

Received 18 May 2016 Accepted 8 June 2016

Edited by R. F. Baggio, Comisión Nacional de Energía Atómica, Argentina

Keywords: crystal structure; chalcone; 3-[(*E*)-(6-Methoxy-3,4-dihydronaphth-2-oylidene)methyl]-1*H*-pyridin-2-one and (*E*)-2-[(2-bromo-3pyridyl)methylidene]-6-methoxy-3,4-dihydronaphthalen-1-one.

CCDC references: 1484124; 1484123

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of (*E*)-2-[(2-bromopyridin-3-yl)methylidene]-6-methoxy-3,4-dihydronaphthalen-1(2*H*)-one and 3-[(*E*)-(6-methoxy-1-oxo-1,2,3,4tetrahydronaphthalen-2-ylidene)methyl]pyridin-2(1*H*)-one

Sarah K. Zingales, Morgan E. Moore, Andrew D. Goetz and Clifford W. Padgett*

Armstrong State University, 11935 Abercorn St. Savanah GA 31419, USA. *Correspondence e-mail: Sarah.Zingles@armstrong.edu

The title compounds $C_{17}H_{14}BrNO_2$, (I), and $C_{17}H_{15}NO_3$, (II), were obtained from the reaction of 6-methoxy-3,4-dihydro-2*H*-naphthalen-1-one and 2bromonicotinaldehyde in ethanol. Compound (I) was the expected product and compound (II) was the oxidation product from air exposure. In the crystal structure of compound (I), there are no short contacts or hydrogen bonds. The structure does display π - π interactions between adjacent benzene rings and adjacent pyridyl rings. Compound (II) contains two independent molecules, *A* and *B*, in the asymmetric unit; both are non-planar, the dihedral angles between the methoxybenzene and 1*H*-pyridin-2-one mean planes being 35.07 (9)° in *A* and 35.28 (9)° in *B*. In each molecule, the 1*H*-pyridin-2-one unit participates in intermolecular N-H···O hydrogen bonding to another molecule of the same type (*A* to *A* or *B* to *B*). The structure also displays π - π interactions between the pyridyl and the benzene rings of non-equivalent molecules (*viz.*, *A* to *B* and *B* to *A*).

1. Chemical context

In order to address the need for new therapeutic agents, medicinal chemists have often looked to nature for inspiration. Our research strategy to synthesize novel compounds considered analogs of the natural product chalcone, which contains two aromatic rings and an α - β -unsaturated ketone. Chalcones, bioactive defense molecules found in plants and used in traditional Chinese medicine, have demonstrated anticancer, antibacterial, antifungal, and anti-inflammatory properties (Nowakowska, 2007; Katsori et al., 2011). Chalcones that contain methoxy groups (Shenvi et al., 2013; Bandgar et al., 2010) and/or pyridine groups (Prasad et al., 2008; Yee et al., 2005) have demonstrated activity against a variety of cancer cell lines and antibiotic-resistant bacteria. Thus, we set out to create a library of chalcones that combine those two functional groups. During the synthesis of the title compound (I) by the Claisen-Schmidt condensation of 6-methoxy-3,4-dihydro-2H-naphthalen-1-one and 2-bromonicotinaldehyde, two different types of crystals were obtained - those of the desired chalcone (I) and those of the oxidized product (II). The title compound (I) is a chalcone analog of one currently being studied for its potential anticancer and antibacterial activity [unpublished results].

research communications

2. Structural commentary

Compound (I) is non-planar (Fig. 1) with the pyridyl and the benzene ring being rotated by 73.61 (11)°. The C1–Br1 bond distance is 1.916 (4) Å. In compound (II), which presents two

Figure 1

A view of the molecular structure of compound (I), showing the atom and ring labeling. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A view of the molecular structure of compound (II), showing the atom and ring labeling. Displacement ellipsoids are drawn at the 50% probability level.

Table 1	
Hydrogen-bond geometry (Å, $^{\circ}$) for (II).	

H H···A	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$\begin{array}{ccc} (3) & 1.82 \\ (3) & 1.80 \\ \end{array} $	3)2.778 (3)3)2.778 (3)	178 (3) 176 (3)
	(3) 1.82 (3) 1.80 (3)	(3) 1.82 (3) 2.778 (3) (3) 1.80 (3) 2.778 (3)

Symmetry codes: (i) -x + 3, -y + 1, -z; (ii) -x + 1, -y + 2, -z + 1.

independent molecules in the asymmetric unit (A and B, Fig. 2), the Br atom is replaced by an oxygen atom, with C–O distances O1A-C1A = 1.258 (3) and O1B-C1B = 1.257 (3) Å. The molecules are also non-planar, the benzene-pyridyl angle being 36.18 (10)° in A and 35.91 (10)° in B.

3. Supramolecular features

In the crystal structure of (I), molecules are linked by $\text{Br}\cdots\pi$ and $\pi-\pi$ interactions. The $\text{Br}1\cdots Cg1^{i}$ distance is 3.635 (3) Å [symmetry code: (i) -1 + x, y, z; Cg1 is the centroid of the benzene ring] and has a 'face-on' geometry. There are two $\pi-\pi$ interactions in the crystal between adjacent benzene rings, $Cg1\cdots Cg1^{ii} = 3.944$ (4) Å [symmetry code: (ii) 1 - x, 1 - y, 1 - z] and between adjacent pyridyl rings, $Cg2\cdots Cg2^{iii} =$ 3.639 (4) Å [symmetry code: (iii) -x, 1 - y, -z]. The $\pi-\pi$ interactions form ribbons in the (101) plane (Fig. 3), which are held together by the $\text{Br}\cdots\pi$ interactions (Fig. 4).

In each one of the independent molecules in (II), the 1*H*-pyridin-2-one unit participates in intermolecular $N-H\cdots O$ hydrogen bonding, with a classical R_2^2 (8) synthon, to another molecule of the same type (*A* to *A* or *B* to *B*), see Fig. 5 and Table 1 for details. These hydrogen-bonding interactions form dimers that are reminiscent of those frequently observed between carboxylic acids. The hydrogen-bonded units are linked by $\pi-\pi$ stacking interactions between the benzene and pyridyl rings in adjacent molecules of different type (*A*-*B* or

A view of hydrogen-bonded dimers formed in compound (II). Only molecule A is shown, for simplicity. Hydrogen bonds (see Table1) are drawn with dashed lines.

Figure 4

 $N-H\!\cdots\!O$ hydrogen bonding in (II) between 1H-pyridin-2-one unit between molecule of the same type

B-*A* interactions) (Fig. 6); $Cg3\cdots Cg4^{i} = 3.875$ (4) and $Cg5\cdots Cg6^{ii} = 3.857$ (4) Å [symmetry codes: (i) 3 - x, 1 - y, -z; (ii) 1 - x, 1 - y, 1 - z; Cg3 and Cg4 are the centroids of the pyridyl and benzene rings of molecule *A*, Cg5 and Cg6 are the corresponding centroids in molecule *B*].

4. Database survey

A search of the Cambridge Structural Database (Version 5.37 with four updates, Groom *et al.*, 2016) for structures containing the combined tetralone and pyridine backbone returned no hits. The search was broadened by changing the nitrogen to carbon, which returned 43 hits. The carbon-containing version of (I) has been reported (Dimmock *et al.*, 2002; Yee *et al.*, 2005). Many of these similar chalcones also demonstrated biological activities (Dimmock *et al.*, 2002).

Figure 6

The hydrogen-bonded units in (II) are linked by π - π stacking interactions between the phenyl and pyridyl rings in adjacent molecules of different type.

5. Synthesis and crystallization

6-Methoxy-3,4-dihydro-2*H*-naphthalen-1-one (1 mmol) and 2-bromonicotinaldehyde (1 mmol) were dissolved in ethanol (5 mL). An NaOH solution (5 M, 1 mL) was added and the reaction was stirred until a precipitate formed. The reaction mixture was cooled in an ice bath for 20 minutes. The solids were filtered off and recrystallized from MeOH/H₂O. Slow evaporation of a methanolic solution gave dark purple/brown crystals, which proved to be 3-[(E)-(6-methoxy-1-oxo-1,2,3,4tetrahydronaphthalen-2-idene)methyl]pyridin-2(1*H*)-one, (II),and lighter purple crystals which proved to be (*E*)-2-[(2bromopyridin-3-yl)methylidene]-6-methoxy-3,4-dihydronaphthalen-1(2*H*)-one, (I).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were positioned geometrically and refined as riding with C-H = 0.95 or 0.98 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 5 Dimers formed by hydrogen-bonding interactions in (II).

research communications

 Table 2

 Experimental details.

	(I)	(II)
Crystal data		
Chemical formula	C17H14BrNO2	C17H15NO2
М.,	344.21	281.31
Crystal system, space group	Monoclinic. $P2_1/c$	Triclinic. P1
Temperature (K)	173	173
a, b, c (Å)	8.885 (8), 14.253 (13), 11.583 (11)	8.079 (8), 12.296 (12), 14.009 (13)
α, β, γ (°)	90, 92,760 (9), 90	88.85 (3), 76.969 (16), 89.43 (3)
$V(A^3)$	1465 (3)	1356 (3)
Z	4	4
Radiation type	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	2.82	0.10
Crystal size (mm)	$0.45 \times 0.30 \times 0.10$	$0.50 \times 0.20 \times 0.20$
Data collection		
Diffractometer	Rigaku XtaLAB mini	Rigaku XtaLAB mini
Absorption correction	Multi-scan (REQAB; Rigaku, 1998)	Multi-scan (REQAB; Rigaku, 1998)
T_{\min}, \dot{T}_{\max}	0.587, 0.754	0.808, 0.981
No. of measured, independent and observed $[F^2 > 2.0\sigma(F^2)]$ reflections	15395, 3363, 2583	14459, 6203, 3987
R _{int}	0.056	0.049
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.650	0.649
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.041, 0.088, 0.99	0.058, 0.157, 1.03
No. of reflections	3363	6203
No. of parameters	190	387
H-atom treatment	H-atom parameters constrained	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.26, -0.46	0.21, -0.23

Computer programs: CrystalClear-SM Expert (Rigaku, 2011), SHELXS97, SHELXS86 and SHELXL97 (Sheldrick, 2008) and CrystalStructure (Rigaku, 2011).

Acknowledgements

MEM and ADG are grateful for the financial support of an ASU Undergraduate Research Grant and SKZ for an ASU Research and Scholarship Grant.

References

- Bandgar, B. P., Gawande, S. S., Bodade, R. G., Totre, J. V. & Khobragade, C. N. (2010). *Bioorg. Med. Chem.* 18, 1364–1370.
- Dimmock, J. R., Zello, G. A., Oloo, E. O., Quail, J. W., Kraatz, H. B., Perjési, P., Aradi, F., Takács-Novák, K., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Stables, J. P. (2002). J. Med. Chem. 45, 3103–3111.

Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.

- Katsori, A. M. & Hadjipavlou-Litina, D. (2011). *Expert Opin. Ther. Pat.* **21**, 1575–1596.
- Nowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125–137.
- Prasad, Y. R., Kumar, P. P., Kumar, P. R. & Rao, A. S. (2008). E-J. Chem. 5, 144–148.
- Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2011). Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shenvi, S., Kumar, K., Hatti, K. S., Rijesh, K., Diwakar, L. & Reddy, G. C. (2013). Eur. J. Med. Chem. 62, 435–442.
- Yee, S. W., Jarno, L., Gomaa, M. S., Elford, C., Ooi, L. L., Coogan, M. P., McClelland, R., Nicholson, R. I., Evans, B. A. J., Brancale, A. & Simons, C. (2005). J. Med. Chem. 48, 7123–7131.

