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Lupus nephritis is one of most severe complications of systemic erythematosus lupus 
and current approaches are not curative for lupus nephritis. Although CD4+Foxp3+ reg-
ulatory T cells (Treg) are crucial for prevention of autoimmunity, the therapeutic effect of 
these cells on lupus nephritis is not satisfactory. We previously reported that CD8+CD103+ 
Treg induced ex vivo with TGF-β1 and IL-2 (CD8+CD103+ iTreg), regardless of Foxp3 
expression, displayed potent immunosuppressive effect on Th cell response and had 
therapeutic effect on Th cell-mediated colitis. Here, we tested whether CD8+CD103+ 
iTreg can ameliorate lupus nephritis and determined potential molecular mechanisms. 
Adoptive transfer of CD8+CD103+ iTreg but not control cells to chronic graft-versus-host 
disease with a typical lupus syndrome showed decreased levels of autoantibodies and 
proteinuria, reduced renal pathological lesions, lowered renal deposition of IgG/C3, and 
improved survival. CD8+CD103+ iTreg cells suppressed not only T helper cells but also 
B cell responses directly that may involve in both TGF-β and IL-10 signals. Using RNA-
seq, we demonstrated CD8+CD103+ iTreg have its own unique expression profiles of 
transcription factors. Thus, current study has identified and extended the target cells of 
CD8+CD103+ iTreg and provided a possible application of this new iTreg subset on lupus 
nephritis and other autoimmune diseases.

Keywords: TgF-β1, cD8+cD103+ iTreg, lupus nephritis, immunosuppression, B cell responses

inTrODUcTiOn

Systemic lupus erythematosus (SLE) is a serious autoimmune disease with incompletely understood 
pathogenesis. A major immune feature of SLE is the hypersecretion of autoantibodies by dysfunc-
tionally autoreactive B cells (1). Lupus nephritis, a foremost cause of morbidity and mortality, is 
present in up to 60% SLE patients (2), and features immune complex deposition in the glomerulus, 
consequently causing tissue damage and proteinuria. Therapeutic approaches available include 
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immunosuppressive drugs, biologicals, and corticosteroids (3). 
Among these, B  cell depletion using rituximab has been used 
for the treatment of SLE and many autoimmune and chronic 
inflammatory diseases (4, 5), but its role is restricted for incapable 
of depleting long-lived plasma cells (6). All of these treatment 
options are not a permanent cure which would be one that ideally 
reverses immune imbalance.

Regulatory T cells (Treg) are a subset of T cells that maintain 
self-tolerance by suppressing autoreactive lymphocytes, mainly 
consisting of natural occurring Treg cells (nTreg) and induced 
Treg cells (iTreg) (7, 8). We and others have widely reported 
that both nTreg and iTreg have immunosuppressive properties 
and exert therapeutic effects on autoimmune diseases (9–14). 
However, CD4+Foxp3+ nTreg showed instability in inflamma-
tory conditions and their therapeutic effects on the established 
autoimmune diseases were sometimes unsatisfactory (15, 16). 
It has been shown that some CD4+Foxp3+ nTreg had converted 
to Th17  cells after encountering IL-6 and other inflammatory 
cytokines (15, 16), although CD4+Foxp3+ iTreg might be more 
stable in the inflammation environment (15, 17–19).

Although Foxp3 is essential for the development and func-
tion of CD4+ Treg cells, it is not a case for CD8+ iTreg cells. We 
previously reported that CD8+CD103+ iTreg induced ex vivo 
with TGF-β and IL-2 potently suppressed Th cell response and 
Th1/Th17-mediated colitis, regardless of Foxp3 expression (20). 
CD8+Foxp3+CD103+ iTreg and CD8+Foxp3−CD103+ iTreg shared 
similar immunosuppressive capability in suppress Th cell 
response, while CD8+CD103− T cells showed no inhibition abil-
ity. These studies imply that CD8+CD103+ iTreg may have some 
advantages in treating inflammatory diseases since their role  is 
not dependent upon Foxp3 expression. As CD4+Foxp3+ nTreg 
cells had a minimal therapeutic effect on lupus nephritis (11), we 
were interested in exploring whether CD8+CD103+ iTreg have 
therapeutic effect on SLE/lupus nephritis.

In the current article, we show that infusion of CD8+CD103+ 
iTreg to lupus mice displayed a potent therapeutic effect on 
lupus nephritis. CD8+CD103+ iTreg reduced autoantibody titers 
and proteinuria, decreased renal pathological lesions, as well as 
diminished IgG and C3 deposition in renal glomerulus. Further 
observation demonstrated that the therapeutic effect is greatly 
dependent on the direct suppression of B cell responses which 
involve both TGF-β and IL-10 signals. RNAseq technology 
further identified that CD8+CD103+ iTreg have a unique expres-
sion profile of transcription factors that distinguishes them from 
CD4+ Treg cells.

