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Abstract

Intron number varies considerably among genomes, but despite their fundamental importance, the mutational mechanisms
and evolutionary processes underlying the expansion of intron number remain unknown. Here we show that Drosophila, in
contrast to most eukaryotic lineages, is still undergoing a dramatic rate of intron gain. These novel introns carry significantly
weaker splice sites that may impede their identification by the spliceosome. Novel introns are more likely to encode a
premature termination codon (PTC), indicating that nonsense-mediated decay (NMD) functions as a backup for weak
splicing of new introns. Our data suggest that new introns originate when genomic insertions with weak splice sites are
hidden from selection by NMD. This mechanism reduces the sequence requirement imposed on novel introns and implies
that the capacity of the spliceosome to recognize weak splice sites was a prerequisite for intron gain during eukaryotic
evolution.
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Introduction

Intron number is highly variable among eukaryotes, ranging

from about a dozen in some fungi to more than 100,000 in the

human genome. Comparative genomics across broad phylogenetic

distances have identified the importance of both intron gain and

loss to the establishment of this variation [1]. In particular for a

number of lineages, including Drosophila [2], Caenorhabditis [3]

and some isolated vertebrate lineages [4], a considerable number

of intron gains have been described.

While there is a general agreement that the very first

spliceosomal introns arose from the degeneration of self-splicing

group II introns [5,6], their complete absence from genomes that

have undergone intron gain strongly suggests alternative mecha-

nism(s) are at work. While several mechanism with varying levels

of empirical support have been proposed over the last 30 years,

there is still strong uncertainty over whether any existing model

can explain the observed and predicted rates of intron gain

throughout eukaryote evolution [7]. A satisfactory model must

address the mutational mechanism that allows a intron to colonise

a novel position and the evolutionary process that facilitates the

fixation of this new allele within a population. An accounting of

both mechanism and evolution should give insight into why the

rate of intron gain is so variable between species.

Irrespective of the mutational mechanism, it is apparent that

any new intron will require a number of key motifs including the

59 and 39 splice sites, and a set of auxiliary signals including the

branch point and splicing enhancer and suppressor motifs [8,9].

The failure to correctly identify an intron may either lead to

stochastic alternative splicing or intron retention, both of which

have deleterious consequences. This predicament is overcome if

the newly inserted intron arrives fully functional. The only

mechanism capable of generating a fully formed novel intron is

reverse splicing [10,11], in which an existing intron propagates

into a new position, but this process is both extremely rare and

inconsistent with the characteristics observed of novel introns [2].

The alternative is that novel introns develop gradually via the

optimisation of previously non-intronic sequence. Examples

include the intronisation of coding sequences [3], intron gain

between paralogs of multi-copy gene families [4], the splicing of an

Alu element [12], after internal gene duplication (including

tandem duplication) [13] and after the insertion of new sequence

of unknown origin [14].

In this study, we have investigated this alternative model in

which novel introns are not required to be fully functional, relying

instead on a back up mechanism of transcript quality control for

incorrectly spliced introns [15]. In recent years it has become

evident that the cell invests heavily in the identification of

premature termination codons (PTCs) via the Nonsense Mediated

Decay (NMD) pathway [16,17]. NMD acts during the preliminary

round of translation to identify in-frame stop codons and classify

them as either genuine or premature. The use of incorrect splice

sites or intron retention are a ready source of such premature

termination codons (PTCs) and will invoke the NMD dependent

destruction of the transcript.

Using comparative genomics of nine Drosophila species, we show

that novel introns have weaker splice sites and carry more stop

codons than conserved introns. We propose that NMD may play
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an important role during the establishment of novel introns within

a population, and in support of this we identified a significant

deficiency of novel introns that would remain invisible to the

NMD pathway upon intron retention.

