
Data and text mining

DISPOT: a simple knowledge-based protein

domain interaction statistical potential

Oleksandr Narykov1,*, Dmytro Bogatov2 and Dmitry Korkin 1,3,*

1Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA 01609-2280, USA, 2Department

of Computer Science, Boston University, Boston, MA 02215, USA and 3Bioinformatics and Computational Biology

Program, Worcester Polytechnic Institute, Worcester, MA 01609-2280, USA

*To whom correspondence should be addressed.

Associate Editor: Jonathan Wren

Received on January 20, 2019; revised on June 17, 2019; editorial decision on July 15, 2019; accepted on July 22, 2019

Abstract

Motivation: The complexity of protein–protein interactions (PPIs) is further compounded by the

fact that an average protein consists of two or more domains, structurally and evolutionary inde-

pendent subunits. Experimental studies have demonstrated that an interaction between a pair of

proteins is not carried out by all domains constituting each protein, but rather by a select subset.

However, determining which domains from each protein mediate the corresponding PPI is a chal-

lenging task.

Results: Here, we present domain interaction statistical potential (DISPOT), a simple knowledge-

based statistical potential that estimates the propensity of an interaction between a pair of protein

domains, given their structural classification of protein (SCOP) family annotations. The statistical

potential is derived based on the analysis of >352 000 structurally resolved PPIs obtained from

DOMMINO, a comprehensive database of structurally resolved macromolecular interactions.

Availability and implementation: DISPOT is implemented in Python 2.7 and packaged as an open-

source tool. DISPOT is implemented in two modes, basic and auto-extraction. The source code for

both modes is available on GitHub: https://github.com/korkinlab/dispot and standalone docker

images on DockerHub: https://hub.docker.com/r/korkinlab/dispot. The web server is freely available

at http://dispot.korkinlab.org/.

Contact: onarykov@wpi.edu or korkin@korkinlab.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Large-scale characterization of protein–protein interactions (PPIs)

using high-throughput interactomics approaches, such as yeast-

two-hybrid and tandem-affinity purification/mass spectrometry

methods (Gavin et al., 2002; Rolland et al., 2014), have provided

the scientists with the new insights of the cell functioning at the

systems level and allowed to better understand the molecular ma-

chinery underlying complex genetic disorders (Barabasi and

Oltvai, 2004; Cui et al., 2015; Mitra et al., 2013). Structural stud-

ies of PPIs have revealed that a PPI is often carried out by smaller

structural protein subunits, the protein domains (Ekman et al.,

2005; Jin et al., 2009; Vogel et al., 2004). Roughly two-thirds of

eukaryotic and more than one-third of prokaryotic proteins are

estimated to be multi-domain proteins (Ekman et al., 2005), and

thus it is not surprising that � 46% of structurally resolved inter-

actions are domain–domain interactions (Kuang et al., 2016). A

high-throughput breakdown of the interactome at this, domain-

level, resolution is a much more experimentally challenging task,

currently unfeasible at the whole-system level and requiring com-

putational methods to step in (Deng et al., 2002; Finn et al., 2005;

Ohue et al., 2014; Segura et al., 2015).

Here, we present a simple knowledge-based domain interaction

statistical potential (DISPOT), a tool that leverages the statistical in-

formation on interactions shared between the homologous domains

VC The Author(s) 2019. Published by Oxford University Press. 5374

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 35(24), 2019, 5374–5378

doi: 10.1093/bioinformatics/btz587

Advance Access Publication Date: 27 July 2019

Applications Note

http://orcid.org/0000-0002-3875-9085
https://github.com/korkinlab/dispot
https://hub.docker.com/r/korkinlab/dispot
http://dispot.korkinlab.org/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz587#supplementary-data
https://academic.oup.com/


from structurally defined domain families. The knowledge-based

potentials are extracted from our comprehensive database of struc-

turally resolved macromolecular interactions, DOMMINO (Kuang

et al., 2016). Our statistical potential can be integrated into PPI pre-

diction methods that deal with multi-domain proteins by ranking all

possible pairwise combinations of domain interactions between two

or more proteins. We want to stress that although DISPOT poten-

tials provide some insight into PPI, it is not a classification method,

and data provided by it should be used in conjunction with addition-

al information, e.g. a specific pathway (Fig. 1E).