resUlTs

infusion of cD8+cD103+ iTreg cells 
significantly ameliorates lupus nephritis
To determine the therapeutic effect of CD8+CD103+ iTregs on 
lupus nephritis mice, we have used chronic graft-versus-host dis-
ease (cGVHD) mice as established lupus nephritis model (21, 22). 
Naive CD8+ cells isolated from DBA/2 mouse were stimulated 
with anti-CD3/CD28 coating beads and IL-2 in the absence (CD8 
Med) and presence (CD8 iTreg) of TGF-β for 3 days, and then 

CD8+CD103− cells were sorted from CD8 Med as CD8 control 
cells (CD8 Med), CD8+CD103+ cells were sorted from iTreg 
cells as CD8+CD103+ iTreg cells as previously described  (20). 
Adoptive transfer of DBA2 spleen cells to DBA2xC57BL/6 F1 
mouse will develop a typical lupus syndrome characterized 
by increased levels of IgG autoantibody on the first week and 
proteinuria on the eighth week after cell transfer, providing an 
ideal model to study SLE/lupus nephritis. CD8+CD103+ iTreg or 
CD8+CD103− were transferred into chronic GVHD mice at 3 and 
8 weeks after DBA2 cell transfer. Infusion of CD8+CD103+ iTreg 
cells significantly reversed the decrease of weight, the increase of 
proteinuria in mice after 8 weeks, whereas CD8+CD103− control 
cells did not show these effects (Figures 1A,B).

We also determined effects on serum dsDNA Ab and total IgG 
titers. CD8+CD103+ iTreg prevented the continuous rise in total 
IgG and dsDNA Ab titers after cell transfer. The levels of dsDNA 
Ab and total IgG were significantly lower in cGVHD mice that 
received CD8+CD103+ iTreg than in cGVHD, although infusion 
of CD8+CD103− cells was also slightly decreased the levels during 
8–14 weeks (Figures 1C,D).

All mice were sacrificed for pathological examination of kid-
neys at 16 weeks post DBA/2 cell transfer. Immunofluorescence 
staining in kidney revealed that the IgG or C3 immune deposition 
in the glomeruli of cGVHD mice that received CD8+CD103+ 
iTreg was reduced compared to the untreated cGVHD model 
mice or cGVHD mice that received CD8+CD103− control cells. 
IgG or C3 mean fluorescence intensity (MFI) of glomeruli was 
significantly lower in CD8+CD103+ iTreg group versus control 
groups (Figure 1E).

Using HE, Masson, periodic acid-Schiff (PAS), or periodic 
acid-silver metheramine (PASM) staining on kidney paraffin 
sections, we observed that renal pathologic lesions were much 
less in cGVHD mice treated with CD8+CD103+ iTreg compared 
to control groups (Figure  2A). CD8+CD103+ iTreg treatment 
also resulted in a significant lower degree of disease activity and 
chronicity indices (Figures 2B,C), while cGVHD model group 
and CD8+CD103− cell treatment group mice exhibited typical 
pathological damage of lupus nephritis, as shown by disease 
activity and chronicity index scores (Figures 2A–C).

cD8+cD103+ iTreg cells suppress B cell 
responses Ex Vivo
A previous study has demonstrated that CD8+CD103+ iTreg 
mainly suppress Th cells (20). Given that B cells play an impor-
tant role in the pathogenesis and development of lupus and 
lupus nephritis (23, 24), we also sought to determine whether 
CD8+CD103+ iTregs can directly suppress B cells. The first experi-
ment was carried out using an ex vivo assay. CD8+CD103+ iTreg 
or control cells and B cells were cocultured, and B cell activation 
and proliferation, including the ability of B cells to produce anti-
bodies in the presence of lipopolysaccharide (LPS) were analyzed 
at different time points. Compared with the CD8+CD103− control 
cells, CD8+CD103+ iTregs markedly suppressed the expression 
of CD25, CD69, CD86 on B  cells (Figure  3A), indicating that 
CD8+CD103+ iTreg cells may directly suppress B cell activation. 
We further studied the gradient effects of this suppressive capacity 
at the ratio of 1:1 to 1:4 (T: B) and which shows a dose-dependent 
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FigUre 1 | CD8+CD103+ iTregs show potent therapeutic effect on chronic graft-versus-host disease (cGVHD) lupus nephritis mice. CD8+CD103− med, 
CD8+CD103+ iTregs induced from DBA/2 mice were adoptively transferred to cGVHD lupus nephritis mice at 3 and 8 weeks. There were four mice in each group. 
(a–D) CD8+CD103+ iTreg cells significantly reversed the decrease in weight, and the increase in proteinuria in lupus nephritis mice after 8 weeks, and also prevented 
the continuous rise in dsDNA Ab and total IgG titers. The data indicate the mean ± SEM of four individuals (NS means no significance, *P < 0.05, ***P < 0.001, 
CD8+CD103− med or CD8+CD103+ iTreg versus model). (e) CD8+CD103+ iTregs reduced IgG or C3 immune deposition in the glomeruli, IgG or C3 mean 
fluorescence intensity are significantly lower in CD8+CD103+ iTreg group. The data indicate the mean ± SEM of four independent experiments (NS means no 
significance, ***P < 0.001).
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effect (Figure  3B). CD8+CD103+ iTregs also suppressed the 
expression of CD138 while control cells slightly reduced the 
expression with no significance (Figure S1 in Supplementary 
Material).

