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Epidemiological models have highlighted the importance of population struc-

ture in the transmission dynamics of infectious diseases. Using HIV-1 as an

example of a model evolutionary system, we consider how population structure

affects the shape and the structure of a viral phylogeny in the absence of strong

selection at the population level. For structured populations, the number of

lineages as a function of time is insufficient to describe the shape of the phylo-

geny. We develop deterministic approximations for the dynamics of tips of the

phylogeny over evolutionary time, the number of ‘cherries’, tips that share a

direct common ancestor, and Sackin’s index, a commonly used measure of phy-

logenetic imbalance or asymmetry. We employ cherries both as a measure of

asymmetry of the tree as well as a measure of the association between sequences

from different groups. We consider heterogeneity in infectiousness associated

with different stages of HIV infection, and in contact rates between groups of

individuals. In the absence of selection, we find that population structure may

have relatively little impact on the overall asymmetry of a tree, especially when

only a small fraction of infected individuals is sampled, but may have marked

effects on how sequences from different subpopulations cluster and co-cluster.
1. Introduction
Viruses, especially RNA viruses such as human immunodeficiency virus type 1

(HIV-1), hepatitis C virus and influenza A virus, may exhibit a great deal of gen-

etic variation at the population level, allowing the reconstruction of viral

phylogenies that reflect the past transmission of the virus. The shape of the phy-

logeny can tell us a great deal about how population processes, such as changes

in population size and geographical population structure, and immunological

processes, such as selection on the virus to escape immune responses, interact [1].

For example, ‘star-like’ phylogenies are typical of populations that are growing

exponentially, while ‘ladder-like’ phylogenies are consistent with a model

where one variant is replaced by another due to immune escape. This integration

of ecological, epidemiological and evolutionary processes has been dubbed ‘phy-

lodynamics’ [2]. Phylodynamic approaches have been used in hundreds of

studies of viruses [3] and have generated important insights into the transmission

dynamics of many viral pathogens, such as the spread of HIV in the UK [4,5], as

well as the geographical spread of influenza A [6–8]. The information obtained

by applying phylodynamic models to viral sequence data would be hard, if not

impossible, to obtain through more classical epidemiological approaches.

The majority of phylodynamic studies have employed models derived from

simple population dynamic models of single species. However, these models

may be inappropriate when considering the spread of a virus in a population.

A key quantity in these models is the coalescence rate, the rate at which lineages

coalesce in a phylogeny as we go backwards in time from the present. From the

coalescence rate, these models generate estimates of effective population size or

Ne, which is commonly (mis)interpreted as being proportional to the number

of infected individuals. Previously, we have demonstrated that the coalescence
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rate of an infectious disease is related not only to the preva-

lence, but also to the rate of transmission (i.e. the incidence)

[9]. Consequently, the conclusions of previous studies, par-

ticularly those that integrate viral sequence data with

information on prevalence, may have to be reinterpreted.

The use of epidemiological models to underpin viral evol-

utionary models can lead to results that are more easily

interpretable, and permit the inclusion of prior information,

such as that on the duration of the infectious period, as

well as facilitating the integration of phylogenetic data with

other forms of epidemiological data [10].

Recently, there has been increased interest in considering

the phylodynamics of structured populations, for example, in

the context of studying the spatial spread of viruses from

sequence data (‘phylogeography’) [11]. In addition, there

are many other forms of heterogeneity that may be impor-

tant, including differences by age, duration of infection,

contact rate, infectiousness, susceptibility, treatment or vacci-

nation status, etc., depending on the system being studied.

When data are available on which subpopulation a viral

sequence is associated with, there are a variety of tests that

can be used to assess whether there is significant population

structure (see Zárate et al. [12] for a comparison of several

approaches to within-host HIV population structure). A par-

ticular challenge arises when data on the subpopulations are

lacking. For example, while acute HIV infection is associated

with higher infectiousness, information on the time since

infection may not be available; similarly, while there may

be differences in contact rates between different subpopu-

lations, many molecular epidemiological studies of HIV do

not collect behavioural data. Recently, Leventhal et al. [13]

took an inventive approach to this problem; using a phylo-

geny from the Swiss HIV epidemic, they showed that the

phylogeny was significantly more unbalanced than expected

from a simple model of random mixing, which they argued

could be due to contact structure in the at-risk population.

They used a measure of tree balance, Sackin’s index [14],

and derived an approximation of the expectation of Sackin’s

index given a transmission network. Of note, they did not

present a similar approximation for Sackin’s index given

the underlying contact network.

In this study, we consider how population structure may

affect phylodynamic patterns, using HIV-1 as a model

system. We first introduce the notion of tree imbalance or

asymmetry. We then review our framework for modelling

coalescence using ordinary differential equations, presenting

another perspective on our past results, which we extend to

consider the dynamics of external branches (or tips or

leaves) of the phylogenetic tree. This device allows us to

model cherries [15], pairs of tips that share a direct

common ancestor, which we use to capture both tree asym-

metry as well as population structure. We also derive an

approximation to Sackin’s index as a complementary

measure of tree asymmetry. We apply this approach to deter-

mine how (i) higher infectiousness during acute infection and

(ii) the presence of a high-risk group with a high contact rate

may affect the shape and the structure of the viral phylogeny.
2. Asymmetry of phylogenetic trees
The most widely used model used in studies of viral phylo-

dynamics is the time-varying coalescent model [16], which
considers the genealogical process in a population that

changes size in a deterministic fashion according to some

relative size function, n(t), where t is time measured in gen-

erations, starting with the present and going backwards.