Results/Discussion

Here we have identified 307 novel introns amongst 284 genes

across nine Drosophila genomes (Figure S1), presenting the most

comprehensive set of novel introns to date. Our approach also

detected 803 intron loss events amongst 595 genes, including 49

genes that have undergone both intron gain and loss (Dataset S1).

These events show a strong heterogeneity across the Drosophila

phylogeny, with several lineages being hot-spots of intron turnover

(Figure 1 and Figure S2). We observe the highest rate of intron

gain reported thus far, 2.8 intron gains/gene/Bya (109) years in

the melanogaster subgroup, being 66 greater than previously

reported for Drosophila [2] and 46 greater than the next highest

reported rate (occurring in yeast) [1,18]. Interestingly, this rate is

still higher than the range of estimates required to have generated

the intron-rich eumetazoan genome (0.99–2.39 gains/gene/Bya

years) [1,19]. In sharp contrast, several other Drosophila lineages

have experienced far less intron gain. D. virilis underwent only

0.0022 intron gains/gene/Bya years and since the split between D.

melanogaster and D. yakuba 10 million years ago not a single intron

gain could be identified, demonstrating that the rate of intron gain

may vary over orders of magnitude between closely related species.

The previously proposed mechanisms of intron gain assume that

new intronic sequence originates from elsewhere in the genome

(reverse splicing [11,20] or mobile elements [10,12,21]), or is

derived from the endogenous genomic location (tandem duplica-

tion [22–25] or intronisation [3,7]). Despite a rigorous search

(Text S1) we could not identify an homologous parental origin for

any novel intron elsewhere within the respective genomes,

consistent with other studies [2,26]. A manual inspection of the

sequence flanking each novel intron identified a single event

reminiscent of tandem duplication. The Bap170 gene in D.

pseudoobscura has undergone a gain of 218 bp, of which only 206 bp

are spliced out, revealing an imperfect 8 amino acid repeat 59 and

39 of this novel intron (Figure S3). While in final stage of preparing

this manuscript Li et al., (2009) reported that several novel introns

in Daphnia are flanked by short direct repeats [14]. They

insightfully suggest this may represent the signature of nonhomol-

ogous end joining (NHEJ) after uneven double-stranded breaks

(DSBs), a process known to generate insertions flanked by direct

repeats [27]. In consideration of this, we note that the duplication

observed here may also be explained by a direct repeat flanking

sequence of unknown origin. A manual inspection of dotplots

identified 6 further examples in which direct repeats of length at

least 8 bp overlapping the splice sites of a novel intron (Figures S4,

S5, S6, S7, S8, S9) in support of the finding of Li et al., (2009).

Reasoning that changes to the length of the coding sequence

directly flanking a novel intron, as observed for Bap170, may give

further insight into the mechanism of intron gain, we checked all

307 novel introns for alterations to the coding sequence that would

indicate either the loss or gain of adjacent amino acids. Novel

introns did not alter the ancestral coding sequence in 87% (267/

307) of the cases. The remaining 13% (40/307) modified the

adjacent coding sequence by only 1–3 amino acids (in 3 cases there

was a gain of 4 or 5 amino acids along next to the new intron).

This observation is inconsistent with the intronisation model of

intron gain [3,7] which requires the conversion of exonic sequence

into an intron, hence reducing the coding sequence by the size of

the new intron. A manual inspection of these 40 coding sequence-

changing novel introns identified a small number of cases that can

be explained via the conversion of low complexity amino acid

sequence into an intron (Figure 2 and Figure S10). The novel

intron within gene CG42594 has arisen from a rapidly evolving

low complexity region including poly-Q sequence. Species lacking

this intron show a highly variable sequence of amino acids at this

position, with length differences of up to 18 amino acids. In the

ancestor of D. melanogaster and D. ananassae this low complexity

amino acid sequence was converted into an intron, stabilising the

flanking protein sequence, while freeing the new intronic sequence

of length constraint.