We next determined whether CD8+CD103+ iTreg cells also 
suppress B  cell proliferation. B  cells have been labeled with 
CFSE that enables quantitation of cell proliferation. As shown in 
Figure 4A, CD8+CD103+ iTregs but not CD8+CD103− control 
cells markedly suppressed B  cell proliferation and the inhibi-
tory efficiency was comparable to that of CD4+ iTreg or nTreg 
subsets.

One of mostly important features of B  cells is the ability to 
produce antibodies. We therefore also analyzed the ability of 
CD8+CD103+ iTregs or CD8+CD103− control cells to regulate 
antibody production by B cells. As expected, CD8+CD103+ iTreg 
significantly suppressed IgG and dramatically inhibited IgM pro-
duction when these cells were cocultured with LPS-stimulated 
B  cells. Conversely, CD8+CD103− control cells did not display 
any suppressive effect on antibody production (Figure 4B). Thus, 
CD8+CD103+ iTreg cells at least demonstrate their suppression of 
B cells similar to their partners of CD4+ Treg cells (25–28).

cell contact and TgF-β/il-10 signals are 
all needed for suppressive effect of 
cD8+cD103+ iTreg cells on B cell 
responses
We further explored underlying mechanisms whereby 
CD8+CD103+ iTreg cells suppress B  cell responses. B  cells and 
CD8+CD103+ iTreg cells were cocultured through either cell 
contact or Transwell system that enables isolation of both cell 
populations while allowing soluble molecules secreted from Treg 
cells to permeate the B cell compartment. The proliferative levels 
and antibody secretion of LPS-stimulated B cells in the presence 
of either CD8+ iTreg or control cells were measured to evaluate the 
inhibitory ability of CD8+ cells. We observed that CD8+CD103+ 
iTregs suppressed the B cell proliferation and antibody secretion 
when cell–cell is present in the culture, but this ability to suppress 
B cells proliferation disappeared when CD8+ Treg cells were iso-
lated from B responder cells. The ability to suppress the antibody 
secretion of B cells was also weaken under Transwell situation. 
CD8+ control cells did not suppress B cell functions, regardless of 
the presence or absence of cell contact (Figures 5A,B).
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We also extended our study to determine whether CD8+CD103+ 
iTregs suppress B  cell responses ex vivo through TGF-β or/
and IL-10 signals. As shown in Figure S2 in Supplementary 
Material, TGF-β or/and IL-10 signals were indeed needed for 
their suppressive effects on B cell responses ex vivo. It is likely 
that CD8+CD103+ iTreg cells act target cells via their secretion 
of active TGF-β and TGF-β binding on membrane-bound (cell 
surface) receptors.

cD8+cD103+ iTreg cells suppress B cell 
responses That is independent upon 
cytotoxicity
Given that nTreg directly suppress B  cell responses by cyto-
toxic mechanisms (26, 28), largely by secreting the cytotoxic 
molecules granzyme A, granzyme B, and perforin; and CD4+ 
iTreg directly suppress B cell responses through a non-cytotoxic 
mechanism involving TGF-β signaling (25), we explored the pos-
sibility whether cell killing is involved in the inhibitory effect of 
CD8+CD103+ iTregs on B cell responses.

CD8+CD103+ iTreg cells were cocultured with B cells in the 
presence of LPS. After 16  h of coculture, apoptosis percentage 
of B220+ cells was detected by flow cytometry. We found that 
CD8+CD103+ iTregs did not promote apoptosis of B cells in the 

coculture system (Figure 5C). We also conducted coculture meas-
urements at different time points, 48 and 72 h, and no significant 
B cell apoptosis change was observed (data not shown). Then we 
observed that cytotoxic molecules including granzyme A, gran-
zyme B, and perforin were no expressed in CD8+CD103+ iTreg 
cells (Figure S3 in Supplementary Material), which strengths the 
conclusion that CD8+CD103+ iTreg suppress B cell responses by 
non-cytotoxicity way.

cD8+cD103+ iTreg suppress B cell 
responses In Vivo
The results generated from in vitro experiments do not necessar-
ily reflect the consequences in vivo. To determine the role and 
mechanisms of CD8+ iTreg against B cell responses, we carried 
out the in vivo experiments as established previously to address 
this possibility (25). B  cells pretreated with LPS were cotrans-
ferred with CD8+CD103− med, CD8+CD103+ iTreg, or nTreg cells 
(2:1 ratio) into Rag1−/− mice; in some groups, TGF-β receptor I 
inhibitor (TβRI inhibitor, ALK5i), anti-IL-10R Ab, control IgG, 
or DMSO (for Alk5i control) were injected i.p. 3 days after cell 
transfer (Figure 6A). Ki-67 expression in LPS-stimulated B cells 
is markedly increased in this model. Co-transfer of CD8+CD103+ 
iTregs or nTregs significantly reversed the high expression of 
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Ki-67 in B cells in vivo, while co-transfer of CD8+CD103− med 
cells only slightly reduced Ki-67 expression, without statistical 
significance (Figures 6B,C).