Assuming a sample of n individuals taken at time t ¼ 0,

and that the sample can be traced back to a single common

ancestor with probability one, the dynamics of the number

of distinct ancestors of the sample at time t is modelled as

a stochastic process fAnðtÞ; t � 0g, which starts at An(0)¼ n,

and moves down in steps of 1 until reaching 1, at which

point the sample has been traced back to the common ances-

tor. In a small time-step h, the transition probabilities are

determined by the following:

PðAnðtþ hÞ ¼ jjAnðtÞ ¼ iÞ

¼

i
2

� �
1

nðtÞhþ oðhÞ; j ¼ i� 1

1� i
2

� �
1

nðtÞhþ oðhÞ; j ¼ i

0; otherwise:

8>>>>><
>>>>>:

ð2:1Þ

This model assumes that the rate of coalescence between

any two lineages is the same for all pairs of lineages, but

varies over time. If the rate of coalescences varies between

lineages at a given time, then this may have an impact on

the shape of the tree [17]. Hence, deviations of the shape of

an inferred tree from that expected under the coalescent

model suggests that additional biological complexity may

need to be considered. There are a number of different measures

of tree shape that can be used for this purpose [18,19], but we

focus on two specific measures: the number of ‘cherries’ [15]

and Sackin’s index [14]. Figure 1 illustrates how these stat-

istics are calculated for two small trees, one symmetric and

one asymmetric. Measures of tree shape tend to consider

another stochastic process that generates trees, a linear birth

or the Yule process [20]; however, as this model gives the

same probability distribution on cladograms (i.e. the top-

ology of the tree) [21], results on asymmetry for the Yule

process also hold for the coalescent model.

Cherries are defined as the number of tips that share a

direct ancestor, which are generated when two tips coalesce.

The expected number of cherries in a tree with n taxa under a

Yule or coalescent model is n/3 [15]. In an asymmetric tree,

tips tend to coalesce with branches deeper in the tree, and

there are fewer cherries than expected. We denote the

number of cherries as C, which is not to be confused with

another measure of asymmetry, Colless’ index [22].

Sackin’s index is a measure of the topological distance

from the tips of the tree to the root and is defined as follows.

If the distance dj of a leaf j is the number of internal nodes that

need to be traversed when following the path from the root of

the tree to a leaf j, then Sackin’s index is the sum of all such

paths, IS ¼
P

j dj. The expectation of Sackin’s index for n taxa,

EðISðnÞÞ, under a Yule or coalescent process [23] is as follows:

EðISðnÞÞ ¼ 2
Xn

k¼2

1

k
ð2:2Þ

¼ 2ðcð0Þðnþ 1Þ þ ge � 1Þ; ð2:3Þ

where cð0Þ is the polygamma function of order 0, and ge the

Euler–Mascheroni constant (� 0:577). For large n, EðISðnÞÞ �
2n log(n). As Sackin’s index increases with sample size, it is

often standardized by dividing by the number of sequences.

Although this has a direct biological interpretation—the mean
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Figure 1. Schematic illustrating cherries and the calculation of Sackin’s statistic for a symmetric (a) and an asymmetric (b) six-taxon cladogram.
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root-to-tip distance (in terms of nodes)—we employ a different

standardization used by Leventhal et al. [13], which is as follows:

I
�
SðnÞ ¼

ISðnÞ � EðISðnÞÞ
EðISðnÞÞ

: ð2:4Þ

Under the null Yule or coalescent model, �ISðnÞ ¼ 0, which

allows one to assess deviations from the null model more

easily. We calculated these tests for two HIV phylogenies,

one from an early clinical trial, ACTG 241 [9,24], and another

of group M viral sequences sampled from HIV-infected indi-

viduals from the Democratic Republic of Congo [25–27].

Both trees show moderate, but statistically significant, evi-

dence of asymmetry (see the electronic supplementary

material, figure S1). For both of these datasets, the sequences

were sampled at approximately the same time. Although

many viral datasets are collected in serial samples, and this

can result in more asymmetric trees than if sequences are

sampled at a single timepoint (see the electronic supplemen-

tary material, figure S2), in order to keep the exposition

simple, we will consider sampling at a single timepoint,

although the approach taken here can also be extended to

serial samples.

The number of cherries and Sackin’s index complement

each other well, as the number of cherries captures asymme-

try in the recent evolutionary past, while Sackin’s index

captures asymmetry over the entire evolutionary history of

the sample, and simulations demonstrate that these statistics

are only weakly correlated under the coalescent model (see

the electronic supplementary material, figure S3).
3. Tree shape in a simple model of HIV infection
To investigate how the shape of a viral phylogeny is linked to

transmission, we first considered a simple model commonly

used to study the spread of HIV among men who have sex

with men (for a comparison of the deterministic and stochas-

tic version of this model, see Jacquez & Simon [28]). If S
denotes the number of susceptible individuals and I denotes

the number of infected individuals, the rates of change of

S and I are as follows:

dSðtÞ
dt
¼ L� bcSðtÞ IðtÞ

NðtÞ � mSðtÞ ð3:1Þ
and

dIðtÞ
dt
¼ bcSðtÞ IðtÞ

NðtÞ � ðmþ gÞIðtÞ; ð3:2Þ

where

NðtÞ ¼ SðtÞ þ IðtÞ: ð3:3Þ

Here, b is the per-contact probability of infection, c the contact

rate, m represents the natural mortality rate, g denotes the

excess mortality caused by infection, and L is the rate of immi-

gration/birth of new susceptibles. The dynamical behaviour of

the model depends on the value of the basic reproductive

number R0 ¼ bc=ðmþ gÞ. If R0 . 1 in this model, the

number of infected individuals initially increases exponen-

tially, plateaus, and finally reaches an equilibrium (figure 2a).

(a) The number of lineages as a function of time
For the model (3.1)–(3.2), the phylogenetic structure can be

captured by the number of lineages as a function of time

(NLFT), denoted A(s), where S is time going backwards

from the present to the past. A differential equation describing

the dynamics of A can be derived by first recognizing that the

NLFT decreases as a consequence of transmission, but only if

both lineages involved in the transmission are sampled.