Acta Cryst. (2016). E72, 955-958 [doi:10.1107/S2056989016009300]

Crystal structure of (*E*)-2-[(2-bromopyridin-3-yl)methylidene]-6-methoxy-3,4-dihydronaphthalen-1(2*H*)-one and 3-[(*E*)-(6-methoxy-1-oxo-1,2,3,4-tetrahydronaphthalen-2-ylidene)methyl]pyridin-2(1*H*)-one

Sarah K. Zingales, Morgan E. Moore, Andrew D. Goetz and Clifford W. Padgett

Computing details

For both compounds, data collection: *CrystalClear-SM Expert* (Rigaku, 2011); cell refinement: *CrystalClear-SM Expert* (Rigaku, 2011); data reduction: *CrystalClear-SM Expert* (Rigaku, 2011). Program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008) for (I); *SHELXS86* (Sheldrick, 2008) for (II). For both compounds, program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *CrystalStructure* (Rigaku, 2011); software used to prepare material for publication: *CrystalStructure* (Rigaku, 2011).

(I) (E)-2-[(2-Bromopyridin-3-yl)methylidene]-6-methoxy-3,4-dihydronaphthalen-1(2H)-one

Crystal data	
$C_{17}H_{14}BrNO_2$	F(000) = 696.00
$M_r = 344.21$	$D_{\rm x} = 1.560 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71075$ Å
Hall symbol: -P 2ybc	Cell parameters from 3472 reflections
a = 8.885 (8) Å	$\theta = 2.3 - 27.5^{\circ}$
b = 14.253 (13) Å	$\mu = 2.82 \text{ mm}^{-1}$
c = 11.583 (11) Å	T = 173 K
$\beta = 92.760 \ (9)^{\circ}$	Prism, dark-purple/brown
$V = 1465 (3) Å^3$	$0.45 \times 0.30 \times 0.10 \text{ mm}$
Z = 4	
Data collection	
Rigaku XtaLAB mini	3363 independent reflections
diffractometer	2583 reflections with $F^2 > 2.0\sigma(F^2)$
Detector resolution: 6.827 pixels mm ⁻¹	$R_{\rm int} = 0.056$
ω scans	$\theta_{\rm max} = 27.5^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(<i>REQAB</i> ; Rigaku, 1998)	$k = -18 \rightarrow 18$
$T_{\min} = 0.587, \ T_{\max} = 0.754$	$l = -15 \rightarrow 15$
15395 measured reflections	
Refinement	
Refinement on F^2	0 restraints
$R[F^2 > 2\sigma(F^2)] = 0.041$	Primary atom site location: structure-invariant
$wR(F^2) = 0.088$	direct methods
S = 0.99	Secondary atom site location: difference Fouri

Secondary atom site location: difference Fourier map

3363 reflections

190 parameters

Hydrogen site location: inferred from	$w = 1/[\sigma^2(F_o^2) + (0.0211P)^2 + 1.2385P]$
neighbouring sites	where $P = (F_o^2 + 2F_c^2)/3$
H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} = 0.001$
	$\Delta \rho_{\rm max} = 0.26 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.46 \text{ e} \text{ Å}^{-3}$

Special details

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2 . R-factor (gt) are based on F. The threshold expression of $F^2 > 2.0$ sigma(F^2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	-0.13688 (4)	0.66365 (2)	0.18318 (3)	0.05196 (12)
01	0.4068 (3)	0.77510 (13)	0.2922 (2)	0.0510 (6)
O2	0.8298 (3)	0.48452 (15)	0.56282 (19)	0.0521 (6)
N1	-0.1337 (3)	0.6115 (2)	-0.0441 (3)	0.0519 (7)
C1	-0.0406 (4)	0.63829 (19)	0.0420 (3)	0.0399 (7)
C2	-0.0701 (5)	0.5917 (3)	-0.1437 (3)	0.0569 (9)
C3	0.0819 (4)	0.5971 (3)	-0.1590 (3)	0.0511 (8)
C4	0.1750 (4)	0.6256 (2)	-0.0669 (3)	0.0441 (8)
C5	0.1155 (4)	0.64673 (18)	0.0395 (3)	0.0366 (7)
C6	0.2119 (4)	0.67894 (19)	0.1378 (3)	0.0382 (7)
C7	0.3472 (3)	0.64406 (18)	0.1728 (3)	0.0355 (7)
C8	0.4221 (4)	0.55788 (19)	0.1273 (3)	0.0397 (7)
C9	0.4650 (4)	0.49170 (19)	0.2271 (3)	0.0431 (7)
C10	0.5546 (3)	0.53914 (19)	0.3242 (3)	0.0349 (7)
C11	0.5366 (3)	0.63552 (18)	0.3440 (3)	0.0352 (7)
C12	0.4297 (3)	0.69188 (19)	0.2712 (3)	0.0380 (7)
C13	0.6523 (3)	0.48629 (19)	0.3960 (3)	0.0370 (7)
C14	0.7322 (4)	0.5294 (2)	0.4867 (3)	0.0411 (7)
C15	0.7157 (4)	0.6258 (3)	0.5061 (3)	0.0477 (8)
C16	0.6194 (4)	0.6772 (2)	0.4356 (3)	0.0447 (8)
C17	0.8613 (4)	0.3880 (3)	0.5410 (3)	0.0539 (9)
H2	-0.1340	0.5728	-0.2077	0.0683*
H3	0.1219	0.5817	-0.2311	0.0613*
H4	0.2804	0.6309	-0.0758	0.0530*
H6	0.1750	0.7297	0.1814	0.0459*
H8A	0.5135	0.5761	0.0871	0.0476*
H8B	0.3525	0.5256	0.0710	0.0476*
H9A	0.3720	0.4651	0.2576	0.0517*
H9B	0.5248	0.4391	0.1975	0.0517*
H13	0.6639	0.4210	0.3828	0.0445*
H15	0.7712	0.6553	0.5682	0.0572*
H16	0.6088	0.7425	0.4493	0.0536*
H17A	0.9360	0.3650	0.5993	0.0646*
H17B	0.9011	0.3816	0.4640	0.0646*
H17C	0.7684	0.3513	0.5450	0.0646*

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.04010 (19)	0.0613 (3)	0.0558 (3)	0.01067 (15)	0.01591 (15)	0.01474 (16)
01	0.0488 (14)	0.0315 (12)	0.0735 (16)	0.0008 (9)	0.0093 (12)	-0.0123 (11)
O2	0.0533 (14)	0.0551 (14)	0.0471 (13)	0.0012 (11)	-0.0050 (11)	-0.0050 (11)
N1	0.0415 (16)	0.0614 (18)	0.0525 (17)	-0.0020 (13)	-0.0003 (14)	0.0138 (14)
C1	0.0361 (16)	0.0365 (16)	0.0479 (18)	0.0030 (12)	0.0094 (14)	0.0138 (13)
C2	0.062 (3)	0.063 (3)	0.045 (2)	-0.0061 (18)	-0.0079 (17)	0.0126 (17)
C3	0.061 (3)	0.051 (2)	0.0415 (18)	0.0011 (16)	0.0087 (16)	0.0097 (15)
C4	0.0470 (19)	0.0387 (17)	0.0478 (19)	-0.0008 (14)	0.0126 (15)	0.0097 (14)
C5	0.0355 (16)	0.0307 (15)	0.0443 (17)	0.0021 (11)	0.0084 (13)	0.0097 (12)
C6	0.0387 (17)	0.0308 (15)	0.0462 (17)	-0.0009 (12)	0.0131 (14)	0.0029 (12)
C7	0.0348 (16)	0.0294 (14)	0.0434 (17)	-0.0018 (11)	0.0130 (13)	-0.0027 (12)
C8	0.0348 (16)	0.0411 (17)	0.0436 (17)	0.0037 (12)	0.0052 (13)	-0.0104 (13)
C9	0.0448 (18)	0.0315 (15)	0.0525 (19)	0.0045 (13)	-0.0029 (15)	-0.0117 (14)
C10	0.0304 (15)	0.0348 (15)	0.0406 (16)	-0.0043 (11)	0.0111 (12)	-0.0073 (12)
C11	0.0301 (15)	0.0323 (14)	0.0439 (17)	-0.0047 (11)	0.0103 (13)	-0.0085 (12)
C12	0.0347 (16)	0.0307 (15)	0.0499 (18)	-0.0049 (12)	0.0162 (13)	-0.0085 (13)
C13	0.0341 (16)	0.0346 (15)	0.0432 (16)	-0.0048 (12)	0.0103 (13)	-0.0059 (13)
C14	0.0366 (16)	0.0471 (18)	0.0404 (17)	-0.0030 (13)	0.0098 (13)	-0.0049 (14)
C15	0.0425 (19)	0.0508 (19)	0.0498 (19)	-0.0093 (15)	0.0016 (15)	-0.0161 (15)
C16	0.0418 (18)	0.0391 (17)	0.0543 (19)	-0.0063 (13)	0.0124 (15)	-0.0162 (14)
C17	0.054 (3)	0.058 (3)	0.049 (2)	0.0080 (17)	0.0013 (16)	0.0003 (16)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Br1—C1	1.916 (4)	C11—C16	1.395 (5)
O1—C12	1.230 (4)	C13—C14	1.383 (5)
O2—C14	1.366 (4)	C14—C15	1.400 (5)
O2—C17	1.428 (4)	C15—C16	1.367 (5)
N1-C1	1.322 (4)	C2—H2	0.950
N1-C2	1.339 (5)	С3—Н3	0.950
C1—C5	1.394 (5)	C4—H4	0.950
С2—С3	1.373 (6)	С6—Н6	0.950
С3—С4	1.379 (5)	C8—H8A	0.990
C4—C5	1.396 (5)	C8—H8B	0.990
С5—С6	1.466 (4)	С9—Н9А	0.990
С6—С7	1.345 (4)	C9—H9B	0.990
С7—С8	1.504 (4)	C13—H13	0.950
C7—C12	1.490 (4)	C15—H15	0.950
С8—С9	1.526 (5)	C16—H16	0.950
C9—C10	1.507 (4)	C17—H17A	0.980
C10-C11	1.403 (4)	C17—H17B	0.980
C10—C13	1.394 (4)	C17—H17C	0.980
C11—C12	1.477 (4)		
Br1…C6	3.175 (5)	C7····H17C ^{vii}	3.4744

O1…C6	2.788 (4)	C8····H2 ^{ix}	3.3343
O1…C16	2.824 (4)	C8····H8A ^{xii}	3.2064
O2…C16	3.597 (5)	C8····H8B ^{xii}	3.3383
N1····C4	2.776 (5)	C9····H2 ^{ix}	3.0789
C1…C3	2.682 (5)	C9····H4 ^{xii}	3.4093
C2…C5	2.739 (5)	C10····H3 ^{xii}	3.5613
C4…C7	3.115 (5)	C11···H17C ^{vii}	3.0608
C4…C8	3.215 (5)	C12…H4 ⁱⁱ	3.3921
C5…C8	3.129 (5)	C12H9B ⁱⁱⁱ	3.5629
C7…C10	2.898 (5)	C12···H17C ^{vii}	2.8936
C8…C11	2.883 (5)	C13····H3 ^{xii}	2.9961
C9····C12	2,918 (5)	C14····H9A ^{vii}	3 1465
C10···C15	2,779 (5)	C14···H17A ^{iv}	3 4966
C11···C14	2.786 (5)	C14···H17B ^{iv}	3 5174
C13···C16	2.700(5)	$C15\cdots H2^{xi}$	3 5940
C13···C17	2.816 (5)	$C15 \cdots H9A^{vii}$	3 1588
Br1…C11 ⁱ	3545(4)	C15···H17A ^{iv}	3 3838
01C3 ⁱⁱ	3.343(4) 3.482(5)	$C15 \cdots H17 B^{iv}$	3 4081
$01 \cdot C4^{ii}$	3,039(5)	$C16 \cdots H17C^{vii}$	3 4878
	3.009(5)	$C17 \cdots H6^{vi}$	3 4285
$01^{\circ}C^{\circ}$	3.302(3)	H_{2}	2 9448
$O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 $	3.447(3)	$H_2 = O_2$	2.9448
C_{2}	3.349(3) 3.482(5)		3.0780
C3···01	3.402(5)		2 5040
C4O1	5.059 (5) 2.572 (6)		3.3940
	5.572(0)		2.9228
	5.502(3)	H2H9A	2.2314
C10···· $C14$ ····	3.576 (5)		3.4838 2.0264
	5.545(4)		2.9304
$C14\cdots C10^{m}$	3.570 (5)	H3····BF1···	3.341/
C1702 ^{.1}	3.549 (5)		3.2529
C1/C5"	3.572(6)	$H3\cdots C10^{\text{All}}$	3.5613
Br1···H6	2.9275		2.9961
OIH6	2.4600		2.9190
01H16	2.5365		3.1583
02···H13	2.6545		2.6509
02···H15	2.4904		2.7453
N1····H3	3.2414		2.3578
C1···H2	3.1134	H4C9 ^{xii}	3.4093
CI···H4	3.2223	H4···C12v	3.3921
С1…Н6	2.7708	H4····H6 ^v	3.5320
C2…H4	3.2239	H4····H8A ^{xn}	3.4784
C4…H2	3.2145		2.4924
C4…H6	3.2363	H4…H16 ^v	3.4309
C4…H8A	3.4942	H4···H17C ^m	3.1940
C4…H8B	2.6124	Н6…С3"	3.2152
С5…Н3	3.2719	H6····C4 ⁱⁱ	3.5709
C5…H8B	2.7337	H6…C17 ⁱⁱⁱ	3.4285
С6…Н4	2.6663	H6····H3 ⁱⁱ	2.9190