2 Methodology

The development of DISPOT is driven by several observations.

First, an average interaction between a pair of proteins is not car-

ried out by all domains constituting each protein, but only by a se-

lect subset. Indeed, each domain has its unique structure and

biological function and may not be designed to interact with a par-

ticular domain from another protein (Banappagari et al., 2010;

Shimizu et al., 2016). Second, the domain–domain interactions

often share homology: when two homologous domains interact

with their partners, these partners frequently also share the hom-

ology with each other (Kuang et al., 2016). Thus, one can intro-

duce the domain–domain interaction propensity in terms of the

frequency of domain–domain interactions between the two domain

families. Lastly, the propensity of domains to interact is expected

to vary across different families, thus allowing to provide the finer

resolution of the PPI network.

The quantification of the odds for a domain from one domain

family to interact with a domain from another family is defined in

this work as a knowledge-based statistical potential. Statistical

potentials are widely used in biophysical applications, often for

characterizing the residue contacts between the protein chains

(Huang and Zou, 2008; Krüger et al., 2014; Lu et al., 2003). One of

the main applications of the residue-level statistical potentials is in

protein docking (Kozakov et al., 2006). Our domain–domain statis-

tical potential complements the residue-level potentials by consider-

ing structural units from the higher-level of protein structure

hierarchy and requiring no structural information about the protein

domains. Specifically, the input for DISPOT includes the protein

sequences of the two proteins interacting with each other.

First, the domain architecture of each protein is obtained. To do

so, a region of the protein sequence is annotated to a family of hom-

ologous domains. For the definition of domain families, we leverage

the structural classification of proteins (SCOP) family-level classifi-

cation (Andreeva et al., 2004). SCOP represents a structure-based

hierarchical classification of relationships between protein domains

or single-domain proteins with ‘family’ being the first level of SCOP

classification and ‘superfamily’ being the second level. Protein

domains from the same SCOP family are evolutionary closely

related and often share the same function. Since a protein with no

structural information cannot be directly annotated by SCOP, we

use SUPERFAMILY (Gough and Chothia, 2002), a Hidden Markov

Model (HMM)-based approach that maps regions of a protein se-

quence to one or several SCOP families or superfamilies.

SUPERFAMILY allows us to cover a substantial subset of known

proteins: the HMM coverage at the protein sequence and overall

amino acid levels for the UniProt database were reported at 64.73%

and 58.78%, respectively, in 2014 (Oates et al., 2015).

Second, for each pair of SCOP families we count a number of

non-redundant PPIs between the members of these families that

have been experimentally determined. Our source of data is

DOMMINO (Kuang et al., 2012, 2016) a comprehensive database

of structurally resolved macromolecular interactions. It contains in-

formation about interactions between the protein domains, interdo-

main linkers, terminal sequences, and protein peptides. In this work,

we use exclusively domain–domain interactions because the data

about this type of interactions is the most abundant. To remove re-

dundancy in the data, we use ASTRAL compendium (Brenner et al.,

2000), which is integrated into the SCOPe database (Fox et al.,

2014). From ASTRAL, we obtain a set of domains, where each do-

main shares <95% sequence identity to any other domain in the set.

This set is then used to determine pairs of redundant domain–do-

main interactions in the original DOMMINO dataset. Two do-

main–domain interactions are determined as redundant if both

corresponding pairs of domains share 95% or more sequence iden-

tity. For each pair of redundant domain–domain interactions, one

interaction is randomly removed. The process continues until no

pair of redundant interactions can be detected.