Let A(s) denote the set of lineages that are ancestral to the

sample at time s, so that AðsÞ ¼ jAðsÞj. U(s) will denote the set

of lineages which are not ancestral to the sample and will

have cardinality U(s). Lower-case symbols will denote

elements of these sets: a [ A and u [ U. � will denote the

removal of a lineage. At each internal node of the tree, we

denote the types of daughter lineages i and j and the state

of the parent k using the notation ði; jÞ ! k. The possible

types of transition as we go backwards in time are as follows:
transition
 DA
 DU
 rate
ða;aÞ ! a
 21
 0
 fSI
A
I

A
I

ðu;uÞ ! u
 0
 21
 fSI
U
I

U
I

ða;uÞ ! a
 0
 21
 2� fSI
A
I

U
I

�! u
 0
 þ1
 fI�I
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Figure 2. (a) Dynamics of the number of infected individuals, I (black line), and n ¼ It/2 (dashed line) over time in weeks based on equations (3.1) – (3.2), as well
as estimates of ‘scaled effective population size’ obtained from applying a Bayesian skyride (grey) to simulated data generated from a forwards-time stochastic
version of the model, with 100 replicates. (b) Dynamics of the mean generation time, t. Parameter values and initial conditions are as follows: b ¼ 0.01, c ¼ 1,
m ¼ 1

3640, g ¼ 1
520, L ¼ 10 000

3640 , S(0) ¼ 9999, I(0) ¼ 1, with a simulation time of 40 years. Simulations of the differential equations were performed using the
SIMECOL library [29] in R [30], fitting of the skyline plot used the INLA library [31], while the stochastic simulations were performed using SIMPY v. 1.9.1 in PYTHON (see
[3] for more details). Simulations were conditioned on reaching a quasi-equilibrium state, and registered by aligning the peaks of the simulated number of infected
individuals to the peak of infected individuals from the ordinary differential equations. Code to perform simulations is available from http://code.google.com/p/
simonfrost.
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The above transitions assume that the population sizes for

I, A and U are large, such that IðI � 1Þ � I2, etc., and we con-

sider sampling with replacement for the coalescence of

lineages. The first type of transition, ða; aÞ ! a reflects the

decrease in lineages when there is an infection involving two

sampled lineages. Infections where neither the source nor the

recipient individual are sampled do not affect the number

of lineages in the sample, and so we do not need to consider

transitions of the form ðu; uÞ ! u for the NLFT. The transition

ða;uÞ ! a occurs either when a sampled individual infects

another individual but we do not sample the latter individual,

or when an unsampled individual infects a sampled individ-

ual. These transitions reflect what we have described as an

‘invisible’ transmission [32,33]. While such transitions do not

affect the number of lineages, for structured populations they

may result in a change in state of the lineage, and so are impor-

tant for more complex models, which we will demonstrate

later. The removal of lineages, for example by death or recov-

ery of infected individuals, while changing the number of

unsampled lineages (�! u), does not directly affect the

number of sampled lineages, as the transitions �! a is not

possible; in addition, the transition ða; uÞ ! u is not possible.

These transitions suggest the following set of differential

equations for the dynamics of A and U:

dAðsÞ
ds

¼ �fSI
A
I

A
I

ð3:4Þ

and

dUðsÞ
ds

¼ �fSI
U
I

U
I
� 2fSI

U
I

A
I
þ fI�I: ð3:5Þ

Transitions in this model are more complex than those con-

sidered in a simple Wright–Fisher model. Firstly, an infection

gives rise to another through transmission, such that there are
overlapping ‘generations’. Secondly, sampling effects enter

into the transition rates. Nevertheless, there is a one-to-one cor-

respondence of the coalescence rate in this epidemiological

model with that in standard population genetics models

widely used in viral phylodynamic studies. In a haploid

Wright–Fisher model, the dynamics of the effective popu-

lation size Ne is in units of generations. The resulting

estimates from models fitted to phylogenies where branch

lengths are in real time are usually interpreted as Net, or the

‘scaled effective population size’, where Ne is the ‘effective

number of infections’ and t the generation time. For the

model given by equations (3.1)–(3.2), the coalescence rate is

the same as a haploid Wright–Fisher model if we define the

number of infected individuals I/2 as the ‘effective number

of infections’ and the generation time t ¼ fSI=I ¼ bcS=N (the

incidence-to-prevalence ratio [34]), with the ‘scaled effective

population size’ being It/2. The use of the term ‘generation

time’ here, in a population genetics context, should not be con-

fused with epidemiological interpretations of the generation

time [35,36], which is defined at the individual level, as

the time between the infection time of an infected person, and

the infection time of his or her infector, rather than the average

time between infections at a given time at the population level.

Figure 2a illustrates the dynamics of n ¼ It/2 over time in

relation to the number of infected individuals I for the model

given by equations (3.1)–(3.2). This demonstrates that n is out

of phase with I, and also exhibits differences in the magni-

tude of fluctuations. We also fitted a ‘Bayesian skyride’

model [37] to simulated coalescent intervals generated from

a forwards-time, stochastic, discrete event version of the

model, using a fast approximation that is fitted directly to a

phylogenetic tree [38]. Such non-parametric models for n

tend to smooth out fluctuations, as well as underestimating

n at a given timepoint, as they average n over a time period

http://code.google.com/p/simonfrost
http://code.google.com/p/simonfrost
http://code.google.com/p/simonfrost
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as the harmonic mean [39]. Nevertheless, the skyride

performs well in identifying the overall trajectory of n.

These results argue that the term ‘effective number of

infections’ is potentially misleading [3], as it implies that

the ancestral size function n is directly proportional to the

number of infected individuals. This is not generally the

case, owing to a time-varying generation time t(t) over

the course of an epidemic (figure 2b), which is short during

the early stages of an epidemic, and becomes longer as the

number of susceptible individuals becomes limiting. How-

ever, there are time periods, such as the case of exponential

growth, and at endemic equilibrium, where the generation

time is constant, and hence n is proportional to the number

of infected individuals [3,40].
R
SocB

368:20120208
(b) The number of leaves and cherries
While the distribution of coalescent intervals is sufficient for