C6…H8A	3.1347	Н6…Н4 ^{іі}	3.5320
C6…H8B	2.6513	H6…H13 ⁱⁱⁱ	3.1833
C7…H4	2.9181	H6…H17A ^{vii}	3.0803
С7…Н9А	2.7383	H6…H17B ⁱⁱⁱ	2.8049
С7…Н9В	3.3265	H6…H17C ⁱⁱⁱ	3.2031
С8…Н4	2.8141	H6…H17C ^{vii}	3.3881
С8…Н6	3.3683	H8A…Br1 ^{viii}	3.4801
С9…Н13	2.6622	H8A…N1 ^{viii}	3.5846
C10H8A	2.8022	H8A····C8 ^{xii}	3.2064
C10H8B	3.3699	H8A…H4 ^{xii}	3.4784
C10H16	3 2663	H8A…H8A ^{xii}	2.9651
C11H8A	3.0904	H8AH8B ^{xii}	2.6613
C11····H9A	2 9829		3 3050
C11····H9B	3 2731	H8AH16 ^v	3 1746
C11···H13	3 2840	H8B····N1 ^{ix}	2 7636
C11H15	3 2626	H8B····C2 ^{ix}	3 1634
С12…Н6	2 5034	H8B····C8 ^{xii}	3 3383
С12 110	2.5054		2 9228
C12 H8R	3 3631		2.5220
С12 НОВ	3.2750	H8BH8B ^{xii}	3 2432
C12····H16	2 6445		3 3817
С12-1110	2.0113		3 4120
C13····H9B	2.9125	H9A ···· O ² vii	2 9006
C13····H15	3 2694	$H9A \cdots N1^{ix}$	3 3590
C13···H17B	2 7501	$H9A \cdots C2^{ix}$	3 0408
C13····H17C	2.7501	$H9A \cdots C14^{vii}$	3 1465
C14···H16	3 2512	$H9A \cdots C15^{vii}$	3 1588
C14 H10 C14…H17A	3 2009	$H9A \cdots H2^{ix}$	2 2314
C14···H17B	2 6071	H9ΛH15 ^{vii}	2.2314
C14 H17D	2.0071		2.9801
C15H13	3 2725	H9B····C3 ^{xii}	3 5819
C17···H13	2 5192	H9B····C4 ^{xii}	3 2624
Н2Н3	2.3172	H9B····C12 vi	3 5629
Н2 П5	2.3000	HOBH2ix	3 4838
Н5 П4 Н4…Н6	3 4655		3 1583
н4 но н4н8л	2 8/38		2 4024
H4H8R	2.8438		3 3050
H6H8B	3 5753	HOB HOK HOBH8B ^{xii}	3 3817
H84H94	2 8675		3 4571
H8AH0R	2.8075	H13 $O1^{vi}$	2 9/97
	2.3350		2.9497
H8BH0B	2.5205	H13 C3	2 6500
Подц13	2.4075	1115 115 Ц12Ц6 ^{vi}	2.0309
нул 1113 Н0ВН13	2.7114	H15R+1 xiv	2.1023 2.0008
ную ніз Н13Н17А	2.7303	H15C1xiv	2.3330
H13H17R	2.4207	H15H2xi	2.4030 2.0261
H13H17C	2.3340	H15H0Avii	2.3304
шэ п1/С ш15ш16	2.2021		2.9001
ш <i>э</i> …пто	2.3091	п13 п1/А	3.3310

Br1…H3 ^{ix}	3.5417	$H15$ ···H17 B^{iv}	3.0003
Br1…H8A ⁱ	3.4801	H16…N1 ^{xiv}	3.0906
Br1…H15 ^x	2.9998	H16…H4 ⁱⁱ	3.4309
Br1…H17A ^{vii}	3.0445	H16…H8A ⁱⁱ	3.1746
01…H3 ⁱⁱ	3.2529	H16····H9B ⁱⁱⁱ	3.4571
O1…H4 ⁱⁱ	2.3578	H17A…Br1 ^{vii}	3.0445
O1…H9A ⁱⁱⁱ	3.4120	H17A····O2 ^{iv}	3.5822
O1···H9B ⁱⁱⁱ	2.4164	H17A…C4 ^{vi}	3.5660
O1…H13 ⁱⁱⁱ	2.9497	H17А…C5 ^{vi}	3.5209
O1…H17C ^{vii}	3.0841	H17A…C6 ^{vii}	3.4317
O2····H2 ^{xi}	2.9448	H17A…C14 ^{iv}	3.4966
O2…H9A ^{vii}	2.9006	H17A…C15 ^{iv}	3.3838
O2…H17A ^{iv}	3.5822	H17A…H6 ^{vii}	3.0803
O2…H17B ^{iv}	3.0868	$H17A$ ··· $H15^{iv}$	3.3316
N1…H8A ⁱ	3.5846	H17B····O2 ^{iv}	3.0868
N1···H8B ^{ix}	2.7636	H17B····C3 ^{xii}	3.5563
N1····H9A ^{ix}	3.3590	H17B···C5 ^{vi}	3.3507
N1···H16 ^x	3.0906	H17B…C6 ^{vi}	3.2597
C1H15 ^x	3,4050	H17B···C14 ^{iv}	3.5174
C2···H8B ^{ix}	3.1634	$H17B$ ···C 15^{iv}	3,4081
C2···H9A ^{ix}	3 0408	H17B···H3 ^{xii}	2.7453
C3…H6 ^v	3 2152	$H17B\cdots H6^{vi}$	2,8049
C3···H9B ^{xii}	3.5819	H17B···H15 ^{iv}	3.0003
C3…H13 ^{xii}	3 5284	$H17C\cdotsO1^{vii}$	3 0841
C3···H17B ^{xii}	3 5563	$H17C\cdots C4^{vi}$	3 2643
C4…H6 ^v	3 5709	H17C····C5 ^{vi}	3 2 5 9 0
C4···H9B ^{xii}	3 2624	$H17C\cdots C6^{vi}$	3 2537
C4···H17A ⁱⁱⁱ	3 5660	H17C····C7 ^{vii}	3 4744
$C4\cdots H17C^{iii}$	3 2643	$H17C\cdots C11^{vii}$	3 0608
C5···H17A ⁱⁱⁱ	3 5209	$H17C$ ···· $C12^{vii}$	2,8936
C5···H17B ⁱⁱⁱ	3 3507	$H17C\cdots C16^{vii}$	3 4878
C5···H17C ⁱⁱⁱ	3 2590	$H17C$ ··· $H4^{vi}$	3 1940
C6···H17A ^{vii}	3 4317	$H17C\cdots H6^{vi}$	3 2031
C6···H17B ⁱⁱⁱ	3 2597	$H17C H6^{vii}$	3 3881
C6···H17C ⁱⁱⁱ	3 2537		5.5001
00 11170	3.2007		
C14 - 02 - C17	117 4 (3)	C11—C16—C15	121 2 (3)
C1 - N1 - C2	1159(3)	N1-C2-H2	118.055
Br1 - C1 - N1	113.9(3) 114.2(3)	C_{3} C_{2} H_{2}	118.055
Br1 - C1 - C5	1192(3)	C_{2} C_{3} H_{3}	120.838
N1-C1-C5	119.2(3) 126.6(3)	C4-C3-H3	120.030
N1 - C2 - C3	123.9(4)	C3—C4—H4	119 759
$C_2 = C_3 = C_4$	123.9(4) 1183(4)	C5-C4-H4	119.753
$C_2 = C_3 = C_4 = C_5$	120.5(3)	C5-C6-H6	116 619
$C_{1} - C_{5} - C_{4}$	120.5(3) 114.8(3)	C7—C6—H6	116 628
C1 - C5 - C6	1237(3)	C7—C8—H8A	100.028
C_{4} C_{5} C_{6}	123.7(3) 121 4 (3)	C7_C8_H8B	109.712
$C_{1} = C_{2} = C_{0}$	121.7(3) 1268(3)	$C_{1} = C_{0} = H_{0}$	109./12
$\cup - \cup - \cup /$	120.0 (3)	U7-U0-R0A	109./13

C6—C7—C8	126.9 (3)	С9—С8—Н8В	109.719
C6—C7—C12	117.4 (3)	H8A—C8—H8B	108.195
C8—C7—C12	115.6 (3)	С8—С9—Н9А	108.968
C7—C8—C9	109.8 (3)	С8—С9—Н9В	108.968
C8—C9—C10	113.1 (3)	С10—С9—Н9А	108.972
C9—C10—C11	120.1 (3)	С10—С9—Н9В	108.971
C9—C10—C13	119.6 (3)	H9A—C9—H9B	107.765
C11—C10—C13	120.3 (3)	C10-C13-H13	120.158
C10-C11-C12	121.0 (3)	C14—C13—H13	120.170
C10-C11-C16	118.7 (3)	C14—C15—H15	120.081
C12—C11—C16	120.3 (3)	C16—C15—H15	120.079
O1—C12—C7	120.8 (3)	C11—C16—H16	119.393
O1—C12—C11	121.3 (3)	C15—C16—H16	119.404
C7—C12—C11	117.8 (3)	O2—C17—H17A	109.466
C10-C13-C14	119.7 (3)	O2—C17—H17B	109.477
O2—C14—C13	124.7 (3)	O2—C17—H17C	109.473
O2—C14—C15	115.1 (3)	H17A—C17—H17B	109.467
C13—C14—C15	120.3 (3)	H17A—C17—H17C	109.469
C14—C15—C16	119.8 (3)	H17B—C17—H17C	109.476
C17—O2—C14—C13	5.8 (4)	C12—C7—C8—C9	50.7 (3)
C17—O2—C14—C15	-174.6 (3)	C7—C8—C9—C10	-52.0 (3)
C1—N1—C2—C3	0.6 (5)	C8—C9—C10—C11	27.9 (4)
C2—N1—C1—Br1	-179.0 (3)	C8—C9—C10—C13	-153.9 (3)
C2—N1—C1—C5	-0.8 (5)	C9—C10—C11—C12	0.4 (4)
Br1-C1-C5-C4	179.22 (15)	C9—C10—C11—C16	179.0 (3)
Br1-C1-C5-C6	-3.3 (4)	C9—C10—C13—C14	-178.6 (3)
N1—C1—C5—C4	1.1 (4)	C11—C10—C13—C14	-0.4 (4)
N1-C1-C5-C6	178.6 (3)	C13-C10-C11-C12	-177.9 (3)
N1—C2—C3—C4	-0.7 (5)	C13-C10-C11-C16	0.8 (4)
C2—C3—C4—C5	1.1 (5)	C10-C11-C12-O1	175.7 (3)
C3—C4—C5—C1	-1.2 (4)	C10-C11-C12-C7	-2.8 (4)
C3—C4—C5—C6	-178.7 (3)	C10-C11-C16-C15	-0.6 (5)
C1—C5—C6—C7	139.3 (3)	C12-C11-C16-C15	178.1 (3)
C4—C5—C6—C7	-43.4 (4)	C16-C11-C12-O1	-2.9 (5)
C5—C6—C7—C8	-7.3 (5)	C16—C11—C12—C7	178.5 (3)
C5—C6—C7—C12	176.3 (3)	C10-C13-C14-O2	179.4 (3)
C6—C7—C8—C9	-125.8 (3)	C10-C13-C14-C15	-0.2 (5)
C6-C7-C12-O1	-25.6 (4)	O2-C14-C15-C16	-179.3 (3)
C6—C7—C12—C11	152.9 (3)	C13—C14—C15—C16	0.4 (5)
C8—C7—C12—O1	157.5 (3)	C14-C15-C16-C11	0.0 (5)
C8—C7—C12—C11	-23.9 (4)		