We observed that suppression of CD8+CD103+ iTregs on 
B cell responses in vivo was largely dependent upon TGF-β or/
and IL-10 signals, because blockade of TβRI or IL-10R greatly 
abolished the suppressive effect (Figure  6D). Of interest, 
the IL-10 signal seemed to have a more important role in the 
suppression of CD8+CD103+ iTregs on B cells in vivo, whereas 
the suppression of CD4+ iTregs on B cell responses was mostly 
dependent on the TGF-β signal and partly dependent on the 
IL-10 signal (25).

Further evidence that CD8+CD103+ iTregs suppress 
B  cell response in  vivo was provided using the lupus model. 
CD8+CD103− med, CD8+CD103+ iTreg, or nTreg cells were 
adop   tively transferred to cGVHD lupus mice with proteinuria 
of greater than100  mg/dl, in which endogenous T  cells had 
been previously deleted and endogenous B  cells had been 
previously stimulated (Figure  7A). The results showed that 
the percentages of peripheral blood CD138+ plasma cells 

were significantly decreased in CD8+CD103+ iTreg or nTreg 
group compared with the CD8+CD103− group 2  weeks post 
cell transfer. CD8+CD103+ iTregs also significantly reduced 
the percentages of splenic CD138+ plasma cells, but nTregs 
did not show such suppressive ability at similar time points 
(Figure 7B). Nonetheless, both CD8+CD103+ iTregs and nTregs 
similarly suppressed IgG production in cGVHD lupus mice 
2  weeks after cell transfer (Figure  7C). These results suggest 
that CD8+CD103+ iTregs suppress not only allogenic B cells but 
also autoreactive B cell responses in vivo.

Although previous studies have shown that B  cells 
express TGF-β receptor I (TβRI) (29) and IL-10 receptor α 
(IL-10Rα) (30), it is not clear whether the expression of this two 
receptors were changed during the cGVHD lupus-like disease 
model establishing process. Real-time PCR experiments were 
carried out and we observed that the expression of TβRI and 
IL-10Rα on B cells was not changed during the model process-
ing (Figure S4 in Supplementary Material). Thus, it is reasonable 
that CD8+CD103+ iTreg suppress B cell responses via TGF-β and 
IL-10 signals.
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rna-seq identifies That cD8+cD103+ iTreg 
is a Unique Treg Population
To determine and compare possible differences between 
CD8+CD103+ Treg cells and other Treg subsets or non-Treg cells, 
we carried out RNA-seq analysis for differentially expressed genes 
in CD8+CD103− med, CD8+CD103+ iTreg, CD4+ iTreg, and nTreg 
subsets. A total 48,440 genes were detected using fastx-toolkit 
v0.0.14 and cutadapt v1.7.1. There were 323 significantly differen-
tially expressed genes in genes expression heatmap for the four dif-
ferent cell subsets (Figure S5A in Supplementary Material). Pairwise 
genes expression comparison histograms of CD8+CD103− med 
versus CD8+CD103+ iTreg, CD8+CD103+ iTreg versus CD4+ iTreg, 
CD8+CD103+ iTreg versus nTreg are also shown (Figures 8A–C), 
using the filter of |log2FoldChange| ≥ 5 [fold change (FC)]. Each 
cell subset has its own specific gene profile that may be used as a 
tool to distinguish one population from another.

Compared with CD8+CD103− non-Treg cells, CD8+CD103+ 
iTreg cells have higher expression of Igha, Itgae, and Tnfrsf11a. It 
is reasonable to expect that CD103 coded by gene Itgae would be 
highly expressed on the CD103+ cell population. CD103 expres-
sion has been shown to be an essential molecule for CD8+ iTregs 
to suppress Th cell responses (20) and may be centrally involved 
in the suppressive effect on B cell responses. CD265, also known 

as receptor activator of NF-κB (RANK), coded by gene Tnfrsf11a, 
may be a specific marker for CD8+CD103+ iTregs which may 
also play an important role in immunosuppressive function of 
CD8+CD103+ iTregs (Figure S5B in Supplementary Material). 
Previous studies have demonstrated that CD265 is involved in 
T cell/dendritic cell interactions and tolerance induction (31, 32).

After applying the filter of |log2FC|  ≥  5, a total of 27 genes 
showed differential expression between CD8+CD103+ iTreg 
and CD4+ iTreg, of which 14 were upregulated in CD8+CD103+ 
iTreg and 13 were upregulated in CD4+ iTreg (Figure 8B). With 
the same filter, a total of 63 genes showed differential expres-
sion between CD8+CD103+ iTreg and nTreg, of which 13 were 
upregulated in CD8+CD103+ iTreg and 50 were upregulated in 
nTreg (Figure 8C).

DiscUssiOn

Thymus-derived CD4+CD25+ T regulatory cells (nTreg) maintain 
immune tolerance and possess immunosuppressive capacity (33). 
Although nTreg cells have an ideal role in preventing autoim-
mune and inflammatory diseases (9–11), the therapeutic effect 
of these cells on established diseases including lupus nehpritis is 
fairly unsatisfactory since they are unstable and dysfunctional in 
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inflammation conditions (15, 16, 34–38), CD4+ Treg cells induced 
ex vivo provide a new Treg population and have displayed advan-
tages in the inflammation conditions (12–15, 39–41), showed the 
therapeutic effect on established autoimmune diseases (12, 18), but 
others have reported that Foxp3 CPG is highly methylated in CD4+ 
iTreg cells, raising a concern about whether CD4+ iTregs can sus-
tain long-term therapeutic effects on autoimmune diseases (42).