inference of n under simple models, this is not the case for

more realistic models that incorporate heterogeneity. As a

prelude to discussing these models, we consider the

number of cherries in the homogeneous model. As cherries

are generated when two tips coalesce, we consider the

dynamics of tips and internal branches separately. L(s) and

B(s) will denote the set of tips and internal branches, with

cardinality L(s) and B(s), respectively. As before, lower-case

symbols will denote elements of these sets. We denote the

cumulative number of cherries as C, and consider the

following transitions backwards in time:
transition
 DL
 DB
 DC
 rate
� �2

ðl;lÞ ! b
 22
 þ1
 þ1
 fSI

L
I

ðl;bÞ ! b
 21
 0
 0
 2� fSI
L
I

B
I

ðb;bÞ ! b
 0
 21
 0

fSI

B
I

� �2
The rationale for this scheme is as follows. When two

leaves coalesce, they form a single branch, as well as a

cherry. When a leaf and a branch coalesce, this either results

in the loss of a leaf, or a loss of a branch and a change of state

from a leaf to a branch; both of these occur at the same rate,

and result in the same net changes in L and B (hence the

factor of two). When two branches coalesce, this results in

the loss of a branch. Consideration of the dynamics of tips

also allows us to consider the proportion of lineages that clus-

ter with at least one other sequence, a common approach

when analysing HIV phylogenies [5], and is related to the

concept of an operational taxonomic unit. The proportion of

unclustered tips is PðsÞ ¼ LðsÞ=Að0Þ, and the distribution of

tip lengths is�dPðsÞ=ds. The mean number of taxa per cluster

[9], M, is included for completeness. If A(0) sequences are

sampled at a single timepoint s ¼ 0, then the initial conditions

are L(0) ¼ A(0), B(0) ¼ 0, C(0) ¼ 0 and M(0) ¼ 1. This leads to

the following set of differential equations for L, B, C and M:

dLðsÞ
ds
¼ �2fSI

L
I

� �2

�2fSI
L
I

B
I

ð3:6Þ

¼ �2fSI
L
I

A
I
; ð3:7Þ
dBðsÞ
ds
¼ fSI

L
I

� �2

�fSI
B
I

� �2

; ð3:8Þ

dCðsÞ
ds
¼ fSI

L
I

� �2

ð3:9Þ

and
dMðsÞ

ds
¼ fSI

A
I2

� �
M: ð3:10Þ

The total number of cherries in a tree is simply the sol-

ution of C(s) at the time to the most recent common

ancestor (TMRCA). The only subtlety that arises is the calcu-

lation of the TMRCA. In a standard coalescent framework,

the TMRCA is the time at which the last two lineages

coalesce; in an epidemiological model, this is the time at

which the first transmission takes place involving two

infected individuals ancestral to the sample, which may

occur after the first transmission by the first infected individ-

ual in the population. We make the approximation that the

TMRCA is the time at which A ¼ L þ B ¼ 1.

Theory based on extended Polya urn models [15] has

shown that the expected number of cherries in a tree gener-

ated by a Yule or coalescent process is n/3, where n is the

number of sequences. We considered the dynamics of cher-

ries for the simple HIV model at endemic equilibrium. If

we define a constant k ¼ fSI=ðI2Þ, then the solution of

equations (3.4)–(3.9) for A(s), L(s) and C(s) is as follows:

AðsÞ ¼ 1

Að0Þ þ ks
� ��1

; ð3:11Þ

LðsÞ ¼ 1

Að0Þ
1

Að0Þ þ ks
� ��2

ð3:12Þ

and CðsÞ ¼ Að0Þ
3

1� 1

ðAð0Þksþ 1Þ3

 !
: ð3:13Þ

The time to the most recent common ancestor,

sMRCA ¼ ðAð0Þ � 1Þ=ðkAð0ÞÞ, is the solution of A(s)¼ 1 for S,

and the total number of cherries, CðsMRCAÞ ¼ ðAð0Þ=3Þ
ð1� 1=A3Þ; for large n, CðsMRCAÞ � Að0Þ=3, i.e. the total

number of cherries in the differential equation model is approxi-

mately the same as the mean from a Yule or coalescent process,

with only a negligible difference for sample sizes typical of

many viral studies, in the order of a hundred or more.

(c) Sackin0s index
As Sackin0s index is the number of internal nodes (including

the root) from each tip, summed over all tips, to obtain an

approximation for Sackin0s index we need to consider the

coalescence rate, fSIðA=IÞ2, and the expected change in

Sackin0s index given a coalescence, which is

2Að0Þ=AðsÞ ¼ 2M, where M is the mean cluster size; the

factor of two arises due to coalescent events affecting the

counts for two lineages. A differential equation for K(s), the

cumulative value of Sackin0s index at time S in the past

(where K(0) ¼ 0), is as follows:

dKðsÞ
ds
¼ 2fSI

A
I

� �2 Að0Þ
A

: ð3:14Þ

KðsMRCAÞ provides an approximation for Sackin0s statistic.

Considering the simple HIV model at equilibrium, substitut-

ing sMRCA ¼ ðAð0Þ � 1Þ=ðkAð0ÞÞ into equation (3.14)

gives KðsMRCAÞ ¼ 2n logðnÞ. Although as the number of

sequences tends to infinity, KðsMRCAÞ ! EðISðnÞÞ, the



weeks since present

A

2000 1500 1000 500 0

0

20

40

60

80

100

tip length (weeks)

de
ns

ity

0 500 1000 1500 2000

0

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

weeks since present

M

2000 1500 1000 500 0

1

2

5

10

20

weeks since present

1 
−

 P

2000 1500 1000 500 0

0

0.2

0.4

0.6

0.8

weeks since present

C

2000 1500 1000 500 0

0

10

20

30

40

weeks since present

K

2000 1500 1000 500 0

0

500

1000

100(a) (b) (c) 