Third, for each domain family from each protein, a statistical po-

tential is calculated (Fig. 1A). There are two types of statistical

potentials introduced in this work: (i) calculated for a domain from

a specific domain family and (ii) calculated for a pair of domains,

one domain from each of the two interacting proteins. The statistical

potential Pi for a single domain Di is calculated based on the total

number of interactions NDi
extracted from the non-redundant

DOMMINO dataset for the specific SCOP family this domain

belongs to. The statistical potential Pij for a pair of domains, Di and

Dj, is calculated based on the total number of occurrences Nij of the

interactions between all domains from the same two SCOP families

as Di and Dj. Those numbers are then transformed into probabilities

as follows:

Pi ¼
1

Z1
ln

Npi

Nmean
Z1 ¼

X
ln

Npk

Nmean

Pij ¼
1

Z2
ln

Mpij

Mmean
Z2 ¼

XX
ln

Mpkl

Mmean

where Nmean is an average number of interactions for a domain fam-

ily and Mmean is an average number of interactions for a pair of do-

main families, both calculated from the non-redundant

DOMMINO set.

DISPOT potentials are derived following a standard strategy for

calculating a statistical potential. The statistical potentials for the

atomic contact pairs are traditionally derived based on Boltzmann

relation (Huang and Zou, 2008):

Pij ¼ �kBTln
pijðrÞ

p�ij

where k is the Boltzmann constant, T is the system’s temperature,

pij is an experimentally observed density of atom pairs from differ-

ent partners in a complex at distance and p�ij is corresponding density

in the reference state. Since we do not work with the atomic-level

physical interactions, we replace the Boltzmann constant from

DISPOT equations and substitute temperature with the inverse of

normalization constant Z. In addition, pij and p�ij are substituted

with the number of interactions between domains in DOMMINO

database.

DISPOT can also provide integrated protein-level statistics.

There are multiple ways to combine the domain-level statistics into

a protein-level statistics. Two simple approaches to integrate
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Fig. 1. DISPOT statistical potential and its application. (A) A crystal structure (left) of the protein complex between CNTO607 Fab human monoclonal antibody

(yellow and red colors denote two different chains) and interleukin-13 (IL-13, shown in blue), and the corresponding domain–domain interaction network (right).

Shown in italics are SCOP family IDs, and in bold are DISPOT values for the corresponding interactions. Nodes colored with the same color belong to the same

chain. Solid lines connecting nodes correspond to the physical interactions, while dashed lines connect nodes corresponding to the protein domains that do not

physically interact. (B) A heatmap showing DISPOT values calculated for each pair of SCOP families, where only potentials for pairs of SCOP families with five

and more non-redundant interactions are plotted. The families are grouped based on the SCOP class (a–g) and are ordered within each fold based on their IDs.

(C) A contact map showing the correlation between experimentally obtained human interactome HI-I-05 and DISPOT-based PPI prediction. A prediction that calls

a PPI correctly is shown in magenta, while PPIs that were missed are shown in cyan. (D) Correlation calculated using R2 correlation coefficient between the

hu.MAP interaction probability score and DISPOT statistical potential for KEGG pathways (bottom) and GO clusters (top). (E) Distribution of the protein-level

DISPOT statistical potentials grouped by the number of SCOP domains in a protein defined using SUPERFAMILY

5376 O.Narykov et al.



domain–domain interactions for a given PPI in terms of a standalone

(single protein) and interaction (protein pair) potentials are:

PMu
¼ max

i
Pi and PMuv

¼ max
i;j

Pij

respectively, where i and j correspond to the domains from protein u

and v. The rationale behind these definitions lies in the assumption

that a single strongest domain–domain interaction is the one of the

most important defining factor for the PPI. These definitions of cu-

mulative potentials were tested in terms of their ability to predict a

PPI using several experimental sources. First, we obtained the cover-

age landscape by the cumulative potentials on the experimental pro-

tein–protein interactomes one obtained using high-throughput

yeast-two-hybrid screening (HI-I-05) (Rual et al., 2005) and another

one obtained using curated literature-based search (LitBM-17,

http://interactome.baderlab.org/data/LitBM-17.psi). As expected,

while this naı̈ve method was able to recover 2944 PPIs in HI-I-05, it

missed 1188 PPIs even using a lenient threshold of �20 (Fig. 1C).

Similarly, the cumulative potential was able to recover only 1718

PPIs while 1453 PPIs were not recovered (Supplementary Fig. S1).