This indicates that the expansion of protein sequences can

generate novel introns. Indels account for the majority of sequence

variation between Drosophila species (3.2% of variable nucleotides

Figure 1. The uneven distribution of novel introns across
Drosophila species. 307 novel introns were identified across a set of
3,593 genes with a full-length ortholog in each species. Dotted lines
indicate branches with a greater number of novel than lost introns
(Figure S2). Branch lengths are drawn proportionally to the rate of
intron gain. The numbers of novel introns is indicated above each
branch. 350 events occurred at the root of the tree and could not be
classified as either intron gain or loss.
doi:10.1371/journal.pgen.1000819.g001

Author Summary

The surprising observation 30 years ago that genes are
interrupted by non-coding introns changed our view of
gene architecture. Intron number varies dramatically
among species; ranging from nine introns/gene in humans
to less than one in some simple eukyarotes. Here we ask
where new introns come from and how they are
maintained in a population. We find that novel introns
do not arise from pre-existing introns, although the
mechanisms that generate novel introns remain unclear.
We also show that novel introns carry only weak signals for
their identification and removal, and therefore depend on
nonsense-mediated decay (NMD). NMD maintains RNA
quality control by degrading transcripts that have not
been spliced properly. We propose that NMD shelters
novel introns from natural selection. This increases the
likelihood that a novel intron will rise in frequency and be
maintained within a population, thus increasing the rate of
intron gain.

NMD Enables Intron Gain
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vs. 1.8% for SNPs [28]) making them a significant contributor to

both coding and non coding length evolution. Previous work

focused on the mechanism underlying relatively short insertions

(,15 bp), therefore, to access the possible contribution of exonic

insertions to intron gain we identified insertions long enough to

generate a novel intron (.44 bp in Drosophila). This revealed 180

insertions (Dataset S1), the largest being an insertion of 165 amino

acids within the XNP gene of D. pseudoobscura. This demonstrates

the plasticity of protein length and establishes large insertions

within the protein coding sequence of Drosophila as a viable source

of novel intronic sequence.

We reason, that a much larger number of exonic insertions

occur over evolutionary time providing the raw genetic variation

for the gain of novel introns. The model that novel introns arise

from a subset of ‘‘random’’ insertions within coding regions (or

indeed UTR sequences) predicts that new introns are unlikely to

arise with full strength splice sites. We observe that novel introns

do in fact have weaker splice sites, with significantly reduced usage

of the ‘‘strong’’ consensus motif at both the 59 and 39 splice site

(Figure 3A and Figure S11). Furthermore, novel introns use a

more diverse set of rare 59 motifs than expected (Figure S11 and

Dataset S1). Of course, weak, rare or atypical 59 splice sites have

lower affinity to the U1 snRNP of the spliceosome [29] which, all

else being equal, leads to less efficient splicing [30,31]. This poses a

conundrum; if the mutational mechanism that generates novel

introns leaves them vulnerable to suboptimal splicing, why do such

novel introns rise to fixation within a population? We propose that

the solution lies in the action of NMD.

Retention of 3n+1 and 3n+2 introns is expected to induce NMD

due to the introduction of a frame-shift, but introns of length 3n

require an in-frame PTC or they will remain invisible to the NMD

pathway. Because of this, we reason that the failure to splice a new

3n insertion maybe deleterious, hence we predicted that novel 3n

introns are more likely to encode a PTC as a backup mechanism

for incomplete splicing. As the expectation for PTC occurrence is

proportional to intron length, we fitted a logistic regression,

modelling intron length, intron phase and a combined main effect

of 3n class (3n vs. 3n+1 and 3n+2) and whether an intron is novel

(n = 307) or conserved (n = 8,810) (Text S1). Despite its simplicity,

our model was highly significant (P,0.0001) and explained 24%

of the variation in the occurrence of stop codons among introns.