(d ) (e) ( f ) 1.0

Figure 3. Dynamics of (a) the number of lineages, A, (b) the distribution of tip lengths, (c ) the mean cluster size, M, (d ) the fraction of sequences clustered, 1 2 P,
(e) the number of cherries, C, and ( f ) Sackin0s index, K, for the simple model of HIV infection given by equations (3.1) – (3.2). Parameter values, initial conditions,
and simulations are as in figure 2.
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difference between KðsMRCAÞ and EðISðnÞÞ (on the order of 5%

for sample sizes in the hundreds) is large enough

that we standardize KðsMRCAÞ by 2n logðnÞ rather

than 2ðcð0Þðnþ 1Þ þ ge � 1Þ, i.e. �KðsMRCAÞ ¼ ðKðsMRCAÞ�
2n logðnÞÞ=2n logðnÞ. Figure 3 demonstrates the dynamics of

these statistics for the model given by equations (3.1)–(3.2),

which show excellent correspondence with results obtained

with forwards-time stochastic simulations.
4. Heterogeneity and tree shape
The model given by equations (3.1)–(3.2) considers only a

single type of susceptible and a single type of infected individ-

ual. More generally, we can consider models that include

heterogeneity between individuals. Examples of such hetero-

geneity include differences in infectivity at different times

since infection, differences between hosts in contact rates, and

geographical heterogeneity. Such heterogeneity can have a pro-

found effect on the transmission dynamics. Incorporating

heterogeneity in our phylodynamic models presents additional

challenges, as we need to consider ancestral lineages for each

type of infected individual, and coalescences between lineages

of both the same and different types.
(a) The number of lineages as a function of time
We begin by considering the dynamics of the total number of

lineages of each type for a two-type system, although these

results can easily be extended to more than two types. Con-

sidering forwards time, we define a time-varying matrix
F(t), comprising elements fij(t), the rate at which a lineage

of type i generates another of type j, and a matrix G(t), com-

prising elements gij(t), the rate at which a lineage of type i
changes to one of type j. These matrices are used to express

the transition rates for changes in the number of ancestral

lineages of different types [32], which for a two-type system

are as follows:
transition
 DA1
 DA2
 rate
ða1;a1Þ ! a1
 21
 0
 f11
A1

I1

A1

I1
ða1;a2Þ ! a1
 0
 21

f12

A1

I1

A2

I2
ða1;a2Þ ! a2
 21
 0

f21

A1

I1

A2

I2
ða2;a2Þ ! a2
 0
 21

f22

A2

I2

A2

I2
a1 ! a2
 21
 þ1

g21

A1

I1
þ f21

A1

I1

I2 � A2

I2
a2 ! a1
 þ1
 21

g12

A2

I2
þ f12

A2

I2

I1 � A1

I1
This leads to the following differential equation

for the dynamics of A1(s), with an analogous equation
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for dA2ðsÞ=ds:

dA1ðsÞ
ds

¼ �f11
A1

I1

A1

I1
� f21

A1

I1

A2

I2

� g21
A1

I1
� f21

A1

I1

I2 � A2

I2

þ g12
A2

I2
þ f12

A2

I2

I1 � A1

I1
: ð4:1Þ

(b) The number of tips and cherries
Derivation of the dynamics of tips in this two-type system

requires us to consider four types of tips, l11, l21, l12 and l22,

based on the (unobserved) state at time S in the past (referred

to by the first subscript) and the (observed) initial state at the

time of sampling. As for simplicity, we consider sampling at

a single timepoint, this is at s ¼ 0. For example, transitions for

the dynamics of tips involving l11 are as follows:
:
20120208
transition
 DL11
 DL21
 DL12
 DL22
�

rate
ðl11;l11Þ ! b1
 22
 0
 0
 0
 f11
L11

I1

L11

I1
ðl11;l21Þ ! b1
 21
 21
 0
 0

f12

L11

I1

L21

I2
ðl11;l21Þ ! b2
 21
 21
 0
 0

f21

L11

I1

L21

I2
ðl11;l22Þ ! b1
 21
 0
 0
 21

f12

L11

I1

L22

I2
ðl11;l22Þ ! b2
 21
 0
 0
 21

f21

L11

I1

L22

I2
ðl11;b1Þ ! b1
 21
 0
 0
 0

f11

L1

I1

B1

I1
ðl11;b2Þ ! b1
 21
 0
 0
 0

f12

L11

I1

B2

I2
ðl11;b2Þ ! b2
 21
 0
 0
 0

f21

L11

I1

B2

I2
l11 ! l21
 21
 +1
 0
 0
 g21L21 þ f21

L11

I1

I2�A2

I2
l21 ! l11
 +1
 21
 0
 0
 g12L11 þ f12

�L21

I2

I1�A1

I1
Consideration of these transitions leads to the following

differential equation for the dynamics of tips L11, with

analogous expressions for the dynamics of the other tips:

dL11ðsÞ
ds

¼ � L11

I1
2f11

A1

I1
þ f12 þ f21ð ÞA2

I2

� �

� f21
L11

I1

I2 � A2

I2
þ f12

L21

I2

I1 � A1

I1

� g21
L11

I1
þ g12

L21

I2
: ð4:2Þ

The first line of equation (4.2) represents coalescence of

tips, the second ‘invisible’ transmissions, which result in a

change in state and the third migration events. The fraction
of unclustered lineages that are in state j at the tips of the

tree, and are in state i at some time s in the past, Pij(s), can

be obtained from the above in a similar fashion as in the

single-population model.

In this two-type system, there are three types of cherries,

which we denote by cij. The rates of coalescence of different

types of tip (l11, l12, l21 and l22), and the types of cherry

generated are as follows:
transition
 rate
 cherry
ðl11;l11Þ ! b1
 f11
L11

I1

L11

I1
c11
ðl11;l21Þ ! b1
 f12
L11

I1

L21

I2
c11
ðl11;l21Þ ! b2
 f21
L11

I1

L21

I2
c11
ðl11;l12Þ ! b1
 2f11
L11

I1

L12

I1
c12
ðl11;l22Þ ! b1
 f12
L11

I1

L22

I2
c12
ðl11;l22Þ ! b2
 f21
L11

I1

L22

I2
c12
ðl12;l12Þ ! b1
 f11
L12

I1

L12

I1
c22
ðl12;l21Þ ! b1
 f12
L12

I1

L21

I2
c12
ðl12;l21Þ ! b2
 f21
L12

I1

L21

I2
c12
ðl12;l22Þ ! b1
 f12
L12

I1

L22

I2
c22
ðl12;l22Þ ! b2
 f21
L12

I1

L22

I2
c22
ðl21;l21Þ ! b2
 f22
L21

I2

L21

I2
c11
ðl21;l22Þ ! b2
 2f22
L21

I2

L22

I2
c12
ðl22;l22Þ ! b2
 f22
L22

I2

L22

I2
c22
It is important to note that we have to consider both

lineages as potential ‘sources’ of infection when consider-

ing coalescence between tips of different types, hence the

factor of two for ðl11; l12Þ ! b1 and ðl21; l22Þ ! b2. Consider-

ation of these transitions gives rise to the following

differential equations for the dynamics of the number of

cherries:

dC11ðsÞ
ds

¼ f11
L11

I1

� �2

þ f12 þ f21ð Þ L11

I1

L21

I2
þ f22

L21

I2

� �2

; ð4:3Þ

dC12ðsÞ
ds

¼ 2f11
L11

I1

L12

I1
þ ðf12 þ f21Þ

L11

I1

L22

I2
þ L12

I1

L21

I2

� �

þ 2f22
L21

I2

L22

I2
ð4:4Þ
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and

dC22ðsÞ
ds

¼ f22
L22

I2

� �2

þð f12 þ f21Þ
L22

I2

L12

I1
þ f11

L12

I1

� �2

: ð4:5Þ

The total number of cherries, C ¼ C11 þ C12 þ C22 gives a

measure of tree asymmetry, which can be compared against

the null of � Að0Þ=3. To facilitate comparison of trees with

different numbers of tips, L(0) ¼ A(0), we define a

normalized number of cherries, Cnorm ¼ C=Að0Þ.

(i) The composition of cherries as a measure of clustering
Capturing how different types cluster together on a tree, i.e.

co-clustering, is difficult, as—except at the tips of the tree—

the type of a lineage is not directly observable. Previously,

we have derived equations for the correlations in numbers

of sequences of different types in a cluster [33]. Here, we con-

sider clustering in terms of the composition of different types

of cherries, with relatively low values of C12 being indicative

of separation between types. We define the following

measure of assortativity, based on that of Newman [41]. We

denote a matrix E with elements eij as follows:

E ¼ 1

C

C11
C12

2
C12

2
C22

0
B@

1
CA: ð4:6Þ

The assortativity coefficient, r, is defined as follows, where

ai ¼
P

j eij and bj ¼
P

i eij:

r ¼
P

i eii �
P

i aibi

1�
P

i aibi
: ð4:7Þ

Under a null panmictic model, r ¼ 0, while for a model where

types are completely separated, r ¼ 1. An estimate of r can

also be obtained directly from a viral phylogeny.

(c) Sackin0s index
Extending our approximation for Sackin0s index (equation

(3.14)) to two subpopulations is relatively straightforward,

except now we have to consider three different types of coalesc-

ence. When lines of type i and j coalesce, they produce a clade

with a mean number of descendants XiðsÞ=AiðsÞþ XjðsÞ=AjðsÞ,
where Xi(s) denotes the number of taxa descended from all

extant lineages of type i at time s in the past, withP
i XiðsÞ ¼ Að0Þ. Such clades are produced at the rate

FijðsÞðAiðsÞ=IiðsÞÞðAjðsÞ=IjðsÞÞ. This leads to the following differ-

ential equation for the cumulative Sackin index until time s:

dK
ds
¼ 2f11

A1

I1

� �2 X1

A1
þ ð f12 þ f21Þ

A1

I1

A2

I2

X1

A1
þ X2

A2

� �

þ 2f22
A2

I2

� �2 X2

A2
: ð4:8Þ

In order to aid comparison with the simple model with-

out heterogeneity, we derive a normalized version of k,
�K ¼ ðK � 2n logðnÞÞ=ð2n logðnÞÞ.

The dynamics of X1(s) can be described with the follow-

ing equation, with an analogous equation for X2(s), with

initial conditions X1ð0Þ ¼ A1ð0Þ;X2ð0Þ ¼ A2ð0Þ:

dX1ðsÞ
ds

¼ �ð f21 þ g21Þ
A1

I1

X1

A1
þ ð f12 þ g12Þ

A2

I2

X2

A2

¼ �ðf21 þ g21Þ
X1

I1
þ ðf12 þ g12Þ

X2

I2
: ð4:9Þ
This equation simply captures flow between the states, either

by coalescent events (captured by the matrix F ) or by

‘migration’ between states (captured by the matrix G). To

verify the deterministic approximations, and to determine

the variability in tree shape due to finite sample size, we

also simulated trees using an approximation to the coalescent

in structured populations developed by Volz [32], which

takes the matrices F and G and the numbers of infected

individuals, I1 and I2, at different time points as input.
5. Applications
To determine how structure and sampling affects phylody-

namic patterns, in terms of the number of lineages over

time, the extent to which sequences cluster and co-cluster,

and the extent of tree asymmetry, we now consider two

specific models of HIV that incorporate heterogeneity,

either in infectiousness over the course of infection or

differences between groups in contact rates.

(a) Acute and chronic HIV infection
The infectiousness of HIV-1 is thought to be much higher

during acute infection than during chronic infection [42]. Pre-

viously, we have analysed models of HIV transmission that

include acute and chronic infection [9,32,33]. We recap

some of the main results here, as well as extending them to

consider more tree statistics. We denote the number of acutely

infected individuals by I1, and the number of chronically

infected individuals by I2. We allow acutely infected individ-

uals to have a different per-act probability of infecting a

susceptible person, b1, which we assume to be higher than

the probability for a chronically infected person, i.e.

b1 . b2. We assume that acute infection progresses to chronic

infection at rate a, and that acutely infected individuals do

not suffer any excess mortality due to HIV infection. These

generalizations to the simple HIV model result in the

following set of differential equations:

dSðtÞ
dt
¼ L� SðtÞ b1c

I1ðtÞ
NðtÞ þ b2c

I2ðtÞ
NðtÞ

� �
� mSðtÞ; ð5:1Þ

dI1ðtÞ
dt
¼ SðtÞ b1c

I1ðtÞ
NðtÞ þ b2c

I2ðtÞ
NðtÞ

� �
� ðmþ aÞI1ðtÞ ð5:2Þ

and
dI2ðtÞ

dt
¼ aI1ðtÞ � ðmþ gÞI2ðtÞ; ð5:3Þ

where

NðtÞ ¼ SðtÞ þ I1ðtÞ þ I2ðtÞ: ð5:4Þ

The matrices F and G for this model are as follows:

FðtÞ ¼
b1c

I1ðtÞ
NðtÞ SðtÞ 0

b2c
I2ðtÞ
NðtÞ SðtÞ 0

0
BB@

1
CCA ð5:5Þ

and

GðtÞ ¼ 0 aI1ðtÞ
0 0

� �
: ð5:6Þ

(b) A model with risk structure
To investigate the effects of heterogeneity in contact rates

between individuals, we considered a model with two
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groups of individuals with different contact rates, ci, with the

fraction of contacts made by a person in group i with a person

in group j denoted by pij [43].

dS1ðtÞ
dt
¼L1�S1ðtÞ bc1p11

I1ðtÞ
N1ðtÞ

þbc1p12
I2ðtÞ
N2ðtÞ

� �
�mS1ðtÞ; ð5:7Þ

dI1ðtÞ
dt
¼S1ðtÞ bc1p11

I1ðtÞ
N1ðtÞ

þbc1p12
I2ðtÞ
N2ðtÞ

� �
�ðmþgÞI1ðtÞ; ð5:8Þ

dS2ðtÞ
dt
¼L2�S2ðtÞ bc2p21

I1ðtÞ
N1ðtÞ

þbc2p22
I2ðtÞ
N2ðtÞ

� �
�mS2ðtÞ ð5:9Þ

and
dI2ðtÞ

dt
¼S2ðtÞ bc2p21

I1ðtÞ
N1ðtÞ

þbc2p22
I2ðtÞ
N2ðtÞ

� �
�ðmþgÞI2ðtÞ;

ð5:10Þ

where

NiðtÞ¼SiðtÞþIiðtÞ: ð5:11Þ

A number of assumptions can be made regarding the

fraction of contacts of a person in group i with a person in

group j, pij. A common assumption is proportionate mixing,

in which the fraction of the contacts of group i with group j
is equal to the fraction of the total contacts made by the popu-

lation that are due to group j, such that pij ¼ cjNj=
P

k ckNk.

A more general formulation, that allows a wider range of

mixing matrices, is the preferred mixing structure described

by Jacquez et al. [43], in which a fraction ri of the contacts

of group i are reserved for within-group contacts. The

elements pii and pij (i = j ) under this model are as follows

(note that this corrects an error in the term for pij reported

in Jacquez et al. [43]):

pii ¼ ri þ 1� rið Þ cið1� riÞNiP
k ckð1� rkÞNk

ð5:12Þ

and

pij ¼ ð1� riÞ
cjð1� rjÞNjP
k ckð1� rkÞNk

: ð5:13Þ

If ri ¼ 0 for all i, then the contact matrix simplifies to pro-

portionate mixing. The matrices F and G for this model are as

follows:

FðtÞ ¼
bc1p11

I1ðtÞ
N1ðtÞ

S1ðtÞ bc2p21
I1ðtÞ
N1ðtÞ

S2ðtÞ

bc1p12
I2ðtÞ
N2ðtÞ

S1ðtÞ bc2p22
I2ðtÞ
N2ðtÞ

S2ðtÞ

0
BB@

1
CCA ð5:14Þ

and

GðtÞ ¼ 0 0
0 0

� �
: ð5:15Þ

For both the acute/chronic model, and the differential

risk model, the differential equations captured the mean

number of cherries, the assortativity coefficient and Sackins

index calculated from simulations of multiple trees, at a

fraction of the computational burden (see the electronic

supplementary material, figures S4–S6).
(c) Tree shape and structure
We simulated the acute/chronic model and the differential

risk model, assuming either proportionate or preferential

mixing, for a range of sample fractions, f, from 0.1 to 0.9.

Model outputs for the number of cherries, the assortativity
coefficient and Sackin’s index at a fixed time of sampling

are shown in figure 4.

For the acute/chronic model, we considered a range of

values for the relative infectiousness of acute and chronic HIV

infection, while maintaining the same mean infectiousness

over the infection period. Assortativity increased with higher

infectiousness of acute infection, in line with our previous

results examining the composition of clusters [33]. Although

higher infectiousness resulted in more asymmetric trees, this

depended on both the sample fraction and the choice of statistic

in a nonlinear way. Sackin’s index showed the greatest evidence

of asymmetry for intermediate values for the relative infectious-

ness of acute infection and was generally insensitive to

sampling fraction. In contrast, when the sample fraction was

high, asymmetry, as measured by a low number of cherries,

was the greatest for high infectiousness during acute infection.

For proportionate mixing, the differential risk models over a

range of contact rates for the high-risk population relative to the

low-risk population demonstrated asymmetry similar in magni-

tude to those of the acute/chronic model, in terms of the number

of cherries, but showed less extreme values for Sackin’s index.

Assortativity was generally low, with small negative values of

the assortativity coefficient for greater relative contact rates for

the high-risk group. However, although variation in contact

rates could result in asymmetric phylogenies under proportion-

ate mixing, this effect was almost completely eliminated when

mixing was preferential (r ¼ 0.9), as such population subdivi-

sion limits the impact that individuals with a high contact rate

can have on the entire viral phylogeny. Also in contrast to pro-

portionate mixing, assortativity was much more marked when

mixing was preferential. The assortativity coefficient, r, was rela-

tively insensitive to contact rate variation, being mainly driven

by the mixing between the high- and low-risk groups, captured

by the parameter r (results not shown), although the assortativ-

ity of different types of infected individuals, r, may be much less

than the assortativity of different types of all individuals, r,

especially for low sample fractions.
6. Discussion
We have extended our previous differential equation-based

framework for modelling the NLFT to consider tree asymme-

try and, in the case of structured population models,

co-clustering of different states. Of note is that our models

generate trajectories of measures of asymmetry and assorta-

tivity over evolutionary time, rather than just summary

measures over the whole tree. We have also presented

examples of how heterogeneity in the susceptible and/or

infected individuals can result in different phylodynamic pat-

terns. The two models presented here have a wide range of

applications. For example, the model used for acute and

chronic HIV infection can also be used to consider a simple

form of treatment, where I1 and I2 represent the number of

untreated and treated individuals, respectively, and a rep-

resents the rate of going on treatment, while the model of

different risk groups can be used to examine heterosexual

spread of HIV, by setting cii, i ¼ 1,2 to zero, or a spatial

model, where ‘migration’ of infections occurs via trans-

mission between individuals in different geographical areas.