We recently reported that CD8+CD103+ Treg cells induced 
ex vivo have a similar functional characteristic compared to CD4+ 
nTregs and iTregs. Interestingly, these Treg cells suppress autoim-
mune diseases independent of Foxp3 expression (20). They need 
both TGF-β and IL-10 to suppress immune responses distinguish-
ing them from Tr1 and Th3 cells (43, 44). New evidence provided 
from current study demonstrates that CD8+CD103+iTreg sup-
press lupus B cells also via TGF-β and IL-10 signals since these 
lupus B cells indeed maintain the expression of TGF-β and IL-10 
receptors.

CD103, the αEβ7 integrin, is a receptor for the epithelial 
cell-specific ligand E-cadherin that was first reported expressed 
on CD8+ cytolytic T lymphocytes. CD103 plays a crucial role in 

responding to allogeneic epithelial cells and in affecting allograft 
survival (45). In a rat liver transplantation model, the levels of 
CD8+ T cells with upregulated CD103 expression were associated 
with long-time survival of allograft recipients (46). In another 
mouse renal transplantation model, it was found that the devel-
opment of CD8+CD103+ cells depends on TGF-β signaling and 
facilitates their migration to renal allograft (47). In eye-derived 
tolerance, CD103 is necessary for CD8+ T  cells regulatory 
mechanisms (48). Thus, CD103 expression may help distinguish 
the CD8+ cell Treg population from non-Treg cell population 
and may also participate in maintaining immune balance or in 
immunosuppression in diverse diseases (49, 50).

Besides CD103, we found some potential specific markers for 
CD8+CD103+ iTreg according to RNA-seq data. CD265 might 
be a specific marker, as previous studies have demonstrated 
that CD265 is involved in T cell/dendritic cell interactions and 
tolerance induction (31, 32). However, more data are needed 
to address this possibility including the development of CD265 
KO mouse. Although CD226 also seems to be another specific 
marker for CD8+CD103+ iTreg, the previous study also showed 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


nTreg

72 56 27 26

28 55

B220

K
I-6

7

2547

A

B
CD8+CD103- medBaseline CD8+CD103+ iTreg

CD8+CD103+ iTreg+DMSO CD8+CD103+ iTreg+ALK5i CD8+CD103+ iTreg+cIgG CD8+CD103+ iTreg+anti-IL-10R

C D

Bas
eli

ne
 m

ed
-

CD10
3

+

CD8

 iT
reg

+

CD10
3

+

CD8

nTreg
0

20

40

60

80 NS**
**

76-i
K fo 

%
+

022
B/

+

Bas
eli

ne
 iT

reg
+

CD10
3

+

CD8  iT
reg

+D
MSO

+

CD10
3

+

CD8

 iT
reg

+A
LK5i

+

CD10
3

+

CD8

 iT
reg

+c
IgG

+

CD10
3

+

CD8
 iT

reg
+a

nti-I
L-10

R

+

CD10
3

+

CD8

0

20

40

60

80

**
**

NS

*
**

76-i
K fo 

%
+

022
B/

+

FigUre 6 | CD8+CD103+ iTregs directly suppress allogeneic B cell responses in vivo. (a) Fresh B cells were stimulated with lipopolysaccharide (LPS) for 24 h and 
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that CD226 is a costimulatory molecule and plays an important 
role in activation and effector functions of Th1 cells (51), making 
CD226 less likely to be a specific marker for CD8+CD103+ iTreg.

In human SLE, the spontaneous activity of antibody-forming 
B cells is increased in the peripheral blood (52). In established 
autoimmune disease models, dysfunction of B  cells also 
exists  (53). As the most important part of humoral immunity, 
B  cells play a crucial role in occurrence and development of 
autoimmune diseases mostly through the abnormal secretion 
of autoAbs, presentation of autoantigens, abnormal secretion 
of inflammatory cytokines, modulation of Ag processing, and 
generation of heterotopic germinal centers (6). A recent study 
revealed that B cells are major source of pro-inflammatory IL-6 
and a key driver of lupus nephritis (54). In addition to its role in 
humoral immunity, IL-6 also sabotages the functional activity of 
Treg cells (15, 16, 55).

Hence, the depletion of B cells or suppression of B cell func-
tion represents a new therapeutic strategy in patients with SLE 
and other autoimmune diseases. Anti-IL-6 antibody has been 
approved for the treatment of patients with rheumatoid arthritis 

and may extend to patients with SLE (56) or other conditions. In 
addition, application of Treg cells may have a potential therapeu-
tic effect, since several Treg subsets can suppress B cells. Although 
nTreg cells kill B cells, that may not happen in patients with SLE 
(26, 28) and CD4+ iTreg cells suppress B cells via a non-cytotoxic 
mechanism that may provide an advantage in clinical applica-
tions (25).

