [12,38,61,77,94,99]. A case in
point is the study of Walker et al. [94] who first screened
1800 HIV infected individuals for potent serum cross neu-
tralizing activity so to identify a particularly effective donor
of memory B cells (a clade A-infected African patient, as
opposed to Glanville et al. [34] who used 654 donors pooled
all together). They then used a high-throughput neutraliza-
tion screen of antibody-containing culture supernatants
from approximately 30000 activated memory B cells from
the donor. This led to the isolation of two novel broadly cross
neutralizing mAbs, PG9 and PG16.
(ii) Improved design of primers – Broadly cross neutralizing mAbs
against HIV have been discovered to contain exceptionally
high levels of point mutations acquired during the course of
somatic hypermutation and affinity maturation [106]. As a
result, this hypervariability can interfere with the isolation
of mAb transcripts. In order to overcome this problem, Scheid
et al. redesigned the set of primers so that the 50 primer is set
further upstream to avoid the hyper-mutated regions [79].

Applying this approach led to the successful cloning, isolation
and characterization of 576 new antibodies of HIV envelope bind-
ing memory B cells, from four HIV infected individuals. Hence, a
remarkable improvement in the efficiency of mAb isolation was
realized [79]. Obviously, by dramatically increasing the number
of antibodies isolated with a distinct affinity along with their
sequencing, one can identify generalities and how the immune sys-
tem responds and is able to neutralize a given virus.

Since the study of Walker et al., a number of groups have re-
ported variations conforming to a general paradigm where one
screens the affinity selected memory B-cells followed by single cell
cloning of their cognate H and L chains that then guide the con-
struction of their functional antibodies via recombinant DNA tech-
nologies [38,61,77,99].

Whereas many of the analyses discussed thus far have dealt
with the genetic bases for Ab production and expression they do
not necessarily address the actual physical nature of antibodies ex-
pressed in the serum. Hence, combining proteomics with NGS has
been the next step.

3.4. Combining proteomics with NGS

Despite the elegance of single cell cloning of natural mAbs from
memory B-cells, these efforts go to produce select antigen specific
mAbs rather than provide insights to the general diversity of anti-
bodies physically present and ‘‘used’’ in the serum.

To address the challenge of deconvoluting the diversity of Abs
present in polyclonal serum, two groups have successfully proven
feasibility in combining proteomics with NGS techniques for the
analysis of the serum antibodies response, although still to specific
antigens [22,98]. Cheung et al. conducted a study to investigate the
mAb composition of polyclonal serum of rabbits immunized with
progesterone A/B (PR A/B) peptides [22]. While Wine et al. aimed
to deconvolute the polyclonal serum of a rabbit immunized with
Concholepas concholepas hemocyanin (CCH) as opposed to an unim-
munized rabbit [98]. In both cases the following general scheme
was used:

� Serum immunoglobulins are purified over protein A columns
and then subjected to antigen affinity chromatography to iso-
late antigen specific IgGs.
� The purified Ab fraction is analyzed by liquid chromatography

coupled to tandem mass spectrometry (LC–MS/MS).
� Parallel to this effort, high-throughput DNA sequencing of the

immunized animal’s memory B-cells of both the H and the L
chains is performed to create a comprehensive data base of all
immunoglobulins that have been expressed and archived.

By comparing these two data sets one can draw a number of con-
clusions: (i) One can ascribe the CDR3s defined by proteomic analy-
sis to full length VH chains derived from the NGS data, (ii) Once the
full length VH sequences have been identified, these can be ranked
based on their frequencies of the CDR3s mapped by proteomic anal-
ysis, and (iii) Using different strategies, one can reconstitute anti-
bodies based on the most frequent VH chains identified.
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These groups have pioneered the physical characterization of
the antibodies represented by the IgOme in serum. They have
accomplished this by combining both proteomic and NGS data sets
thus illustrating that this general approach is feasible. Whereas
these studies are extremely important, the technology has yet to
be further developed in order to allow the transition from antigen
based IgOme analysis to the general comprehensive analyses of the
total IgOme in a given person.

4. Indirect IgOme profiling

Most certainly the production and analyses of antibodies has
come a long way since Köhler and Milstein introduced their mur-
ine hybridoma technology [50], the recent isolation of target-spe-
cific human mAbs derived from single memory B-cell clones [78]
and the ultimate comprehensive proteomic/NGS screens described
by Cheung and Wine [22,98]. However, all these efforts are still
very much single antigen oriented and do not provide a broader
appreciation of the diversity of antibody specificities actually
found in serum. For this, combinatorial peptide and protein arrays
have been proposed and perfected. Here we will focus on the use of
phage display peptide libraries. For reviews dealing with synthetic
peptide arrays and antigen arrays the reader is referred to specific
reviews [33,72].