Interestingly, most of the variation was explained by phase (Wald

x2 = 331.5, P,0.0001) and not intron length (Wald x2 = 174.2,

P,0.0001). Phase 2 introns encode significantly more in-frame

PTCs than either phase 0 and 1 due to the sequence requirements

of the 59 splice site. The canonical 59 splice site GT(A/G)A

restricts the first full potential codon of a phase 2 intron to either

the TAA Ochre or TGA Opal stop codon. Only a minority of

introns with non-canonical splice sites escape this constraint.

Our analysis indicates that selection acts against introns that are

invisible to the NMD pathway (if they undergo intron retention)

leading to a deficiency of 3n PTC-free introns across the genome,

as previously reported [32] (Figure 3B). This verifies in Drosophila

that NMD carries a significant load caused by the weak splicing of

introns [16]. We also observe this deficit of 3n PTC-free introns

within the 307 novel introns. Interestingly, we find that this effect

is significantly stronger among novel introns than among

conserved introns (Odds ratio of 3.027 for novel vs. 1.646 for

conserved), supporting the central role of NMD in the establish-

ment of newly inserted sequence as novel introns.

Here we have shown that while the expansion of amino acid

repeats within exons can generate novel introns, nevertheless, the

sequence origin for the vast majority remains unknown. This

observation is inconsistent with previously suggested mechanisms

of intron gain, but supported by the recent study of novel introns

within Daphnia [14]. We have demonstrated that novel introns in

Drosophila use weaker splice sites and are deficient for 3n PTC-free

introns. Therefore, our evidence suggests that the establishment of

these new sequences as introns is facilitated by NMD. Therefore,

we propose a new model of intron gain (Figure 4), in which

mutational mechanisms generate insertions that already carry the

minimal requirements for correct, but not necessarily strong

splicing. Cytoplasmic NMD is expected to degrade any unspliced

transcript, leaving a proportion with the correct coding sequence.

Conditional on adequate expression levels, this will shelter the new

intron from selection allowing it to segregate within the population

as a neutral polymorphism. Importantly, NMD allows new introns

to utilise a more degenerate set of splice sites, thereby increasing

the likelihood that any new sequence may become captured by a

novel intron.

This model makes several predictions: First, novel introns are

not required to pass through a protein coding intermediate stage

(as would be expected from the intronisation of existing exonic

sequence) and therefore, should not show codon usage bias. We

observed no correlation between the ‘‘codon’’ usage of novel

introns and the expected codon usage for Drosophila genes

(Spearman Correlation Coefficient 0.01983, P = 0.8764) (Figure

S12 and Text S1). Second, in general, introns with weaker splice

sites are expected to suffer higher rates of failed splicing (intron

retention or exon skipping), but we observe less intron retention

among novel introns (2.6%) compared to conserved introns

(5.3%). This is consistent with our expectation that via the action

of NMD these transcripts are removed.

The ‘‘faux 39 UTR’’ model suggests that PTC recognition

depends on the distance to the downstream polyA tail [33,34].

This makes NMD more potent towards the 59 end of the

transcript, leading to a third prediction; the establishment of novel

introns should also be more efficient towards the 59. As expected,

Figure 2. Intron gain in response to low complexity sequence in the gene CG42594. While the exact sequence of this highly variable
region in the common ancestor of D. melanogaster and D. ananassae is not known, it is plausible that a single nucleotide deletion within the QSGQSG
amino acid repeat (blue shading) generated the canonical 59 splice site CAG | GTGAGT used by this phase 0 intron. Similarly, the CAG repeat
(encoding poly-Q sequence) is a potent 39 splice acceptor site [45]. Sequence conservation across all species is indicated with light shading. The novel
intron (denoted by , .) is highly length variable across all species of the melanogaster group.
doi:10.1371/journal.pgen.1000819.g002

NMD Enables Intron Gain
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we identified a strong and highly significant 59 bias for novel

introns (x2 = 26.063, P,0.001) (Figure S13 and Text S1) in

support of previous work [2]. NMD is more effective towards the

59 as a PTC located towards the 39 is more likely to be recognised

as a canonical stop codon [7]. Hence, the involvement of NMD in

the establishment of novel introns can explain the thus far

enigmatic 59 bias observed within a number of species [2,7,35].