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*, -*y*+3/2, *z*+1/2; (iii) -*x*+1, *y*+1/2, -*z*+1/2; (iv) -*x*+2, -*y*+1, -*z*+1; (v) *x*, -*y*+3/2, *z*-1/2; (vi) -*x*+1, *y*-1/2, -*z*+1/2; (vii) -*x*+1, -*y*+1, -*z*+1; (viii) *x*+1, *y*, *z*; (ix) -*x*, -*y*+1, -*z*; (x) *x*-1, -*y*+3/2, *z*-1/2; (xi) *x*+1, *y*, *z*+1; (xii) -*x*+1, -*y*+1, -*z*; (xiii) *x*-1, *y*, *z*-1; (xiv) *x*+1, -*y*+3/2, *z*+1/2.

(II) 3-[(E)-(6-Methoxy-1-oxo-1,2,3,4-tetrahydronaphthalen-2-ylidene)methyl]pyridin-2(1H)-one

Z = 4

F(000) = 592.00

 $\theta = 1.7 - 27.5^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$

T = 173 K

 $D_{\rm x} = 1.378 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71075$ Å

Cell parameters from 3099 reflections

Crystal data

C₁₇H₁₅NO₃ $M_r = 281.31$ Triclinic, *P*1 Hall symbol: -P 1 a = 8.079 (8) Å b = 12.296 (12) Å c = 14.009 (13) Å a = 88.85 (3)° $\beta = 76.969$ (16)° $\gamma = 89.43$ (3)° V = 1356 (3) Å³

$\beta = 76.969 (16)^{\circ}$ $\gamma = 89.43 (3)^{\circ}$ $V = 1356 (3) Å^{3}$	Prism, purple $0.50 \times 0.20 \times 0.20$ mm
Data collection	
Rigaku XtaLAB mini diffractometer Detector resolution: 6.827 pixels mm ⁻¹ ω scans	6203 independent reflections 3987 reflections with $F^2 > 2.0\sigma(F^2)$ $R_{int} = 0.049$ $\theta_{max} = 27.5^{\circ}$
Absorption correction: multi-scan ($REQAB$; Rigaku, 1998) $T_{min} = 0.808$, $T_{max} = 0.981$ 14459 measured reflections	$h = -10 \rightarrow 10$ $k = -15 \rightarrow 15$ $l = -18 \rightarrow 18$
Refinement	

Refinement on F^2 Secondary atom site location: difference Fourier $R[F^2 > 2\sigma(F^2)] = 0.058$ map $wR(F^2) = 0.157$ Hydrogen site location: inferred from S = 1.03neighbouring sites 6203 reflections H atoms treated by a mixture of independent and constrained refinement 387 parameters $w = 1/[\sigma^2(F_o^2) + (0.0585P)^2 + 0.2529P]$ 0 restraints Primary atom site location: structure-invariant where $P = (F_0^2 + 2F_c^2)/3$ direct methods $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.23 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2 . R-factor (gt) are based on F. The threshold expression of $F^2 > 2.0$ sigma(F^2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
O1A	1.35958 (19)	0.48754 (12)	0.11653 (11)	0.0326 (4)	
O1B	0.63793 (19)	0.98881 (12)	0.38219 (11)	0.0332 (4)	
O2A	0.9197 (3)	0.46536 (12)	0.39203 (12)	0.0402 (4)	
O2B	1.0769 (2)	0.96666 (12)	0.10487 (11)	0.0387 (4)	
O3A	0.6064 (3)	0.15815 (13)	0.75027 (11)	0.0442 (5)	
O3B	1.3821 (2)	0.65941 (13)	-0.24660 (11)	0.0412 (5)	
N1A	1.4242 (3)	0.36168 (15)	-0.00284 (13)	0.0298 (4)	
N1B	0.5793 (3)	0.86238 (15)	0.50526 (13)	0.0316 (5)	

C1A	1.3324 (3)	0.39499 (17)	0.08683 (15)	0.0280 (5)
C1B	0.6684 (3)	0.89632 (17)	0.41435 (15)	0.0278 (5)
C2A	1.4049 (3)	0.26451 (18)	-0.04361 (17)	0.0354 (6)
C2B	0.6040 (3)	0.76448 (18)	0.54789 (16)	0.0350 (6)
C3A	1.2856 (3)	0.19377 (18)	0.00387 (16)	0.0347 (6)
C3B	0.7238(3)	0 69400 (18)	0 50207 (16)	0.0342 (6)
C4A	1 1847 (3)	0.22236(17)	0.09530(16)	0.0312(0)
C4B	0.8213(3)	0.22230(17) 0.72330(18)	0.099990(16) 0.40892(16)	0.0301(5)
C5A	1,2066(3)	0.72330(13) 0.31888(17)	0 13941 (15)	0.0321(5)
C5B	0.7950(3)	0.91000(17) 0.81001(17)	0.15941(15) 0.36243(15)	0.0272(5)
C6A	1.1081(3)	0.01991(17) 0.35505(17)	0.30243(15) 0.23403(15)	0.0280(5)
C6P	1.1081(3)	0.33333(17)	0.23403(13)	0.0274(3)
COB	0.0909(3)	0.65755(17)	0.20040(13)	0.0270(3)
C/A C7D	1.0120(3)	0.299/3(17)	0.30996 (15)	0.0277(5)
C/B	0.9845 (3)	0.80123(17)	0.19149(15)	0.0266 (5)
C8A	0.9851 (3)	0.1//86(1/)	0.31644 (15)	0.0326 (5)
C8B	1.0132 (3)	0.67944 (17)	0.18803 (16)	0.0333 (5)
C9A	0.9762 (3)	0.13030 (17)	0.41899 (15)	0.0287 (5)
C9B	1.0185 (3)	0.63272 (17)	0.08736 (15)	0.0283 (5)
C10A	0.8586 (3)	0.19351 (17)	0.49738 (15)	0.0261 (5)
C10B	1.1337 (3)	0.69533 (16)	0.00597 (15)	0.0252 (5)
C11A	0.8353 (3)	0.30523 (17)	0.48528 (15)	0.0288 (5)
C11B	1.1553 (3)	0.80721 (17)	0.01437 (15)	0.0280 (5)
C12A	0.9227 (3)	0.36508 (17)	0.39546 (15)	0.0281 (5)
C12B	1.0721 (3)	0.86650 (17)	0.10352 (15)	0.0279 (5)
C13A	0.7811 (3)	0.14120 (17)	0.58544 (15)	0.0285 (5)
C13B	1.2104 (3)	0.64271 (17)	-0.08067 (15)	0.0278 (5)
C14A	0.6831 (3)	0.20038 (18)	0.66097 (16)	0.0334 (5)
C14B	1.3057 (3)	0.70229 (18)	-0.15880 (16)	0.0316 (5)
C15A	0.6584 (4)	0.3122 (2)	0.64862 (18)	0.0454 (7)
C15B	1.3265 (4)	0.8140 (2)	-0.15060 (17)	0.0421 (7)
C16A	0.7334 (4)	0.36361 (19)	0.56189 (17)	0.0417 (6)
C16B	1.2532 (3)	0.86551 (19)	-0.06559(16)	0.0374 (6)
C17A	0.6263(4)	0.04374 (19)	0.76739 (17)	0.0396 (6)
C17B	1 3661 (4)	0 54477 (19)	-0.25898(17)	0.0399 (6)
HIA	1 501 (4)	0 414 (3)	-0.041(2)	0.054 (8)*
H1R	0.499(4)	0.914(3)	0.543(2)	0.058(9)*
Н2А	1 4750	0.2463	-0.1053	0.0424*
H2R	0.5360	0.7457	0.6106	0.0419*
	1 2704	0.1250	-0.0242	0.0417*
	0.7417	0.1259	0.0242	0.0417
	0.7417	0.0203	0.1279	0.0410*
H4A	1.0980	0.1/38	0.1278	0.0308*
Н4В	0.9080	0.6752	0.3770	0.0385*
нбА	1.1124	0.4321	0.2436	0.0329*
H6B	0.8865	0.9338	0.2550	0.0324*
H8AI	1.0793	0.1423	0.2697	0.0391*
H8A2	0.8781	0.1612	0.2966	0.0391*
H8B1	0.9209	0.6437	0.2368	0.0400*
H8B2	1.1217	0.6624	0.2068	0.0400*

H9A1	0.9368	0.0541	0.4216	0.0344*
H9A2	1.0915	0.1297	0.4322	0.0344*
H9B1	1.0579	0.5562	0.0866	0.0340*
H9B2	0.9022	0.6332	0.0756	0.0340*
H13A	0.7958	0.0651	0.5935	0.0341*
H13B	1.1973	0.5665	-0.0860	0.0333*
H15A	0.5898	0.3524	0.7002	0.0545*
H15B	1.3918	0.8545	-0.2042	0.0505*
H16A	0.7160	0.4394	0.5538	0.0501*
H16B	1.2687	0.9415	-0.0606	0.0449*
H17A	0.7475	0.0252	0.7539	0.0475*
H17B	0.5710	0.0026	0.7242	0.0475*
H17C	0.5738	0.0254	0.8359	0.0475*
H17D	1.2455	0.5259	-0.2472	0.0479*
H17E	1.4186	0.5047	-0.2122	0.0479*
H17F	1.4230	0.5254	-0.3259	0.0479*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1A	0.0333 (9)	0.0271 (8)	0.0320 (8)	-0.0061 (7)	0.0041 (7)	-0.0016 (7)
O1B	0.0326 (9)	0.0290 (9)	0.0324 (9)	0.0070 (7)	0.0039 (7)	0.0002 (7)
O2A	0.0543 (11)	0.0227 (8)	0.0368 (9)	0.0025 (7)	0.0041 (8)	0.0012 (7)
O2B	0.0513 (11)	0.0219 (8)	0.0369 (9)	-0.0033 (7)	0.0032 (8)	-0.0018 (7)
O3A	0.0536 (11)	0.0373 (10)	0.0307 (9)	0.0040 (8)	0.0132 (8)	0.0055 (8)
O3B	0.0462 (11)	0.0365 (10)	0.0317 (9)	-0.0032 (8)	0.0113 (8)	-0.0075 (7)
N1A	0.0258 (10)	0.0283 (10)	0.0302 (10)	-0.0019 (8)	0.0045 (8)	-0.0008 (8)
N1B	0.0299 (11)	0.0310 (10)	0.0289 (10)	0.0008 (8)	0.0041 (8)	-0.0011 (8)
C1A	0.0240 (11)	0.0277 (11)	0.0298 (11)	0.0010 (9)	-0.0006 (9)	0.0012 (9)
C1B	0.0265 (11)	0.0276 (11)	0.0268 (11)	-0.0036 (9)	-0.0009 (9)	0.0001 (9)
C2A	0.0347 (13)	0.0337 (13)	0.0334 (12)	0.0006 (10)	0.0018 (10)	-0.0062 (10)
C2B	0.0348 (13)	0.0345 (13)	0.0300 (12)	-0.0063 (10)	0.0042 (10)	0.0039 (10)
C3A	0.0417 (14)	0.0251 (12)	0.0331 (12)	-0.0036 (10)	0.0007 (10)	-0.0022 (10)
C3B	0.0383 (13)	0.0278 (12)	0.0328 (12)	0.0007 (10)	-0.0004 (10)	0.0027 (10)
C4A	0.0304 (12)	0.0276 (12)	0.0314 (12)	-0.0044 (9)	-0.0015 (9)	0.0035 (9)
C4B	0.0321 (12)	0.0276 (12)	0.0334 (12)	0.0009 (9)	-0.0001 (10)	-0.0067 (10)
C5A	0.0263 (11)	0.0263 (11)	0.0267 (11)	-0.0002 (9)	-0.0014 (9)	0.0031 (9)
C5B	0.0261 (11)	0.0270 (11)	0.0283 (11)	-0.0001 (9)	-0.0005 (9)	-0.0047 (9)
C6A	0.0295 (12)	0.0222 (11)	0.0285 (11)	-0.0012 (9)	-0.0027 (9)	0.0006 (9)
C6B	0.0277 (11)	0.0224 (10)	0.0283 (11)	0.0004 (8)	-0.0008 (9)	-0.0002 (9)
C7A	0.0261 (11)	0.0255 (11)	0.0286 (11)	0.0026 (9)	-0.0003 (9)	0.0003 (9)
C7B	0.0260 (11)	0.0243 (11)	0.0272 (11)	-0.0015 (8)	-0.0009 (9)	-0.0006 (9)
C8A	0.0371 (13)	0.0258 (12)	0.0283 (12)	0.0003 (9)	0.0067 (10)	-0.0010 (9)
C8B	0.0406 (13)	0.0247 (11)	0.0289 (12)	-0.0018 (10)	0.0044 (10)	-0.0016 (9)
C9A	0.0301 (12)	0.0221 (11)	0.0300 (11)	0.0006 (9)	0.0015 (9)	0.0003 (9)
C9B	0.0304 (12)	0.0218 (11)	0.0300 (11)	-0.0024 (9)	-0.0010 (9)	-0.0005 (9)
C10A	0.0235 (11)	0.0248 (11)	0.0276 (11)	0.0009 (8)	-0.0006 (9)	-0.0010 (9)
C10B	0.0214 (10)	0.0242 (11)	0.0274 (11)	-0.0009 (8)	-0.0004 (9)	0.0001 (9)