We then apply the same pairwise cumulative potential to the large-

scale mass spectrometry study (Drew et al., 2017). Specifically we

study the correlation between the hu.MAP probability score and cu-

mulative pairwise score among KEGG pathways (Kanehisa and

Goto, 2000) and GO clusters produced by GeneSCF on 13 855

genes with SUPERFAMILY annotation (Subhash and Kanduri,

2016) (Fig. 1D). While the number of highly correlated pairs was

substantial, the number of pairs with very little correlation still pre-

vailed. Finally, the analysis of the cumulative single potential for a

protein showed that it can obtain a diverse range of values and this

property seems to be independent of how many domains this protein

has (Fig. 1E). Similar behavior was observed when looking at the

other basic cumulative measures (Supplementary Fig. S3).

Overall, we have analyzed and summarized interactions from

3619 SCOP family pairs that were extracted from 352 199 PPIs. In

total, domains from 1384 SCOP families were characterized that

form domain–domain interactions in 1384 ‘homo-SCOP’ interaction

pairs (i.e., both domains are annotated with the same SCOP family)

and 2235 ‘hetero-SCOP’ pairs (Fig. 1B and Supplementary Fig. S1).

The analysis of the calculated statistical potentials showed a wide di-

versity across different families.

Finally, we would like to make a cautionary note of using the

developed tool. DISPOT was designed not as a PPI prediction tool,

but rather a tool that provides additional information on the likeli-

hood of specific domain–domain interactions in a given physical

PPI. The main reason is the fact that structural coverage of the PPI

space is still far from being full, which leads to the presence of a

high number of false negatives if one was to use DISPOT as a stand-

alone predictor. This intuition has been supported by our evaluation

of DISPOT against the two interactomics golden standards. Thus, if

a researcher wants to employ DISPOT in a PPI prediction method,

we recommend adding the DISPOT potentials as features to the

overall feature vector, that would include other parameters, such as

secondary structure, evolutionary conservation of the sequence, pre-

dicted residue hydrophobicity, etc.

3 Implementation and usage

The basic mode is implemented in Python with the dependency on

packages pandas and numpy. It takes SCOP identifiers (IDs) for ei-

ther ‘family’ (fa) or ‘superfamily’ (sf) hierarchy levels as an input

and produces statistical potential for corresponding pair of domains.

Switching between the SCOP levels is implemented in command line

option sf. One of the possible input options is a command line op-

tion domains, which provides a list of space-separated SCOP identi-

fiers. Based on this list, the program produces all possible unique

pairwise combinations of identifiers and the corresponding statistic-

al potentials. Option max produces the highest value of statistical

potential for a selected domain and an SCOP ID for the correspond-

ing interaction domain partner. Option output specifies the output

file. If no file path is specified, then program opens a console output

prompting a user to input the data. A detailed description of all ac-

ceptable input formats and options is available in README file and

help menu of the main script dispot.py.

The auto-extraction version relies on the SUPERFAMILY mod-

els and scripts and HMMER program for extracting the correspond-

ing SCOP IDs for either family or superfamily levels of hierarchy.

The Perl programming language interpreter is an additional depend-

ency. HMMER is compatible with the major linux distributions (it

has been tested on Ubuntu 16.04 and Alpine 3.7 with additional in-

stallation of alpine-glibc). Windows users are advised to use the

docker image. The main script is dispot.py, and it includes sev-

eral options: fasta_folder—to specify a path to the folder with

FASTA files; output_folder—to specify a path to the results and

max—to substitute the regular output of all pairwise statistical

potentials with the highest statistical potential for a given domain

family and an SCOP ID of the interaction partner on which this

value is achieved. Additional script batch_process.py provides

almost the same functionality, except it uses the default locations:

./data/for the input and ./data/results/for the output.

For each FASTA sequence, we extract a SUPERFAMILY-derived

SCOP ID and the location(s) of the corresponding domain on the

protein sequence. It is stored in the ./tmp/folder and is available

until the next run of any of the scripts mentioned in this section. The

data are stored in the Python dictionary objects serialized by pack-

age pickle.

DISPOT has also been implemented as a web server that carries the

full functionality of the developed methods and comes with a tutorial.

The web server is freely available at http://dispot.korkinlab.org/.
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