The 803 lost introns reported here show no positional bias

(x2 = 1.309, P = 0.2526), consistent with previous reports

[2,18,36]. In addition to 39 UTR length the exon junction

complex can invoke NMD in mammals. In effect this allows the

recognition of PTCs in close proximity to the polyA tail,

enhancing the effectiveness of NMD towards the 39 of a transcript.

Testing the influence of this on the distribution of novel introns is

difficult due to their scarcity, but we note that mammalian

genomes do not show the 59 bias among all intron seen in Drosophila

[35].

A significant question remains why does the rate of intron gain

vary so much between closely related species? While differences in

the action and potency of NMD are likely to exist between highly

divergent taxa, we do not expect much variation on the fine scale

of the Drosophila phylogeny. In contrast, the mutational processes

that generate repeat expansions, tandem duplications [13],

insertions of unknown origin [37] and DSBs are known to vary

greatly between both closely and distantly related species.

Differences in these underlying mechanisms will generate species

specific variation upon which our proposed mechanism of intron

fixation may act. This offers a possible explanation for the

variation in intron gain rates observed here and over longer

periods of eukaryotic evolution.

Methods

Discovery and validation of novel introns
Our approach to studying intron evolution is based on

identifying gene orthologs across the Drosophila clade, predicting

gene structure with GeneWise and using Dollo Parsimony to infer

intron gain and loss events (Figure S1).

We identified orthologous genes using the D. melanogaster (release

4.3) gene set as the basis of a best-bidirectional-blast-hit approach

in the 11 other sequenced Drosophila species, namely; D. erecta, D.

yakuba, D. ananassae, D. pseudoobscura, D. willistoni, D. virilis, D.

mojavensis and D. grimshawi (obtained from http://rana.lbl.gov/

drosophila/). We excluded D. sechellia, D. simulans and D. persimilis

Figure 3. PTC as a backup for weak splice sites in novel introns. (A) The percentage of introns that use the most common 59 and 39 splice site
motifs. Significantly fewer novel introns use the canonical GT(A/G)AGT motif at position +1 to +6 of the 59 splice site. Likewise, fewer novel introns use
CAG at 23 to 21 of the 39 site. Error bars represent the 95% confidence intervals generated by resampling 307 introns with replacement 10,000 times
(Figure S5). (B) A logistic regression identified a significant deficiency of 3n PTC-free introns within conserved introns (conserved 3n versus conserved
3n+1and2 - bottom contrast) confirming the finding of Jaillon et al. (2008) that selection acts against introns that would remain invisible to the NMD
pathway upon intron retention. This effect is significantly stronger amongst novel introns (novel 3n versus novel 3n+1and2 - top contrast) and
significantly stronger in a direct comparison between novel and conserved introns (second contrast) (95% CI that do not include one indicate a
significant deficiency of 3n PTC-free introns).
doi:10.1371/journal.pgen.1000819.g003

NMD Enables Intron Gain
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because of low sequence coverage [38]. We acknowledge that a

bidirectional-blast approach carries limitations but given our

subsequent validation of intron turnover events feel this method

was suitable. High-scoring segment pairs (HSPs) were identified

via forward tblastx with default parameters followed by reverse

tblastx using sequence cropped on either side of the best hit

equivalent to the length of the corresponding gene in D.

melanogaster. We considered the HSPs to be orthologous when

the reverse blast identified only the parental gene in D. melanogaster.

Exon-intron structure of orthologous genes was generated by

submitting to GeneWise [39] (2193 algorithm) the longest amino

acid isoform of each D. melanogaster gene together with 100kb of

nucleotide sequence flanking the corresponding orthologous hit.