C11A	0.0311 (12)	0.0233 (11)	0.0285 (11)	0.0039 (9)	0.0000 (9)	0.0009 (9)
C11B	0.0287 (12)	0.0230 (11)	0.0292 (11)	-0.0044 (9)	0.0002 (9)	-0.0028 (9)
C12A	0.0279 (11)	0.0244 (11)	0.0293 (11)	0.0023 (9)	-0.0010 (9)	0.0017 (9)
C12B	0.0281 (11)	0.0236 (11)	0.0300 (11)	-0.0019 (9)	-0.0022 (9)	-0.0024 (9)
C13A	0.0283 (11)	0.0224 (11)	0.0316 (11)	0.0012 (9)	-0.0004 (9)	0.0008 (9)
C13B	0.0274 (11)	0.0245 (11)	0.0290 (11)	-0.0022 (9)	-0.0010 (9)	-0.0027 (9)
C14A	0.0365 (13)	0.0299 (12)	0.0279 (11)	0.0020 (10)	0.0048 (10)	0.0029 (10)
C14B	0.0289 (12)	0.0334 (12)	0.0273 (11)	-0.0015 (9)	0.0051 (9)	-0.0054 (10)
C15A	0.0554 (17)	0.0346 (14)	0.0347 (13)	0.0151 (12)	0.0137 (12)	-0.0008 (11)
C15B	0.0507 (16)	0.0337 (13)	0.0319 (13)	-0.0136 (11)	0.0122 (11)	-0.0006 (10)
C16A	0.0537 (16)	0.0247 (12)	0.0368 (13)	0.0109 (11)	0.0099 (12)	0.0027 (10)
C16B	0.0450 (15)	0.0276 (12)	0.0333 (12)	-0.0084 (10)	0.0054 (11)	-0.0029 (10)
C17A	0.0469 (15)	0.0341 (13)	0.0335 (13)	-0.0079 (11)	-0.0006 (11)	0.0078 (10)
C17B	0.0470 (15)	0.0342 (13)	0.0355 (13)	0.0066 (11)	-0.0023 (11)	-0.0078 (11)

Geometric parameters (Å, °)

O1A—C1A	1.258 (3)	C11B—C12B	1.480 (3)
O1B—C1B	1.257 (3)	C11B—C16B	1.405 (3)
O2A—C12A	1.233 (3)	C13A—C14A	1.385 (3)
O2B—C12B	1.233 (3)	C13B—C14B	1.388 (3)
O3A—C14A	1.360 (3)	C14A—C15A	1.400 (4)
O3A—C17A	1.436 (4)	C14B—C15B	1.395 (4)
O3B—C14B	1.360 (3)	C15A—C16A	1.374 (4)
O3B—C17B	1.434 (4)	C15B—C16B	1.369 (4)
N1A—C1A	1.375 (3)	N1A—H1A	0.96 (3)
N1A—C2A	1.360 (4)	N1B—H1B	0.98 (3)
N1B—C1B	1.373 (3)	C2A—H2A	0.950
N1B—C2B	1.366 (4)	C2B—H2B	0.950
C1A—C5A	1.451 (3)	СЗА—НЗА	0.950
C1B—C5B	1.459 (3)	C3B—H3B	0.950
C2A—C3A	1.354 (4)	C4A—H4A	0.950
C2B—C3B	1.351 (4)	C4B—H4B	0.950
C3A—C4A	1.404 (3)	С6А—Н6А	0.950
C3B—C4B	1.406 (4)	C6B—H6B	0.950
C4A—C5A	1.380 (4)	C8A—H8A1	0.990
C4B—C5B	1.381 (4)	C8A—H8A2	0.990
C5A—C6A	1.463 (3)	C8B—H8B1	0.990
C5B—C6B	1.462 (3)	C8B—H8B2	0.990
С6А—С7А	1.349 (3)	C9A—H9A1	0.990
C6B—C7B	1.347 (3)	С9А—Н9А2	0.990
C7A—C8A	1.514 (4)	C9B—H9B1	0.990
C7A—C12A	1.496 (3)	C9B—H9B2	0.990
C7B—C8B	1.513 (4)	C13A—H13A	0.950
C7B—C12B	1.497 (3)	C13B—H13B	0.950
С8А—С9А	1.527 (4)	C15A—H15A	0.950
C8B—C9B	1.525 (4)	C15B—H15B	0.950
C9A—C10A	1.504 (3)	C16A—H16A	0.950

C9B-C10B	1.503 (3)	C16B—H16B	0.950
C10A—C11A	1.397 (4)	C17A—H17A	0.980
C10A—C13A	1.398 (3)	C17A—H17B	0.980
C10B-C11B	1.399 (4)	C17A - H17C	0.980
C10B—C13B	1.400 (3)	C17B—H17D	0.980
C11A - C12A	1.482 (3)	C17B—H17E	0.980
C11A—C16A	1.402 (4)	C17B—H17F	0.980
01111 01011			01,000
O1A···C2A	3.542 (4)	C11A····H3B ^{vii}	3.4817
O1A···C6A	2.812 (4)	C11A…H4B ^{vii}	3.1490
O1B···C2B	3.542 (4)	C11B…H2A ⁱ	3.5524
O1B···C6B	2.821 (4)	C11B····H3A ^v	3.5010
O2A…C6A	2.754 (4)	C11B…H4A ^v	3.1694
O2A…C16A	2.792 (4)	C12A····H3B ^{vii}	3.1055
O2B···C6B	2.750 (4)	C12A…H17D ^v	3.0137
O2B…C16B	2.798 (4)	C12A…H17F ^v	3.4151
O3B…C16B	3.599 (4)	C12B····H3A ^v	3.2054
N1A…C4A	2.710 (4)	C12B····H17A ^{vii}	3.0581
N1B···C4B	2.721 (4)	C12B····H17C ^{vii}	3.4482
C1A···C3A	2.819 (4)	C13A…H1B ⁱⁱⁱ	3.28 (4)
C1B···C3B	2.829 (4)	C13A···H4B ^{vii}	3.5271
C2A···C5A	2.790 (4)	C13A···H9A1 ^{xi}	3.2812
C2B···C5B	2.782 (4)	C13A···H9A2 ^{xi}	3.4733
C4A…C7A	3.177 (4)	C13B…H1A ⁱ	3.25 (3)
C4A···C8A	3.193 (4)	C13B···H4A ^v	3.5120
C4B···C7B	3.167 (4)	C13B···H9B1 ^v	3.2984
C4B···C8B	3.187 (5)	C13B····H9B2 ^v	3.5161
C5A···C8A	3.201 (4)	C14A…H2A ^{viii}	3.3823
C5B···C8B	3.198 (4)	C14A···H4B ^{vii}	3.5794
C7A…C10A	2.926 (4)	C14A···H8B2 ^{vii}	3.2033
C7B…C10B	2.932 (4)	C14B····H2B ^{ix}	3.3802
C8A…C11A	2.887 (4)	C14B···H4A ^v	3.5312
C8B…C11B	2.886 (4)	C14B····H8A2 ^v	3.1403
C9A…C12A	2.938 (5)	C15A…H2A ^{viii}	3.5133
C9B…C12B	2.932 (5)	C15A···H4B ^{vii}	3.4446
C10A…C15A	2.786 (4)	C15A····H8B2 ^{vii}	3.0027
C10B…C15B	2.782 (4)	C15A…H17E ^{viii}	3.3979
C11A····C14A	2.788(4)	C15A…H17F ^{viii}	3.2020
C11B…C14B	2.791 (4)	C15B···H2B ^{ix}	3.5065
C13A…C16A	2.781 (5)	C15B···H4A ^v	3.3787
C13A…C17A	2.823 (4)	C15B····H8A2 ^v	2.9149
C13B…C16B	2.783 (5)	C15B…H17B ^{xii}	3.2749
C13B…C17B	2.819 (4)	C15B····H17C ^{xii}	3.2706
O1A…O1A ⁱ	3.540 (4)	C16A…H3B	3.2475
O1A···O3B ⁱ	3.528 (4)	C16A···H4B ^{vii}	3.2293
O1A…N1A ⁱ	2.778 (3)	C16A···H17F ^{viii}	3.3113
01A…C9B	3.366 (4)	C16B···H3A ^{iv}	3.2754
O1A···C17B ⁱ	3,316 (5)	C16B···H4A ^v	3.1988
			0.1200