To overcome the concern that Foxp3 is unstable in inflamma-
tory conditions, we have studied the functional characteristics of 
CD8+CD103+ iTreg cells in a lupus nephritis model. These cells 
not only strongly suppressed LPS-stimulated B  cell responses, 
and reduced the levels of serum IgG and IgM secreted by B cells in 
lupus, but also prevented renal pathologic damage. Unlike nTreg 
cells, these cells suppress B cells independent of cell killing. RNA-
seq technique identified that this is a unique Treg cell population, 
distinguishing them from nTreg and CD4+ Treg cells. Given their 
role does not need Foxp3 expression, it is likely that they are more 
stable and functional in the presence of inflammation. We had 
also conducted experiment where we transferred CD8+CD103+ 
iTregs or nTregs population into RAG1−/− mice and look their 
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stability in different time points. The results turned out that the 
CD103 expression in CD8+CD103+ iTregs is more stable than the 
Foxp3 expression in nTreg (Figure S6 in Supplementary Material).

Although other CD8+ Treg cell subsets, such as CD8+CD28low/− 
or CD8+CD122+ cells, also suppress immune response, 
CD8+CD103+ Treg subset might be different from them. First, 
they did not completely share the phenotypic similarities, for 
example, CD8+CD103+ Treg cells are both CD122+ and CD122−, 
these cells also express somehow CD28 (20). Second, both CD122+ 
and CD28low/− cells can be produced naturally or developmentally. 
Last, CD8+CD28low/− cells suppress immune responses via IL-10 
but not TGF-β although CD8+CD122+ cells requires both IL-10 
and TGF-β (57). More studies including gene profiles are needed 
to fully distinguish these cell subsets.

Taken together, we now reveal that CD8+CD103+ iTreg induced 
ex vivo significantly control the appearance and development of 
nephritis in lupus-like diseases; therefore, use of CD8+CD103+ 
iTregs may have a potential promise for the treatment of lupus 
nephritis and other autoimmune and inflammatory diseases.

MaTerials anD MeThODs

Mice
Female C57BL/6 (B6) mice were purchased from Guangdong 
Medical Laboratory Animal Center (Guangzhou, CHN),  6- to 
8-week-old female DBA/2 mice and (C57BL/6  ×  DBA/2) 
B6D2DF1 mice were purchased from Vital River (Beijing, CHN) 
and Jackson Lab (USA). RAG1−/− mice (B6.129S7-Rag1tm1 
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Mom/JNju) were purchased from Nanjing Biomedical Research 
Institute of Nanjing University (Nanjing, China) and Jackson 
Lab (USA). This study was carried out in accordance with the 
recommendations of Sun Yat-sen University for the Use and Care 
of Animals (Approval No. IACUC- DB-16-0909) and Milton S. 
Hershey Medical Center (IACUC NO. 46887). The protocol 
was approved by the Sun Yat-sen University and Penn State 
University.

Flow cytometry
The following fluorescent mouse Abs from Biolegend (San Diego, 
CA, USA) were used for flow cytometry analysis: CD3, CD4, CD8, 

CD103, CD25, CD62L, CD69, CD86, CD138, Foxp3, and Ki-67; 
from eBioscience (San Diego, CA, USA): B220, granzyme  B, 
perforin; from Santa Cruz (Dallas, TX, USA): granzyme A. Cell 
subsets were stained with mAbs and isotype control as indicated 
above and analyzed on BD LSRFortossa™ flow cytometer 
(BD  Biosciences, San Diego, CA, USA) using FACSDiva Soft-
ware (BD Biosciences). For intracellular staining, such as Foxp3, 
Granzyme  A, GranzymeB, Perforin, and Ki-67, cells were first 
stained with surface marker, and further fixed and permeabilized 
for intracellular staining using Fix and Perm (eBioscience). Final 
plmiceot/histogram figures were prepared using FlowJo Software 
(Tree Star, Ashland, OR, USA).
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The generation of cD4+ iTreg, 
cD8+cD103− Med, cD8+cD103+ iTreg, 
and nTreg
CD4+ naive T cells (CD4+CD25−CD62L+CD44low) were isolated 
from splenic cells of C57BL/6 mice using a naive CD4+ T cell iso-
lation kit (Miltenyi Biotec, Auburn, GER) (Purity around 95%). 
CD8+ naive T cells (CD8+CD25−CD62L+CD44low) were isolated 
from splenic cells of C57BL/6 or DBA/2 mice, by first staining 
with Biotin-conjugated (Biolegend): anti- B220, CD4a, CD11b, 
CD11c, CD25, CD49b, Ter-119, CD44, and then with Biotin 
beads (Miltenyi Biotec), using AutoMACSpro (Miltenyi Biotec) 
to negatively select CD8+ naive T cells (purity around 95%). Cells 
were cultured in 48-well plates and stimulated with anti-CD3/
CD28-coated beads (one bead per five cells; Life Technologies, 
Carlsbad, CA, USA) in the presence of IL-2 (50  U/ml; R&D 
Systems, San Diego, CA, USA) with (CD4+/CD8+ iTreg) or with-
out (CD8med) TGF-β1 (2 ng/ml; R&D Systems) for 3 days. After 
3 days, CD4+/CD8+ iTreg and CD8med cells were harvested and 
the beads were removed, then cells were positively selected for 
CD103 (CD103+ around 90%) with Biotin-CD103 (Biolegend) 
and Biotin beads (Miltenyi Biotec) using AutoMACSpro 
(Miltenyi Biotec) (purity of CD8+CD103+ more than 95%); the 
same method was used to negatively select CD103 in CD8med 
(purity of CD8+CD103− more than 97%). nTreg cells were 
sorted by FACS using FACSAria™ (BD Biosciences) (purity of 
CD4+CD25+ more than 98%), expanded with anti-CD3/CD28-
coated beads (one bead per three cells; Invitrogen) and IL-2 
(300 U/ml; R&D Systems) for 3 days. A total of 300 U/ml IL-2 was 
renewed at day 2. After cultures, cells were harvested and beads 
removed with DynaMagTM (Life Technologies). RPMI 1640 
medium supplemented with 100  U/ml penicillin, 100  mg/ml 
streptomycin, 10 mM HEPES (Gibco, Carlsbad, CA, USA), and 
10% heat-inactivated FBS (ExCell Bio, SHH, CHN) was used for 
all cultures. Foxp3 expression was determined by flow cytometry.