We excluded any gene with a frameshift mutation (either real or

due to sequencing errors). Intron gain and loss events were

predicted using the Malin java application [40]. The dense

phylogeny of sequenced Drosophila genomes increases the power

of Dollo Parsimony to accurately infer intron gain events, reducing

the advantages of maximum likely methods [41]. Along two

branches of the phylogeny (leading to D. willistoni and D. grimshawi)

Dollo Parsimony remains sensitive to multiple losses being inferred as

intron gain, but given the active debate about the best methods to

infer intron turnover [42] we feel our approach and extensive

downstream validation have proved reliable.

As our approach relies on de novo gene structure prediction via

GeneWise it is sensitive to false positive and false negative intron

prediction in other species. This problem was avoided in a

previous study by considering only introns present in the well

annotated D. melanogaster lineage [2]. Our approach takes full

advantage of the multiple sequences genomes to find intron gain

events outside of D. melanogaster, but required extensive validation

to overcome the several limitations of GeneWise (detailed in Text

S1 and Dataset S1).

This approach generated a high confidence set of 3,593 fully

annotated orthologous genes (containing 8,810 introns) across nine

Drosophila species, allowing us to identify intron gain and loss

events across 40Mys of Drosophila evolution. Our approach is based

on the amino acid sequence in D. melanogaster and is therefore not

able to predict UTR introns. After this we still expected our data

set to contain false positives (predicted novel introns that are not

really introns) and false negatives (real introns that have been

missed). Our experimental and informatic methods for their

identification and exclusion are detailed in the Text S1. Novel

intron sequences and gene, protein and intronic sequences for our

orthologous gene set are available for download at http://

i122server.vu-wien.ac.at/Drosophila_annotation/.

The strength of novel splice sites
As per previous studies [43,44], we used the percentage of

introns with the consensus 59 splice site GT(A/G)AGT (position

+1 to +6) as a measure of the splice site strength within each class

of introns. To confirm that novel introns use this motif significantly

less than all introns we resampled (bootstrap with replacement)

307 introns from the population of 50,836 D. melanogaster introns

10,000 times (Figure S11A). The top and bottom 2.5% of samples

gave the 95% confidence intervals on the observed percentages for

all introns. The observed percentage of novel introns fell outside

these confidence intervals establishing significance. Resampling

(307 from 307, with replacement) from novel introns (black bars in

Figure S11A and S11B) gives an indication of the variance within

novel introns, but is not actually required to establish the

significance between all and novel. We repeated this approach

for the CAG motif at 23 to 21 of the 39 splice site (Figure S11B).

To show that novel introns use a more diverse set of rare/weak

motifs at the 59 we used the same bootstrap data from above and

counted the number of different motifs present in each sample

(Figure S11C).

Supporting Information

Figure S1 Schematic of our approach and findings.

Found at: doi:10.1371/journal.pgen.1000819.s001 (0.26 MB EPS)

Figure S2 Intron loss rates across Drosophila species. Details as

per Figure 1 in the text.

Found at: doi:10.1371/journal.pgen.1000819.s002 (0.06 MB EPS)

Figure S3 Duplication within the Bap170 gene (CG3274,

FBgn0042085) of D. pseudoobscura associated with a novel intron.

(A) Dotplot showing the subtle signal of direct repeats at either end

of the novel intron. Window size = 8 bp, mismatch = 0. 50 bp of

flanking exon are included. (B) Novel intron sequence (lower case)

with the repeat underlined showing identity of 16/18 bp at the

splice sites. The remaining intronic sequence finds no significant

BLAST hit within NCBI. (C) Sequence alignment between three

species showing that the gain of 218 bp resulted in an intron of

only 206 bp, producing four novel amino acids in the 59 exon. (D)