4.1. Random phage display libraries

George Smith pioneered the concept of using random peptides
displayed on filamentous bacteriophages to interrogate antibodies
[84]. The initial application of such studies was to map a mAb’s
specific epitope via the peptides it was able to affinity select from
a vast collection of random short peptides (6–15 amino acids long)
[15,32,81,84]. This exercise first taught us the striking realization
that despite our notion of exquisite specificity of mAbs, in reality
it turns out that any given mAb most often can bind a rather larger
diversity of peptides that often show no obvious homology with
the linear amino acid sequence of that mAb’s cognate antigen
[15,89]. This is due to the fact that antibodies bind protein surfaces
that are comprised of discontinuous residues brought together
through protein folding [73]. Hence the typical epitope is both con-
formational and discontinuous. Thus, more than often the peptides
fished out of a random peptide library through specific binding are
peptido-mimetics that in some fashion represent complex surfaces
of the antigen recognized by the mAb.

One must consider, however, that antibodies do not always bind
protein epitopes. Thus, for example probes for phosphotyrosine [35]
as opposed to phosphoserine or phospothreonine [36,71] can be
developed illustrating that some antibodies can target the modified
amino acid. Moreover, antibodies are often specific for glycomoi-
eties as is the case for the immune response to the ABO blood types
[93]. Phage display peptide libraries, expressed in bacteria obviously
cannot account for these post translational modifications of protein.
Nonetheless, phage display peptide analyses of sugar specific anti-
bodies have proven feasible as often the affinity purified peptide is
a mimetic of a non-amino acid structure [7,82,88].

However, random peptide analyses generate collections of
affinity purified peptides that represent a given mAb’s epitope
[15,89]. Thus, a number of computational methods have been
developed in which the peptides that have been affinity selected
by a given mAb can be used as a database to predict its correspond-
ing epitope, provided an atomic structure of the antigen is avail-
able [15,18,27,32,39,59,63,80,89]. A case in point is the
application of the predictive algorithm Mapitope which has been
applied for the prediction of components of the epitope for the
HIV neutralizing mAb b12 (mentioned above) and for the
SARS-CoV neutralizing epitope, 80R [15, 89]. These predictions
have then subsequently been confirmed by X-ray analyses of anti-
body-antigen co-crystals [105, 43b].

Folorgi et al. were the first to demonstrate the use of phage dis-
play libraries for the analysis of disease associated polyclonal ser-
um [30]. These investigators screened a library of random
nonapeptides using human sera taken from individuals vaccinated
with hepatitis B virus surface antigen (HBsAg) and compared these
to sera taken from healthy donors. They illustrated that panels of
peptides could be produced and corresponded with the viral
antigen.

Since these studies, the dissection and interrogation of the hu-
moral response seen in the polyclonal serum by random phage dis-
play has become a tool for epitope mapping, diagnostics and
prognostics of various clinical states, as detailed in Table 1.

As has been previously discussed for the use of phage display
antibodies, here too the screening process itself can be a long
and tedious process which results in the selection of only tens to
hundreds of affinity selected peptides after weeks of screening.
Moreover, as any given mAb can select a diversity of tens of pep-
tides on its own, the generation of panels of even hundreds of pep-
tides by serum cannot faithfully represent the complexity of its
polyclonal composition.

4.2. Deep-Panning

In order to address these issues Deep-Panning has been pro-
posed; a method in which the power of NGS is combined with
the flexibility of random peptide phage display for the analysis of
polyclonal serum [74]. Conceptually polyclonal serum is used to
screen a phage displayed random peptide library followed by
NGS of all the affinity captured phages. The output of such an anal-
ysis is a vast collection of thousands to millions of peptide se-
quences that have been affinity purified by the antibodies in a
given serum sample. The frequency a specific peptide is isolated,
indicates the titer and affinity of its corresponding antibody. In
Deep-Panning there is no isolation or cloning of single phages,
rather the entire complexity of all phages harvested in a panning
experiment are directly sequenced, all at once. Moreover, deep-
sequencing allows parallel sequencing of tens of samples; each
sample is discriminated by a short DNA barcode (5 bases) intro-
duced during the PCR sample preparation.

An example of the use of Deep-Panning has been in the analysis
of HIV-1 infected polyclonal serum. A phage display library of 7
mer peptides was used to biopan a sample of purified human IgG
obtained from HIV-1 infected individuals (HIVIG). After three
rounds of biopanning against the HIVIG, the eluted phages were
used as templates for PCR amplification. The PCR products were
deep-sequenced using the Illumina system [10]. A total of
163,400 peptides were obtained of which 7799 were unique se-
quences. Of these, peptides could be demonstrated that correspond
to HIV envelope showing that Deep-Panning of disease related ser-
um can generate a clear diagnostic signal indicating specific epi-
topes associated with the pathogen.