O1B····O1B ⁱⁱ	3.556 (4)	C16B····H17C ^{xii}	3.2954
O1B····O3A ⁱⁱⁱ	3.530 (4)	C17A····H2A ^{viii}	3.1643
O1B····N1B ⁱⁱ	2.778 (3)	C17A····H8A1 ^{xi}	3.2466
O1B····C9A ^{iv}	3.395 (4)	C17A····H15B ^{xiii}	2.9788
O1B…C17A ⁱⁱⁱ	3.343 (5)	C17A…H16B ^{xiii}	3.5415
O2A···C3B	3.431 (4)	C17B…H2B ^{ix}	3.1756
O2A···C4B	3.262 (5)	C17B···H8B1 ^v	3.2548
$O2A\cdots C17B^{v}$	3.282 (5)	C17B···H15A ^{ix}	2.9481
O2B···O2B ^{vi}	3.519 (4)	H1A····O1A ⁱ	1.82 (3)
O2B····C3A ^{iv}	3.391 (4)	H1A···N1A ⁱ	2.93(3)
O2B····C4A ^{iv}	3 263 (5)	H1A···C1A ⁱ	2.70(0)
$O2B \cdots C16B^{vi}$	3490(5)	H1A···C10B ⁱ	336(3)
O2B···C17A ^{vii}	3 300 (5)	H1A····C13B ⁱ	3.25(3)
03A…01B ⁱⁱⁱ	3 530 (4)	H1A····H1A ⁱ	242(4)
$O3A \cdots C2A^{viii}$	3 269 (4)	$H1A \cdots H8B2^{i}$	3 5253
$O3B\cdots O1A^{i}$	3.209(4)	$H1A \cdots H9B1^{i}$	3 5001
$O3B \cdots C2B^{ix}$	3.320(4)	$H1 \Delta \dots H9B2^{v}$	3 4543
$O3B \cdots C7A^{v}$	3.277(4)	H14H13B	3 2363
$O3B \cdots C12A^{v}$	3.522(5)	$H1\Delta$ $H13B^{i}$	3 3392
N1A…O1A ⁱ	2778(3)	$H1 \Delta \cdots H17E$	2 8349
N1A····C13B ⁱ	3411(5)	$H1B\cdots O1B^{ii}$	1.80 (3)
N1A····C14B ⁱ	3 554 (5)	H1B···N1B ⁱⁱ	2.92(3)
N1B…O1B ⁱⁱ	2 778 (3)		2.52(3) 2.70(3)
N1B····C134 ⁱⁱⁱ	3,430(5)		2.76(3)
N1B····C14A ⁱⁱⁱ	3 584 (5)		3.30(3)
$C1A \cdots C1AB^{i}$	3.494 (5)	HIBHIB ⁱⁱ	3.28(4)
CIR CI4D	3 473 (5)		2.42 (4)
$C1D^{-}C14A^{-}$	3 269 (4)		3.4722
$C2R = O3R^{iii}$	3.209(4)		3 4365
$C2D^{*}O3D^{*}$	3.277(4) 3 391 (4)	$H1B \cdots H13\Delta^{iv}$	3 2562
C3BO2A	3.371(+)		3 3878
$C3B \cdots C12 \Delta^{vii}$	3,537(5)	H1B···H15R ^{viii}	3 5086
$C_{3D} C_{12A}$ $C_{4A} \cdots O_{2B^{x}}$	3 263 (5)	$H1B \cdots H17B^{iv}$	2 9558
$C4A \cdots C10B^{v}$	3.205(5)	$H2A \cdots O1A^{i}$	3 5344
$C4A \cdots C11B^{v}$	3.461 (5)	$H2A \cdots O3A^{ix}$	2 3436
C4R CHB	3.401(5)	$H2A \cdots C11B^{i}$	2.5450
$C4D^{-1}O2A$ $C4B^{-1}O4^{vii}$	3.202(5)	$H2A \cdots C1AA^{ix}$	2 2822
C4BC11Avii	3.331(5)	$H2A \cdots C15A^{ix}$	3.5625
$C4D^{}C11A$ $C7A^{}O3B^{-}$	3,522 (5)		3.5155
C/A = 0.01 Bx	3.322(3)		2 4272
C9A···OID	3.393(4)		2 2 1 0 4
	3.300 (4)		2.5194
$C10A \cdots C4D^{m}$	3.331(3)		2.9348
C10B····C4A ^v	5.345 (5) 2.440 (5)		2.9004
CIIA····C4B ^{···}	5.440 (5) 2.461 (5)		3.3342
$C12A \dots O2D^{v}$	3.401(3)		5.5556
$C12A \cdots U3B^{\prime}$	5.580 (4) 2.527 (5)		2.3441
$C12A \cdots C3B^{vn}$	3.537 (5)		3.3802
$C12A$ ··· $C1/B^{v}$	3.493 (5)	H2B····C15 B ^{vm}	3.5065

C12B····C17A ^{vii}	3.543 (5)	H2B····C17B ^{viii}	3.1756
C13A…N1B ⁱⁱⁱ	3.430 (5)	H2B····H8A2 ⁱⁱⁱ	3.4956
C13B…N1A ⁱ	3.411 (5)	H2B…H9A2 ^{vii}	3.3172
C14A…N1B ⁱⁱⁱ	3.584 (5)	H2B…H15B ^{viii}	2.9363
C14A…C1B ⁱⁱⁱ	3.473 (5)	H2B…H17F ^{viii}	2.9233
C14B…N1A ⁱ	3.554 (5)	H3A…O2B ^x	2.8622
C14B····C1A ⁱ	3.494 (5)	H3A···O2B ^v	3.4629
C16B····O2B ^{vi}	3.490 (5)	H3A···C7B ^v	3.5482
C17A…O1B ⁱⁱⁱ	3.343 (5)	H3A···C11B ^v	3.5010
C17A····O2B ^{vii}	3 300 (5)	$H3A\cdots C12B^{v}$	3 2054
C17A····C12B ^{vii}	3543(5)	$H3A\cdots C16B^{x}$	3 2754
C17B…O1A ⁱ	3 316 (5)	H3AH9B2 ^v	3 3943
$C17B \cdots O2A^{v}$	3.282(5)	$H3A\cdots H16B^{x}$	2 3352
$C17B \cdots C12A^{v}$	3.202(5) 3.493(5)	$H3A \cdots H17C^{ix}$	3 0415
014	243(3)	H3B····O2A	2 9423
014	2.45 (5)		3 3296
O1B···H1B	2.45(3)		3 4330
018	2.45 (3)		3 4817
024	2.4042	H3B $C12A^{vii}$	3 1055
O2A = H0A	2.3403	H3D C12A H3DC16A	3.1035
02AH6P	2.4903		2 2026
02D	2.5395	H3DH16A	2 2162
$O_2 A \dots H_{12} A$	2.5041		2.5105
02A115A	2.0307		5.1207 2.5050
	2.4872		2.3838
03BH15B	2.6483		3.3210
	2.4880		3.1094
NIA···H3A	3.2111	$H4A\cdots C13B^{v}$	3.5120
NIB···H3B	3.2243		3.5312
CIA···H2A	3.2667	H4A···C15Bv	3.3787
CIA···H4A	3.2935	H4A····C16B ^v	3.1988
C1A···H6A	2.5404	H4A···H17A ^{xi}	3.3142
C1B···H2B	3.2618	H4B···O2A	2.5865
C1B···H4B	3.3034	H4B…C10A ^{vn}	3.3067
C1B···H6B	2.5497	H4B…C11A ^{vii}	3.1490
C2A···H4A	3.2254	H4B…C13A ^{vii}	3.5271
C2B···H4B	3.2206	H4B…C14A ^{vii}	3.5794
СЗА…НІА	3.21 (3)	H4B…C15A ^{vii}	3.4446
C3B···H1B	3.23 (3)	H4B…C16A ^{vii}	3.2293
C4A···H2A	3.2394	H4B···H17D ^v	3.4945
С4А…Н6А	3.3079	H6A…C8B	3.2615
C4A···H8A1	2.5782	H6A···C9B	3.4562
C4A···H8A2	3.3840	H6A…H8B1	3.0246
C4B···H2B	3.2327	H6A…H8B2	2.8674
C4B…H6B	3.3041	H6A…H9B1	2.7650
C4B···H8B1	2.5740	H6A···H17D ^v	2.9212
C4B…H8B2	3.3796	H6B····C8A ^{iv}	3.2921
C5A…H1A	3.26 (3)	H6B····C9A ^{iv}	3.5559
С5А…НЗА	3.2879	H6B····H8A1 ^{iv}	3.0467

C5A…H8A1	2.8540	H6B····H8A2 ^{iv}	2.8645
С5А…Н8А2	3.5979	H6B····H9A1 ^{iv}	2.8936
C5B…H1B	3.29 (3)	H6B····H15B ^{vi}	3.5873
С5В…Н3В	3.2916	H6B····H16B ^{vi}	3.5601
C5B…H8B1	2.8515	H6B····H17A ^{vii}	2.9790
C5B…H8B2	3.5983	H8A1····O2B ^x	3.1964
С6А…Н4А	2.7250	H8A1····C17A ^{xi}	3.2466
C6A…H8A1	2.6674	H8A1…H6B ^x	3.0467
C6A…H8A2	3.0367	H8A1…H13A ^{xi}	3.4374
C6B…H4B	2.7201	H8A1…H17A ^{xi}	2.4631
C6B…H8B1	2.6704	H8A1…H17B ^{xi}	3.3408
C6B…H8B2	3.0366	H8A1…H17C ^{xi}	3.5252
С7А…Н4А	2.9547	H8A2…O1B ^x	2.9375
C7A···H9A1	3.3699	H8A2···O3B ^v	3.2070
C7A···H9A2	2.8359	H8A2····C14B ^v	3.1403
C7B…H4B	2.9446	H8A2···C15B ^v	2.9149
C7B···H9B1	3 3674	H8A2····H1B ⁱⁱⁱ	3 4722
C7B···H9B2	2 8279	H8A2····H2B ⁱⁱⁱ	3 4956
C8A···H4A	2.5955	H8A2···H6B ^x	2.8645
C8A····H6A	3 3662	H8A2H15B ^v	2.0010
C8B···H4B	2 5908	H8B1····O2A	3 0557
C8B···H6B	3 3663	$H8B1\cdots C17B^{v}$	3 2548
C9AH13A	2 6607	H8B1···H6A	3.0246
C9B···H13B	2.6681	$H8B1\cdots H17D^{v}$	2 4760
C10AH8A1	3 3531		2.4700
C10AH8A2	2 8177	H8B1H17 F^{v}	3.3742
C10AH16A	2.0177		2 07/0
C10R···H8B1	3 3 5 3 6		2.9740
C10B	2 8128		3.2003
C10BH16B	2.0130	$H8D2C15A^{ij}$	3.2033
C11AH8A2	3.2734		3.0027
C11AH0A1	3.1034		3.3233
	3.2700		3.4372 2.9674
C11AH12A	2.9029		2.0074
	3.2772	$H0A1 \dots O1Dx$	2.9180
	3.2092		2.7271
CIIB···H8B2	3.1015	$H9A1 \cdots C1B^{n}$	2.9439
	3.2707		3.2980
СПВ	2.9529		3.3010
	3.2834		5.5510 2.2912
CIIB····HI5B	3.2680		3.2812
C12A···H6A	2.4573		3.4644
C12A···H8A1	3.3660		2.8936
C12A···H8A2	2.9520		2.9166
C12A···H9A2	3.2682	H9A1H9A2 ^{x1}	2.9945
C12A···H16A	2.6312	H9A1····H13A ^{x1}	2.5694
C12B···H6B	2.4593	H9A1····H17A ^{x1}	3.2732
C12B…H8B1	3.3639	H9A2···N1B ^{vn}	2.9853
C12B…H8B2	2.9405	H9A2···C1B ^{vii}	3.2133