The selection of B cells
B cells were positive selected from spleen cells of C57BL/6 mice 
with Biotin-B220 (Biolegend) and Biotin Beads (Miltenyi Biotec) 
using AutoMACSpro (Miltenyi Biotec). The purity of B cells was 
more than 99%. For determination of B cell proliferation, B cells 
were labeled with CFSE (Biolegend) before being cocultured with 
Tregs.

cgVhD lupus nephritis Model and Treg 
adoptive Transfer
To establish the cGVHD lupus nephritis model (22, 58), single-cell 
suspensions of splenic cells from DBA/2 donors were prepared by 
gently grinding the spleens in a 40 µm filter (BD Falcon) with 
RPMI 1640. Then erythrocytes were removed with Red Blood 
Cell Lysing Buffer (Sigma-Aldrich), suspensions were washed 
twice in PBS and centrifuged for 5 min at 300 g, and then cells 
were resuspended in PBS. The B6D2F1 recipients were injected 
intravenously in 0  week with 80  ×  106 of these viable cells in 
0.3 ml PBS. Proteinuria was determined with Semi-quantitative 
Albustix paper (Gaoerbao, Guangzhou, China). The levels of 
serum IgG, dsDNA were determined by ELISA every 2 weeks. 

The mice that had proteinuria were selected to use as the lupus 
nephritis model. In weeks 3 and 8, 3 × 106 CD8+CD103+ iTreg 
or CD8+CD103− med cells in 0.3  ml PBS were, respectively, 
transferred into cGVHD group. Control and model group mice 
received the same volume of PBS. There were 3–4 mice for each 
group in one experiment and experiments were repeated with 
similar results at least 3–4 times. We measured body weight and 
proteinuria every 2 weeks, the level of dsDNA, IgG in sera were 
also measured every 2 weeks.

Pathology and immunofluorescence
At week 16, all mice were sacrificed for kidney pathology. The 
kidney tissues were processed for light and immunofluorescence 
microscopy. The light-microscopic slides were stained with 
hematoxylin–eosin, Masson, PAS or PASM, and used to calculate 
the activity and chronicity indices (59, 60) of different groups. 
Immunofluorescence slides were stained with rabbit anti-mouse 
IgG (Abcam, Cambs, UK) or rabbit anti-mouse C3 (Santa Cruz), 
and then stained with goat anti-rabbit IgG (Abcam), observed 
with fluorescence microscope (Axio Vert A1, ZEISS, Germany), 
and the MFI of glomerulus in different groups was calculated 
using ImageJ software (National Institutes of Health, USA).

In Vitro suppression assays
To examine the suppressive effect of Treg on B cell in vitro, B cells 
were stimulated with or without LPS (Escherichia coli 0111, 5 µg/ml,  
B4, Sigma-Aldrich, St. Louis, MO, USA) in the presence or absence 
of graded numbers of CD8+CD103− med or CD8+CD103+ iTreg. 
The ratio of T  cells to B  cells ranged from 1:4 to 1:1. In other 
experiments, B cells were also cocultured with CD8+CD103− med, 
CD8+CD103+ iTreg, CD4+ iTreg, or nTreg cells (the ratio of T: B 
was 1:2). For determination of the activation and differentiation 
of B  cells, after 2 day coculture, CD69/CD86 (early activation 
index), CD25 (later activation index), and CD138 (differentiation 
index) were determined by flow cytometry. For determining the 
proliferation of B cells, fresh B cells were labeled with CFSE before 
coculture, and proliferation levels were judged by the intensity 
of CFSE dilution with flow cytometry after 3 days of coculture.