Thus, Deep-Panning illustrates the compatibility of combinato-
rial phage displayed libraries with NGS [74]. Comprehensive panels
of hundreds of thousands of affinity selected phage display pep-
tides are produced and their frequencies and motif relevance en-
able one to categorize the specificities of a given polyclonal
serum. Further development of computational algorithms able to
handle the massive data generated from random peptide libraries
and catalogue the peptides into motifs could lead to the ability
to associate these with defined epitopes and antigens. Thus,
Deep-Panning should become a practical tool for the profiling of
the IgOme.



Table 1
The usage of random peptide library for the analysis of polyclonal serum.

Disease Aim References

HIV Selection of specific mimotopes by plasma samples which defined Long Term Non Progressors (LTNPs) HIV infected individuals as opposed to
progressor HIV infected patients

[42]

HIV Analysis of polyclonal serum from HIV-1 infected individuals corresponding to the pentameric loop of gp41 [28]
HIV Identification of antigenic and immunogenic mimotopes of HIV-1 epitopes [76]
SIV Differentiation of a passive vaccine and the humoral immune response towards infection [83]
SIV Identification of epitopes associated with vaccine protection in rhesus macaques [4]
SARS Discovery of disease-specific B cell epitopes for SARS-CoV [55]
HCV Discovery of disease-specific epitopes for HCV infected patients [87]
AS Selection of specific serum biomarker for ankylosing spondylitis (AS) [95]
MS Characterization of the antigenic epitopes specifically targeted by the sera of patients with multiple sclerosis (MS) [44]
Cancer Discovery of potential serum biomarkers for early primary Hepatocellular carcinoma (HCC) [103]
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4.3. Gene-fragment phage display library

In contrast to random peptide display, gene-fragment phage
display libraries offer an alternative that can simplify analyses
especially when one focuses on a specific antigen(s). The gene-
fragment phage display library can represent a gene [29], a cDNA
[19,24,29,45,85,104] or even a total genome [47,54] that encodes
the ligand of interest. The DNA is reduced to smaller gene frag-
ments (50–400 bp), usually by DNaseI-mediated random digestion
or by gene fragment synthesis [47,66,92]. These are cloned into the
50 terminus of the coat protein gene of the phage. The gene-frag-
ment phage display library is then used for biopanning against
polyclonal serum or specific mAbs, and has resulted in the isolation
of peptides which enable one to determine the corresponding epi-
topes of the Abs tested. These selected peptides can also be utilized
as biomarkers for various applications. Novel biomarkers, such as
circulating (auto) antibody signatures, may improve diagnosis,
prognosis and treatment of cancer [19,104], autoimmune [54,85]
and infectious-diseases [48]. For example, Chatterjee et al. utilized
a cDNA phage display library to identify diagnostic markers for
ovarian cancer [19]. Their 65 selected clones interacted with sera
from 32 ovarian cancer patients but not with sera from 25 healthy
women or 14 patients suffering from other benign or malignant
gynecologic diseases. Thus, the panel of biomarkers was found effi-
cient for detection of ovarian cancer. However, this platform has
limitations as well. The abundance of fragments that are cloned
are often out of reading frame, consequently the identification of
the epitopes is not straightforward. For example, only 12 out of
the 65 clones, selected by Chatterjee et al., could clearly be shown
to correspond to linear segments of known antigens. The remain-
ing clones were either unidentified or had weak homology with
known proteins and thus were assumed to represent mimetics of
more complicated conformational epitopes.

Although these libraries are of limited diversity (as opposed to
random peptide libraries), this approach has been proven as inex-
pensive and high-throughput. Moreover, this method allows for di-
rect mapping of the epitope on the antigen sequence, as opposed to
phage display random peptide libraries in which epitope mapping
is not straight forward.

A tour de force demonstration regarding gene fragments is the
study of Larman et al. [54] who emphasized the strength of com-
bining deep-sequencing with phage display. These investigators
constructed a complete human proteome in the form of tiled over-
lapping peptides. For the synthetic representation of the proteome,
they generated phage display libraries which were made from
413611 DNA sequences encoding 36 amino acid peptides that span
24239 unique open reading frames. The DNA oligonucleotides
were robotically synthesized and cloned using the T7 phage dis-
play system. The final library obtained, was screened against spinal
fluids of patients suffering from neurologic autoimmune disease.
These screens resulted in the identification of 16 autoantigen
candidates of which four are considered potential diagnostic mark-
ers. The authors propose that further improvement of their meth-
odology may be realized by construction of peptides of greater
lengths which could extend the analyses to more conformational
epitopes.

5. Summary

Direct and Indirect methods are being used to profile the com-
plexity and composition of antibodies in polyclonal serum. For the
present, most of these technologies have proven efficient when ap-
plied to the humoral response towards specific antigens or patho-
gens. Nonetheless, the examples discussed serve as practical
illustrations of how we should be able to cope with the vast diver-
sity of antibodies that comprise the IgOme. Much progress has
been made both in antibody isolation and molecular characteriza-
tion of the antigens/peptides they bind. Further refinement of the
methods described should lead, in the not too distant future, to a
comprehensive portrayal of the human IgOme.
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