C12B…H9B2	3.2609	H9A2····C2B ^{vii}	2.8657
C12B…H16B	2.6379	H9A2····C3Bvii	2.9221
С13А…Н9А1	2.6018	H9A2····C4B ^{vii}	3.1002
С13А…Н9А2	2.9143	H9A2····C5B ^{vii}	3.2826
C13A…H15A	3.2690	H9A2····C13A ^{xi}	3.4733
C13A…H17A	2.6943	H9A2···H1B ^{vii}	3,4365
C13A…H17B	2.8283	$H9A2\cdots H2B^{vii}$	3.3172
C13B···H9B1	2.6015	H9A2····H3B ^{vii}	3 3936
C13B····H9B2	2.9233	H9A2····H9A1 ^{xi}	2,9945
C13B···H15B	3 2673	H9A2····H13A ^{xi}	2 5567
C13B···H17D	2 7230	H9A2H17A ^{xi}	3 2760
C13B…H17E	2 7890	$H9A2\cdots H17R^{xi}$	3 4983
C14AH16A	2.7690		2 6808
C14A	2,6020		2.0898
C14A	2.0023		2.9002
С14А…П17С	2.0075		3.2783
$C14A^{H}H1/C$	3.2037	HOD1 CODY	3.2024
C14BH16B	3.2545	H9B1····C9B'	3.5565
CI4B···HI/D	2.6222		3.2984
CI4B···HI/E	2.6492	H9B1····H1A'	3.5001
CI4B···HI7F	3.2050	H9B1····H6A	2.7650
C15A···H13A	3.2711	H9B1…H9B1	3.1392
C15B…H13B	3.2702	H9B1…H9B2 ^v	3.2489
C17A…H13A	2.5215	H9B1…H13B ^v	2.5684
C17B…H13B	2.5167	H9B1···H17D ^v	3.0913
H1A…H2A	2.2992	H9B2…N1A ^v	3.0336
H1B…H2B	2.2974	H9B2···C1A ^v	3.2985
Н2А…Н3А	2.3127	H9B2····C2A ^v	2.8904
H2B···H3B	2.3064	H9B2···C3A ^v	2.9447
НЗА…Н4А	2.3474	H9B2····C4A ^v	3.1532
H3B…H4B	2.3525	H9B2····C5A ^v	3.3625
H4A…H8A1	1.9890	H9B2…C13B ^v	3.5161
Н4А…Н8А2	2.6223	H9B2···H1A ^v	3.4543
H4B…H8B1	1.9888	H9B2···H2A ^v	3.3194
H4B…H8B2	2.6163	H9B2····H3A ^v	3.3943
H6A····H8A1	3.5813	H9B2…H9B1 ^v	3.2489
H6B…H8B1	3.5854	H9B2…H13B ^v	2.5824
H8A1…H9A1	2.4195	H9B2…H17D ^v	3.0969
H8A1H9A2	2.3025	H9B2…H17E ^v	3.3127
H8A2…H9A1	2.3013	H13A…O1B ⁱⁱⁱ	3.5115
H8A2H9A2	2 8577	H13A…N1B ^x	3 4617
H8B1H9B1	2 4135	H13A····C9A ^{xi}	2 9967
H8B1H9B2	2 3030	H13A····H1B ^x	3 2562
H8R2H9R1	2.3030		3 3878
H8R2H9R2	2.5020	H13 Δ H8 Δ 1xi	3.3020
НОД 1Н13 Л	2.0500	$H13\Delta \dots H0\Lambda 1^{xi}$	2.45/4
Ноло	2.4203	нізд піяді ЦіздЦодаяхі	2.5094
119A21119A 110D1U12D	2.2251	Ш12РО1 А	2.5507
	2.42/3		5.5000
Πγοζ…ΠΙγρ	5.0150	ILIDOIA.	3.3030

H13A…H17A	2.2374	H13B…N1A	3.4371
H13A…H17B	2.3898	H13B····C1A	3.5271
H13A…H17C	3.4914	H13B…C9B ^v	3.0242
H13B…H17D	2.2690	H13B…H1A	3.2363
H13B…H17E	2.3465	H13B…H1A ⁱ	3.3392
H13B…H17F	3.4883	H13B…H9B1 ^v	2.5684
H15A…H16A	2.3198	H13B…H9B2 ^v	2.5824
H15B…H16B	2.3119	H15A…O1A ^{vii}	3.3651
O1A···H1A ⁱ	1.82 (3)	H15A····C17B ^{viii}	2.9481
O1A···H2A ⁱ	3.5344	H15A…H2A ^{viii}	2.9548
01A···H8B2	2 9740	H15A…H8B2 ^{vii}	2 9180
01AH9B1	2.6898	$H15A\cdots H17D^{viii}$	3 4425
O1A···H13B	3 5000	$H15A \cdots H17E^{viii}$	2 4894
O1A···H13B ⁱ	3 5656	$H15A \cdots H17F^{\text{viii}}$	2.5707
O1A····H15A ^{vii}	3 3651	$H15B\cdotsO1B^{vi}$	3 1705
O1A···H17F ⁱ	2 4719	H15B···C17A ^{xii}	2 9788
O1B···H1B ⁱⁱ	1.80(3)	H15B···H1B ^{ix}	3 5086
$O1B \cdots H2B^{ii}$	3 5356	H15B···H2B ^{ix}	2 9363
$01B \cdots H8A2^{iv}$	2 9375	H15B H2B $H15B H6B^{vi}$	2.5505
$01B \cdots H0A 1^{iv}$	2.9373	H15B H0B $H15B H8A2^{v}$	2 7840
	3 5115	$H15B \cdots H17\Delta^{xii}$	3 5094
$O1B \cdots H15R^{vi}$	3.1705	$H15B \cdots H17R^{xii}$	2 3967
01BH17B ⁱⁱⁱ	2 4912	H15B···H17C ^{xii}	2.5507
$O2A \cdots H3B$	2.4912		2.7130
$O2A \cdots H3B^{vii}$	3 3206	H16AC3B	3 1066
$O2A \cdots HAB$	2 5865	H16AH3B	2 3163
02Λ H8B1	3.0557		2.5105
$O2A \cdots H16A^{vii}$	3.4235	H16R $O2R^{vi}$	2.7900
$O2A \cdots H17D^{v}$	2,6670		3.1655
$O2A \cdots H17E^{v}$	2.0079		3.2009
$O2R \dots H2 \Lambda^{iv}$	2 8622		2 2 2 2 5 2
02BH3Av	3.4620		2.5552
$O2B \dots H4 A^{iv}$	2 5 8 5 8		3.3001
O2D $H4A$	2.5656		2 7607
$O2B \dots H16B^{vi}$	3.1904		2.7007
	2.6864		2.0004
	2.0804		3.2234
$O_2 A \dots H_2 A^{\text{viii}}$	2 2426		3.2707
	2.3430		3.3019
	2 2441		2.0591
	2.3441		2 2142
	3.2070		2.0700
	2.95 (5)		2.9790
NIAH12D	3.0330	$H1/A\cdots H8A1^{m}$	2.4031
	3.43/1 2.2096	$\Pi I / A \cdots \Pi Y A I \cdots$	3.2/32 2.2760
N1A…H1/E N1D…H1Dii	3.3980 2.02 (2)	П1/А НУА2 Н17АН15Рхії	3.2/60
	2.92 (3)		5.5094 2.4012
	2.9853		2.4912
NIB····HI3A ^{iv}	5.4617	HI/B···NIB [*]	3.5354

N1B…H17B ^{iv}	3.5354	H17B····C1B ⁱⁱⁱ	3.2559
C1A…H1A ⁱ	2.71 (3)	H17B····C15B ^{xiii}	3.2749
C1A…H9B1	2.9602	H17B…H1B ^x	2.9558
C1A…H9B2 ^v	3.2985	H17B····H8A1 ^{xi}	3.3408
C1A…H13B	3.5271	H17B····H9A2 ^{xi}	3.4983
C1A…H17E ⁱ	3.2226	H17B…H15B ^{xiii}	2.3967
C1B…H1B ⁱⁱ	2.70 (3)	H17B…H16B ^{xiii}	3.4993
C1B···H9A1 ^{iv}	2.9439	H17C····O2B ^{vii}	3.1185
C1B···H9A2 ^{vii}	3.2133	H17C····C2A ^{viii}	3.5271
C1B···H17B ⁱⁱⁱ	3.2559	H17C····C3A ^{viii}	3.5886
C2A····H9B2 ^v	2 8904	H17C····C12B ^{vii}	3 4482
C2A···H17C ^{ix}	3 5271	H17C····C15B ^{xiii}	3 2706
C2B···H9A2 ^{vii}	2 8657	H17C····C16B ^{xiii}	3 2954
C2B···H17F ^{viii}	3 5513	H17C···H2A ^{viii}	2.9064
$C3A \cdots H9B2^{v}$	2 9447	H17C···H3A ^{viii}	3 0415
C3A···H16B ^x	3 2609	$H17C H8A1^{xi}$	3 5252
$C3A \cdots H17C^{ix}$	3 5886	H17C···H15B ^{xiii}	2 7158
	2 9221	H17C···H16B ^{xiii}	2.7150
C3BH16A	3 1066	$H17DO2A^{v}$	2.7007
$C_{4} \Delta \dots H_{0} B_{2}^{v}$	3 1532	H17D = O2A $H17D = C6A^{v}$	2.0077
$C4R \cdots H0A2^{vii}$	3.1002		3.1014
C4D************************************	2 2785		2 2661
C5AH0P2v	3.2705		3.2001
C5D110A liv	2 2086	H17DC9B	2.0127
	2,2980		2.4045
C6A LIOD1	2.2620		5.4945 2.0212
	3.2024		2.9212
	3.1014		2.4/00
	3.3010		3.0913
	3.2234	H17D-H15Aix	3.0969
	3.4330		3.4425
C/A···HI/D'	3.2187	HI/E····UIA·	2.4/19
	3.5482	HI/E···NIA	3.3986
	3.2/6/	HI/E····CIA	3.2226
C8A···H6B*	3.2921	HI/E····CI5A ^{IX}	3.3979
	3.3019	HI/E····HIA	2.8349
C8B···H6A	3.2615	H17E···H2A	3.5542
C8B···H17D ^v	3.2661	H17E····H8B1	3.3942
C9A···H6B ^x	3.5559	H17E····H9B2 ^v	3.3127
C9A···H9A1 ^{xi}	3.3310	HI/E····HI5A ^{ix}	2.4894
C9A···H13A ^{xi}	2.9967	H17F····O2A ^v	3.1116
C9A···H17A ^{x1}	3.4878	H17F····C2B ^{ix}	3.5513
С9В…Н6А	3.4562	H17F···C12A ^v	3.4151
C9B···H9B1 ^v	3.5565	H17F···C15A ^{IX}	3.2020
С9В…Н13В [*]	3.0242	H17F···C16A ^{IX}	3.3113
C9B····H17D ^v	3.3347	H17F…H2B ^{ix}	2.9233
C10A···H1B ⁱⁱⁱ	3.36 (3)	H17F···H3B ^{ix}	3.1267
C10A····H4B ^{vii}	3.3067	H17F···H8B1 ^v	3.4716
C10B…H1A ⁱ	3.36 (3)	H17F…H15A ^{ix}	2.5707