Figure 4. NMD conceals weakly spliced novel introns from
selection. A new insertion in exonic sequence (or UTRs) that has the
potential to undergo weak splicing but also disrupts the coding
sequence (due to frame-shift or an in-frame PTC) will lead to a
population of spliced and unspliced transcripts. NMD is expected to
remove any unspliced transcript, leading to the translation of only the
correct protein product. If sufficient protein is produced, the new
insertion might be hidden from selection, thus allowing subsequent
mutations to improve splicing and reducing the requirement for NMD.
A new insertion that does not evoke NMD (3n PTC-free) will not enjoy
this advantage and must encode strong splice sites from the beginning.
doi:10.1371/journal.pgen.1000819.g004

NMD Enables Intron Gain
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A model showing that only four nucleotide substitutions within

48 bp are required to regenerate eight identical amino acids

(LKLATTAT) at both ends of the intron.

Found at: doi:10.1371/journal.pgen.1000819.s003 (0.11 MB PDF)

Figure S4 A direct repeat of length 12/13 bp in the Histone

deacetylase 3 gene of D. ananassae is associated with a novel intron

of length 62 bp. (A) Dotplot with 50 bp of flanking exon. Window

size = 8 bp, mismatch = 0. (B) Novel intron sequence (lower case)

with the repeat (underlined) showing identity of 12/13 bp. The

remaining intronic sequence finds no significant BLAST hit within

NCBI. (C) Sequence alignment between three species.

Found at: doi:10.1371/journal.pgen.1000819.s004 (0.10 MB PDF)

Figure S5 A direct repeat of length 10/10 bp in the Autophagy-

specific gene 9 (Atg9) gene of D. virilis. (A) Dotplot with 50 bp of

flanking exon. Window size = 8 bp, mismatch = 0. (B) Novel intron

sequence (lower case) with the repeat (underlined) and splice sites

(bold). The remaining intronic sequence finds no significant

BLAST hit within NCBI.

Found at: doi:10.1371/journal.pgen.1000819.s005 (0.04 MB PDF)

Figure S6 A direct repeat of length 8/8 bp in the CG2794 gene

of D. grimshawi. (A) Dotplot with 50 bp of flanking exon. Window

size = 8 bp, mismatch = 0. (B) Novel intron sequence (lower case)

with the repeat (underlined) and splice sites (bold). The remaining

intronic sequence finds no significant BLAST hit within NCBI.

Found at: doi:10.1371/journal.pgen.1000819.s006 (0.04 MB PDF)

Figure S7 A direct repeat of length 11/12 bp in the CG3295 gene

of D. willistoni. (A) Dotplot with 50 bp of flanking exon. Window

size = 8 bp, mismatch = 0. (B) Novel intron sequence (lower case)

with the repeat (underlined) and splice sites (bold). The remaining

intronic sequence finds no significant BLAST hit within NCBI.

Found at: doi:10.1371/journal.pgen.1000819.s007 (0.04 MB PDF)

Figure S8 A direct repeat of length 11/12 bp (or maybe 14/17)

in the CG9536 gene of D. willistoni. (A) Dotplot with 50 bp of

flanking exon. Window size = 8 bp, mismatch = 0. (B) Novel intron

sequence (lower case) with the repeat (underlined) and splice sites

(bold). The 59 and 39 splice sites are not within the direct repeat,

but in close proximity. The remaining intronic sequence finds no

significant BLAST hit within NCBI.

Found at: doi:10.1371/journal.pgen.1000819.s008 (0.04 MB PDF)

Figure S9 A direct repeat of length 8/8 bp in the CG5181 gene

of the melanogaster subgroup. (A) Dotplot with 50 bp of flanking

exon. Window size = 8 bp, mismatch = 0. (B) This novel introns

was gained in the ancestor of mel, ere and yak, the sequence here

is taken for the novel intron of D. yakuba (lower case) with the

repeat (underlined) and splice sites (bold). The remaining intronic

sequence finds no significant BLAST hit within NCBI.