Given the nonlinearities in the system, it is hard to

develop scenarios where the impact of a single parameter

can be examined. For example, changing the relative
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Figure 4. Asymmetry and clustering assuming a range of sampling fractions, from f ¼ 0:1 (red) to f ¼ 0:9 (violet) in steps of 0.1, for different values of the
relative infectiousness of acute infection (a), and the relative contact rate in the differential risk model, assuming either (b) proportionate mixing (r ¼ 0) or
(c ) preferential mixing (r ¼ 0.9). Parameter values for the acute/chronic model are as follows: c ¼ 1, a ¼ 1

8, g ¼ 1
512, m ¼ 1

3640, L ¼ 10 000
3640 , S(0) ¼ 9999,

I1(0) ¼ 1, I2(0) ¼ 0. The infectivity parameters bi were constrained such that b2 ¼ b̂ ðd1 þ d2Þ=ðkd1 þ d2Þ and b1 ¼ kb2, where b̂ is the mean
infectiousness (with b̂ ¼ 0:01), di the mean duration of stage i and k the fold increase in infectiousness during acute infection. Parameter values for the
differential risk model are b ¼ 0.01, c2 ¼ 1, g ¼ 1

520, m ¼ 1
3640, L1 ¼ 1000

3640, L2 ¼ 9000
3640, S1(0) ¼ 999, I1(0) ¼ 1, S2(0) ¼ 9000, I2(0) ¼ 0. The simulation time

is 30 years, with weekly timesteps, assuming 52 weeks per year.
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infectiousness of acute infection changes the whole trajectory

of the epidemic, such that sampling at a fixed time since the

introduction is not strictly comparable across parameter

values. As our models comprise a relatively small number

of differential equations, which can be simulated quickly,

they are well suited for exploring how tree shape is affected

by population structure. In contrast, simulating trees may

be extremely time consuming, especially for large numbers

of taxa, and large numbers of simulations for a given par-

ameter set may be needed, owing to the high variability in

many tree shape statistics.

Our results suggest that in many cases, the level of asym-

metry of the tree may be rather insensitive to the underlying

population structure. This is not particularly surprising for a

number of reasons, including the relatively weak selection of

HIV-1 at the population level [2], the averaging of asymmetry

over the entire tree, and that the risk among those infected is

likely to be higher and less variable among infected individ-

uals than susceptible individuals. Given these considerations,
it is somewhat surprising that Leventhal et al. [13] found

asymmetry in their analysis of the Swiss HIV epidemic,

especially as the overall phylogeny comprised distinct risk

groups, which our results suggest generates less, not more

asymmetry. This may be due to biases in when each risk

group was sampled, and/or the unusually high sampling

fraction in this epidemic (30–40%). Indeed, the three largest

transmission clusters, which were more homogeneous in

terms of risk (one associated with heterosexual risk/injection

drug use and two clusters associated with men who have sex

with men) showed much lower asymmetry (I
2

S,0.5). Our

models also show that factors other than contact rate, such

as high infectiousness during acute infection, may have a

more dramatic impact on asymmetry; while high-risk

groups may be at a minority in a population, all infected indi-

viduals go through a period of increased infectiousness

during acute infection. Moreover, as sequences sampled at

different times will generate more asymmetric trees for

rapidly evolving pathogens such as HIV-1 (see the electronic
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supplementary material, figure S2), measures of asymmetry

may be difficult to interpret for serial samples, which are

commonplace in HIV-1 phylogenetic studies, and difficult

to compare between studies that have different temporal

sampling patterns.

The composition of cherries may be highly informative

about patterns of mixing between populations, provided that

the sample size is sufficient to include representatives from

all groups. However, in order to calculate the composition of

cherries, we need to specify subpopulations a priori, and this

may be difficult to perform, especially for variables such as

sexual contact rates. Although, ideally, other data such as be-

havioural data should be collected in order to identify risk

groups, as clustering is also related to contact rates, it may be

possible to identify individuals with higher contact rates

based on patterns of clustering. However, patterns of clustering

have to be interpreted carefully, as differences in clustering may

also be driven by differences in the time since infection at

which samples are taken ([33]; electronic supplementary

material, figure S7) and by the underlying frequencies of the

groups (see the electronic supplementary material, figure S8).

Our simulations assumed a random sample of taxa across

all groups. In practice, random sampling of infected individ-

uals may not be feasible, or in some cases it may even be

desirable to oversample particular groups. For example,

while our model of acute and chronic HIV infection predicts

increasing assortativity as the assumed relative infectiousness

during acute infection increases, it may be difficult to test this

empirically, as generally acutely infected individuals are rela-

tively infrequent, and sampling variation in the assortativity

coefficient may be high (see the electronic supplementary

material, figures S4–S6). Our framework can accommodate
over- or under-sampling of specific groups, although prior

information on the size of each group is highly desirable in

order to make accurate inferences.

We have focused on developing and simulating phylody-

namic models, rather than inferring parameter values of these

models from sequence data. As highlighted in our discussion

of the simple HIV model, some simple epidemiological

models are just special cases of the time-varying coalescent

model, for which methods of inference are well established.

While the theory presented for structured models can also be

used as a basis for inference, full likelihood-based fitting may

be computationally intensive, and approximations to the likeli-

hood may be required [32]. The models presented here, which

can generate a number of summary measures of phylogenetic

structure, can be used as the basis for Approximate Bayesian

Computation (ABC) approaches [44], in which parameter

values are found that generate simulated data that resemble

the observed data. The use of more biologically realistic phylo-

dynamic models can be used not only to determine whether a

population deviates from random mixing [13], but also to

determine the type of population structure. By linking asym-

metry, assortativity and the number of lineages through time,

bespoke models of viral phylodynamics may be able to provide

rich insights into the dynamics of viral transmission.
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