To determine the mode of suppressive action of the Treg, 
0.4  μm Transwell plates (Corning, NY, USA) were used to 
separate CD8+CD103− med/CD8+CD103+ iTreg and B cells from 
direct contact during the coculture.

apoptosis assays
CD8+CD103+ iTregs were cocultured with B cells in the presence 
or absence of LPS (5 µg/ml, Sigma) for 16, 48, or 72 h. Then cells 
were collected and stained with Annexin V and propidium iodide 
(PI) using an Annexin V apoptosis detection kit (Sungene Biotech, 
Tianjin, China) following the manufacturer’s specifications. Both 
Annexin V and PI expression were measured by LSRFortossa™ 
flow cytometer (BD Biosciences), gated on B220+ cells.

autoantibody Detection
To compare the IgG, IgM Abs production secreted by B  cells 
in vitro, the supernatants were collected from abovementioned 
systems after 3  days of culture. For the in  vivo autoantibody 
detection, mice were bled at the indicated time points, and sera 
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were collected. IgG, IgM, and anti-dsDNA were, respectively, 
measured by IgG ELISA kit (eBioscience), IgM ELISA kit 
(eBioscience), and dsDNA ELISA kit (Alpha Diagnostic, San 
Antonio, TX, USA). All samples were performed with triplicate. 
Sera samples were diluted 1/100 for anti-dsDNA and 1/25,000 
for measuring IgG.

real-time Pcr
Total RNA was extracted from B  cells isolated from cGVHD 
lupus mice or normal control mice using the TRIzol reagent 
(Invitrogen) according to the manufacturer’s instructions. 
Reverse transcription (RT) of total RNA was carried out with 
PrimeScript™ RT reagent Kit (TaKaRa). cDNA Amplification was 
performed using a Roche LightCycler 480 Sequence Detection 
System (Roche) with Ssofast EvaGreen supermix (Bio-RAD). 
Primer sequence were as follows: GAPDH, 5′-GGTTGTCTCC 
TGCGACTTCA-3′ and 5′-TGGTCCAGGGTTTCTTACTCC-3′; 
TβRI,5′-CTATGCTGGTCCAGTCTTCG-3′and 5′-TGGTGAA 
TGACAGTGCGGTTATGG-3′;IL-10Rα, 5′-AAGCAATGGACG 
GCATCATCTATGG-3′and 5′-AACTCGGAGATC CTTGAAG 
ACTTGTTC-3′.

In Vivo suppression assays
B cells stimulated with LPS (5 µg/ml) for 24 h were then washed 
with PBS to remove LPS. These B cells were then cotransferred 
with CD8+CD103− med, CD8+CD103+ iTreg, or nTreg cells (the 
ratio of T:B was 1:2, 8 million B cells per mouse) into B6 Rag1−/− 
mice (6 weeks age). In addition, TβRI inhibitor (ALK5) (1 mg/kg,  
Sigma-Aldrich), anti-IL-10R (1 mg/kg, Biolegend), or DMSO 
(control for ALK5i) or cIgG (control for anti-IL-10R) were 
given to some groups mice by i.p. injection at days 0 and 2. 
The mice were sacrificed as indicated time points and splenic 
B cells were harvested and used to measure Ki-67 expression 
in cells gated on B220+ by flow cytometry. Then we carried 
out another in vivo suppression assay. The established cGVHD 
lupus nephritis mice with evident lupus nephritis were depleted 
of endogenous CD3+ T  cells (26) with a single-dose 300  mg 
anti-mouse CD3 Ab (ExCell Bio, Shanghai, CHN), or with 
the isotype control, and endogenous B  cells were stimulated 
with a single 10  µg dose of LPS (Sigma-Aldrich). Three days 
later, CD8+CD103− med, CD8+CD103+ iTregs, or nTregs were 
adoptively transferred to the mice with anti-CD3 Ab treatment. 
The percentages of plasma cells (CD138+) were detected and 
sera were collected 0, 1, and 2 weeks after cell transfer for IgG 
measurement.

library construction and sequencing, 
Data analysis
CD8+CD103− med, CD8+CD103+ iTreg, CD4+ iTreg (the Foxp3 
expression in CD4+CD25+ iTreg more than 90%), and nTreg 
cells were prepared as described, and RNA was extracted using 
MiniBEST Universal RNA Extraction kit (TaKaRa, Japan). cDNA 
library was constructed using TruSeq Stranded Total RNA Sample 
Preparation Kit with Ribo-Zero Gold (Illumina, San Diego, CA, 
USA). The products were sequenced on an Illumina HiSeq plat-
form using a pair-end 150bp mode, following the manufacturer’s 

instructions. Raw data were cleaned using fastx-toolkit v0.0.141 
and cutadapt v1.7.1.2 The clean read-pairs were then aligned to 
the human reference genome (UCSC hg 19) by Tophat v2.1.1,3 
read counts were calculated using HTSeq v0.6.1,4 and differential 
expression analysis was performed using DESeq.5 The RNA-seq 
data were submitted to NCBI SRA database, the accession num-
ber for RNA-seq is PRJNA419054 (SRP125726).

statistical analysis
Data were expressed as mean ± SEM unless otherwise indicated. 
Data were analyzed using the unpaired t tests for comparison 
between two groups or ANOVA for comparison among multiple 
groups as appropriate in SPSS. Comparison between two groups 
in multiple groups used Bonferroni. Differences were considered 
statistically significant when p < 0.05.
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