Found at: doi:10.1371/journal.pgen.1000819.s009 (0.05 MB PDF)

Figure S10 A novel intron within the gene CG34382 has

captured only part of the low complexity sequence. (A) The poly-

Q region of the 59 exon has continued to undergo length change in

species with the novel intron. (B) The exon-2/intron-2 boundary

from D. melanogaster. The flanking exonic sequence contains an

imperfect CAG repeat, which is not present within the novel

intron. This ‘‘new’’ intron pre-dates the split of D. melanogaster and

D. ananassae and is therefore at least 14 million years old, sufficient

time for any repeat structure to break down within non-coding

sequence. (* indicate conserved amino acids.)

Found at: doi:10.1371/journal.pgen.1000819.s010 (0.02 MB PDF)

Figure S11 Resampling analysis of splice site usage. We

resampled (with replacement) 307 from the set of 307 novel

introns (black) and 307 from the set of all 50,836 introns (gray) to

obtain a distribution of the proportion of introns that carry the

most common motif at the 59 (A) and at the 39 (B). The observed

values for novel (black dot) and all (gray dot) are shown below each

graph with 95% CI taken from the distributions above. The

observed values for novel are outside the 95% CI for the

distribution for all introns. Resampling from the set of novel is not

actually required to establish significance, but does give an

indication of the variation within novel introns. (C) The 307 novel

introns use 83 different motifs at the 59 splice site (black dot),

outside the distribution of values obtained by resampling (307

samples, 10,000 times) from all (393 different motifs, 50,836

introns), indicating that novel introns use a more diverse set of

splice sites than expected (i.e. more rare/weak motifs).

Found at: doi:10.1371/journal.pgen.1000819.s011 (0.04 MB PDF)

Figure S12 Novel introns show not codon usage bias. Distribu-

tion of codon usage values for all 64 codons for (A) all D. melanogas-

ter genes (http://www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?

species = 7227) (B) the 180 insertions excluded form our set of novel

introns and (C) the 307 novel introns. Spearman Correlation

Coefficients indicate significant codon usage bias in insertions

(0.57989, P,0.0001) further justifying their exclusion from our data

set, but no bias within novel introns (0.01983, P = 0.8764).

Found at: doi:10.1371/journal.pgen.1000819.s012 (0.08 MB PDF)

Figure S13 Novel introns are strongly biased towards the 59 end

of the gene. Empirical cumulative distribution of intron position

across the gene for (A) novel and conserved introns, and (B) lost

introns and insertions. Compared to a uniform distribution novel

(X2 = 26.063, P,0.001) and conserved (X2 = 110.554, P,0.0001)

both show a 59 bias. This bias is stronger for novel introns

(X2 = 7.273, P = 0.007). Lost introns (X2 = 1.309, P = 0.253) and

insertions (X2 = 0.495, P = 0.482) do not differ from the uniform

distribution.

Found at: doi:10.1371/journal.pgen.1000819.s013 (0.04 MB PDF)

Text S1 Supplemental methods.

Found at: doi:10.1371/journal.pgen.1000819.s014 (0.06 MB

DOC)

Dataset S1 Includes Table S1, S2, S3, S4, S5, S6, S7, S8. Table

S1. List of 3593 genes for which we identified a full length ortholog

in all nine Drosophila species. Table S2. 307 novel introns,

including length, length class, phase, PTC, and EST support.

Table S3. 810 intron loss events. Table S4. 12 cases of concurrent

intron gain and loss and cases of independent events. Table S5.

180 large protein coding insertions that do not undergo splicing

(GeneWise false positives - exons predicted as novel introns). Table

S6. 59 and 39 splice site usage for novel and control introns. Table

S7. BLAST results against the EST data base. Table S8. 86 cases

of failed intron prediction (GeneWise false negatives) in which the

underlying intronic sequence and splice sites are still present, but

GeneWise failed to predict an intron.

Found at: doi:10.1371/journal.pgen.1000819.s015 (0.65 MB

XLS)
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