C10B···H4A ^v	·H4A ^v 3.3216 H17F···H16A ^{ix}		2.7900	
C14A—O3A—C17A	117.87 (17)	C1A—N1A—H1A	116.4 (16)	
C14B—O3B—C17B	118.04 (17)	C2A—N1A—H1A	118.6 (16)	
C1A—N1A—C2A	124.77 (18)	C1B—N1B—H1B	117.6 (16)	
C1B—N1B—C2B	124.09 (19)	C2B—N1B—H1B	118.2 (16)	
O1A—C1A—N1A	119.19 (18)	N1A—C2A—H2A	120.047	
O1A—C1A—C5A	124.94 (19)	СЗА—С2А—Н2А	120.062	
N1A—C1A—C5A	115.9 (2)	N1B—C2B—H2B	119.577	
O1B—C1B—N1B	119.22 (18)	C3B—C2B—H2B	119.570	
O1B—C1B—C5B	124.91 (19)	С2А—С3А—Н3А	120.562	
N1B—C1B—C5B	115.87 (19)	С4А—С3А—Н3А	120.571	
N1A—C2A—C3A	119.9 (2)	C2B—C3B—H3B	120.798	
N1B-C2B-C3B	120.9(2)	C4B-C3B-H3B	120.786	
C2A - C3A - C4A	1189(3)	C3A - C4A - H4A	118 985	
C2B-C3B-C4B	118.9(3)	C5A - C4A - H4A	118 981	
$C_{3A} - C_{4A} - C_{5A}$	122 0 (2)	C3B-C4B-H4B	118.901	
C_{3B} C_{4B} C_{5B}	122.0(2) 122.0(2)	C5B - C4B - H4B	118.901	
$C_{1A} = C_{5A} = C_{4A}$	122.0(2) 118 51 (19)	C_{5A} C_{6A} H_{6A}	114 725	
C1A - C5A - C6A	115.3(2)	C7A - C6A - H6A	114.723	
C4A = C5A = C6A	115.5(2) 126 10 (19)	C5B-C6B-H6B	114.869	
C_{1B} C_{5B} C_{4B}	118 65 (19)	C7B-C6B-H6B	114.869	
C1B - C5B - C6B	115.41 (19)	C7A - C8A - H8A1	108 953	
C_{AB} C_{5B} C_{6B}	125 82 (19)	C7A $C8A$ $H8A2$	108.935	
$C_{1}^{2} = C_{1}^{2} = C_{1$	125.62(17) 130.6(2)	C9A - C8A - H8A1	108.949	
C_{5R} C_{6R} C_{7R}	130.0(2) 130.3(2)	C9A - C8A - H8A2	108.931	
C_{0}^{6}	136.3(2) 126.42(10)		107.768	
C6A = C7A = C12A	120.42(19) 116.3(2)	C7B C8B H8B1	107.708	
$C_{0A} = C_{7A} = C_{12A}$	110.3(2) 117.25(17)	C7B - C8B - H8B1	108.959	
C6R C7R C8R	117.25(17) 126 74 (19)	$C^{0}B$ $C^{0}B$ $H^{0}B^{1}$	108.901	
C6B C7B C12B	120.74(17)	$C^{0}B$ $C^{0}B$ $H^{0}B^{2}$	108.958	
$C_{0}B = C_{1}B = C_{1}2B$	116.4(2)	H8B1 C8B H8B2	107.760	
$C_{8}D - C_{7}D - C_{12}D$	113, 13 (10)		109.001	
C7R $C8R$ $C0R$	113.13(19) 113.11(10)		109.091	
C^{8}	112.54 (19)	C10A C0A H0A1	109.092	
C_{8}^{8} C_{9}^{8} C_{10}^{10}	112.34(19) 112.72(10)	C10A C9A H9A2	109.085	
$C_{00} = C_{100} = C_{100}$	112.72(19) 120.40(18)	$H_{0A1} = C_{0A} = H_{0A2}$	107.832	
$C_{PA} = C_{PA} = C_{PA} = C_{PA}$	120.40(10)	CSR COR HOR1	107.832	
$C_{11A} = C_{10A} = C_{13A}$	119.3(2) 110.04(10)	$C^{8}B = C^{9}B = H^{9}B^{1}$	109.041	
C^{0} C^{1} C^{0} C^{1} C^{1	119.94 (19)	C10B C0B H0B1	109.049	
C_{PB} C_{10B} C_{13B}	120.00(18) 110.72(10)	C10B = C9B = H0B2	109.033	
$C_{9B} = C_{10B} = C_{13B}$	119.72(19) 120.15(18)	$\begin{array}{c} C10B - C9B - H9B2 \\ H0B1 - C0B - H0B2 \\ \end{array}$	109.048	
C10A = C10B = C13B	120.13(18) 121.74(18)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.811	
C10A - C11A - C12A	121.74(10) 110.24(10)	C10A - C13A - H13A	120.007	
C10A - C11A - C16A	119.34 (19)	$C14A - C13A - \Pi13A$ $C10P - C12P - U12P$	120.000	
C12A - C11A - C10A	110.0(2) 121.92(19)	$C10D - C13D - \Pi13D$ $C14P - C12D - \Pi12D$	120.131	
C10D - C11D - C12D	121.03 (10)	$C14D - C15D - \Pi15D$	120.134	
C10D - C11D - C10D	110.9/(19)	C16A = C15A = H15A	120.013	
	119.2 (2)	U10A—U13A—H13A	120.010	

O2A - C12A - C7A	121 79 (19)	C14B—C15B—H15B	119 841
O2A - C12A - C11A	121.79(19) 120.46(19)	$C_{14}B = C_{15}B = H_{15}B$	119.843
C7A $C12A$ $C11A$	120.40(1)		110.603
C/A = C12A = C11A	117.75(19) 121.47(10)	C15A C16A H16A	119.095
$O_{2}B$ $C_{1}2B$ $C_{1}1B$	121.47(19)	CIID CI(D UI(D CI))	119.090
O2B—CI2B—CIIB	120.49 (18)	CIIB—CIOB—HIOB	119.642
C/B—CI2B—CIIB	118.04 (19)	CISB—CI6B—HI6B	119.641
CIOA—CI3A—CI4A	120.0 (2)	O_{3A} — $C_{1/A}$ — $H_{1/A}$	109.475
C10B—C13B—C14B	119.7 (2)	O3A—C17A—H17B	109.477
O3A—C14A—C13A	124.7 (2)	O3A—C17A—H17C	109.471
O3A—C14A—C15A	115.17 (19)	H17A—C17A—H17B	109.471
C13A—C14A—C15A	120.1 (2)	H17A—C17A—H17C	109.464
O3B—C14B—C13B	124.3 (2)	H17B—C17A—H17C	109.469
O3B—C14B—C15B	115.61 (19)	O3B—C17B—H17D	109.470
C13B—C14B—C15B	120.1 (2)	O3B—C17B—H17E	109.468
C14A—C15A—C16A	120.0 (3)	O3B—C17B—H17F	109.473
C14B—C15B—C16B	120.3 (2)	H17D—C17B—H17E	109.466
C11A—C16A—C15A	120.6 (3)	H17D—C17B—H17F	109.473
C11B—C16B—C15B	120.7 (3)	H17E—C17B—H17F	109.478
C17A—O3A—C14A—C13A	-0.9(4)	C8B—C7B—C12B—O2B	-169.3(2)
C17A—O3A—C14A—C15A	179.70 (19)	C8B—C7B—C12B—C11B	10.0 (3)
C17B-03B-C14B-C13B	-1.2 (4)	C12B—C7B—C8B—C9B	-38.7(3)
C17B - O3B - C14B - C15B	179 56 (19)	C7A - C8A - C9A - C10A	48.0 (3)
C1A— $N1A$ — $C2A$ — $C3A$	16(4)	C7B— $C8B$ — $C9B$ — $C10B$	48.6 (3)
C_{2} N1A C_{1} O1A	-1789(2)	C8A - C9A - C10A - C11A	-30.5(3)
C_{2A} NIA C_{1A} C_{5A}	-0.2(4)	C8A - C9A - C10A - C13A	15373(18)
C1P N1P $C2P$ $C3P$	1.2(4)	C_{R}^{R} C_{R}^{OR} C_{10R}^{OR} C_{11R}^{OR}	-31.2(3)
C1B - N1B - C2B - C3B	-178.0(2)	C_{0}^{0} C_{0}^{0} C_{1}^{0} C_{1	152.70(18)
C_{2D} NID C_{1D} C_{5D}	170.9(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	132.79(10)
$C_{2}D_{-}NID_{-}CID_{-}C3D$	0.0(4)	C9A = C10A = C11A = C12A	0.7(4)
OIA - CIA - CSA - C4A	1/0.0(2)	C9A = C10A = C12A = C14A	-1/6.02(19)
OIA - CIA - C5A - C6A	-0.5(4)	C9A - C10A - C13A - C14A	1/5.01 (18)
NIA—CIA—C5A—C4A	-2.1(3)	CIIA—CI0A—CI3A—CI4A	-0.8 (4)
NIA—CIA—C5A—C6A	-179.12 (17)	C13A—C10A—C11A—C12A	176.46 (19)
O1B—C1B—C5B—C4B	176.5 (2)	C13A—C10A—C11A—C16A	-0.3 (4)
O1B—C1B—C5B—C6B	0.4 (4)	C9B—C10B—C11B—C12B	2.2 (4)
N1B—C1B—C5B—C4B	-2.9 (3)	C9B—C10B—C11B—C16B	-175.18 (18)
N1B—C1B—C5B—C6B	-179.10 (18)	C9B—C10B—C13B—C14B	174.82 (18)
N1A—C2A—C3A—C4A	-0.5 (4)	C11B—C10B—C13B—C14B	-1.0 (4)
N1B—C2B—C3B—C4B	-0.7 (4)	C13B—C10B—C11B—C12B	178.08 (19)
C2A—C3A—C4A—C5A	-1.9 (4)	C13B-C10B-C11B-C16B	0.7 (4)
C2B—C3B—C4B—C5B	-1.8 (4)	C10A—C11A—C12A—O2A	-169.6 (2)
C3A—C4A—C5A—C1A	3.2 (4)	C10A—C11A—C12A—C7A	11.0 (4)
C3A—C4A—C5A—C6A	179.8 (2)	C10A—C11A—C16A—C15A	0.7 (4)
C3B-C4B-C5B-C1B	3.6 (4)	C12A—C11A—C16A—C15A	-176.1 (2)
C3B—C4B—C5B—C6B	179.3 (2)	C16A—C11A—C12A—O2A	7.2 (4)
C1A—C5A—C6A—C7A	-163.1 (2)	C16A—C11A—C12A—C7A	-172.2 (2)
C4A—C5A—C6A—C7A	20.2 (4)	C10B—C11B—C12B—O2B	-171.6 (2)
C1B—C5B—C6B—C7B	-162.5 (2)	C10B—C11B—C12B—C7B	9.2 (3)
			/ - /

C4B—C5B—C6B—C7B C5A—C6A—C7A—C8A C5A—C6A—C7A—C12A C5B—C6B—C7B—C8B C5B—C6B—C7B—C12B C6A—C7A—C8A—C9A C6A—C7A—C12A—O2A C6A—C7A—C12A—O2A C8A—C7A—C12A—O2A C8A—C7A—C12A—O2A C8A—C7A—C12A—C11A C12A—C7A—C8A—C9A C6B—C7B—C8B—C9B	21.6 (4) 1.5 (4) -177.9 (2) 0.6 (4) -178.0 (2) 142.6 (3) 8.7 (4) -171.92 (19) -170.8 (2) 8.6 (3) -37.9 (3) 142.7 (3)	C10B—C11B—C16B—C15B C12B—C11B—C16B—C15B C16B—C11B—C12B—O2B C16B—C11B—C12B—C7B C10A—C13A—C14A—O3A C10A—C13A—C14A—C15A C10B—C13B—C14B—O3B C10B—C13B—C14B—C15B O3A—C14A—C15A—C16A C13A—C14A—C15A—C16A O3B—C14B—C15B—C16B C13B—C14B—C15B—C16B	$\begin{array}{c} 0.0 \ (4) \\ -177.4 \ (2) \\ 5.8 \ (4) \\ -173.4 \ (2) \\ -178.1 \ (2) \\ 1.3 \ (4) \\ -178.5 \ (2) \\ 0.7 \ (4) \\ 178.6 \ (2) \\ -0.9 \ (4) \\ 179.3 \ (2) \\ 0.0 \ (4) \end{array}$
C6B—C7B—C8B—C9B	142.7 (3)	C13B—C14B—C15B—C16B	$\begin{array}{c} 1.75.5(2) \\ 0.0(4) \\ -0.2(4) \\ -0.4(4) \end{array}$
C6B—C7B—C12B—O2B	9.5 (4)	C14A—C15A—C16A—C11A	
C6B—C7B—C12B—C11B	-171.26 (19)	C14B—C15B—C16B—C11B	

Symmetry codes: (i) -x+3, -y+1, -z; (ii) -x+1, -y+2, -z+1; (iii) -x+1, -y+1, -z+1; (iv) x, y+1, z; (v) -x+2, -y+1, -z; (vi) -x+2, -y+2, -z; (vii) -x+2, -y+1, -z+1; (viii) x-1, y, z+1; (ix) x+1, y, z-1; (x) x, y-1, z; (xi) -x+2, -y, -z+1; (xii) x+1, y+1, z-1; (xiii) x-1, y-1, z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
N1A—H1A···O1A ⁱ	0.96 (3)	1.82 (3)	2.778 (3)	178 (3)
$N1B$ — $H1B$ ····O1 B^{ii}	0.98 (3)	1.80 (3)	2.778 (3)	176 (3)

Symmetry codes: (i) -*x*+3, -*y*+1, -*z*; (ii) -*x*+1, -*y*+2, -*z*+1.