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Abstract

Motivation: Split-alignments provide base-pair-resolution evidence of genomic rearrangements. In

practice, they are found by first computing high-scoring local alignments, parts of which are then

combined into a split-alignment. This approach is challenging when aligning a short read to a large

and repetitive reference, as it tends to produce many spurious local alignments leading to ambigu-

ities in identifying the correct split-alignment. This problem is further exacerbated by the fact that

rearrangements tend to occur in repeat-rich regions.

Results: We propose a split-alignment technique that combats the issue of ambiguous alignments

by combining information from probabilistic alignment with positional information from paired-

end reads. We demonstrate that our method finds accurate split-alignments, and that this trans-

lates into improved performance of variant-calling tools that rely on split-alignments.

Availability and implementation: An open-source implementation is freely available at: https://bit

bucket.org/splitpairedend/last-split-pe.

Contact: anish@edu.k.u-tokyo.ac.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A split-alignment is a pairwise sequence alignment in which different

parts of the query align to disjoint regions in the reference. Split-

alignments are important in comparative genomic studies as they pro-

vide direct evidence of rearrangements such as large deletions, inver-

sions, or chromosomal translocations. Indeed, several methods that

detect such rearrangements from DNA sequencing reads of a sampled

genome, rely on split-alignments (e.g. Layer et al., 2014; Rausch et al.,

2012; Zhao and Zhao, 2015). Given that sequencing based variant de-

tection is becoming part of standard workflow in biological and medical

studies, it is imperative that split-alignments are computed accurately.

Split-alignments cannot be found using conventional alignment

methods. Scoring schemes based on affine gap penalty or those based

on edit-distances are not suited, nor modeled, for events such as large

deletions or translocations. Moreover, since split-alignments may be

non-collinear (i.e. not left-to-right on both reference and query), they

do not yield to standard Smith-Waterman-type algorithms and require

specialized dynamic programing techniques (Frith and Kawaguchi,

2015). In practice, a split-alignment is obtained by first computing

high-scoring local alignments and then ‘stitching’ parts of them to-

gether, to obtain a final split-alignment (Faust and Hall, 2012; Frith

and Kawaguchi, 2015).

However, this approach becomes challenging when the query is

a short read obtained from a high-throughput sequencer. This is

largely because, for a short read, numerous spurious high-scoring

local alignments may be found, confounding the true split-

alignment. This could happen due to several factors: reads are error-

prone, the reference is very large and highly repetitive, and rear-

rangements tend to accumulate in repeat-rich regions.
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To illustrate how severe the issue of spurious alignments can get,

we conducted a simple study in which we try to recover known large

(�20 bp) deletions in the Venter genome (Levy et al., 2007) from

simulated error-free short (100 bp) reads from the loci of those dele-

tions. To simulate high coverage, we generate for each deletion

locus, reads that flank the deletion breakpoint with all possible flank

sizes (see Fig. 1) . Finding the correct split-alignment of a read would

require finding the correct pair of local alignments that contain its

two flanks. However there might be many candidate pairs to choose

from. A conservative estimate of the number of candidate pairs is

given by the product of the number of exact matches in the reference

of its left flank and that of its right flank—which we shall call the

split-alignment ambiguity (see e.g. Fig. 1). For a deletion, we define

its ambiguity as the minimum split-alignment ambiguity among all

its reads. According to this definition, a deletion can be identified

unambiguously (ambiguity ¼ 1) if there is at least one read that is

positioned such that each of its flanks matches exactly once to the

reference. Higher ambiguity values indicate deletions located in

regions that are hard-to-align due to repetitiveness. The distribution

of Venter deletions based on their ambiguities is shown in Figure 1.

When compared with the background distribution obtained from

randomly placed artificial deletions with the same size spectrum, we

can see that real deletions tend to be located in hard-to-align

regions. What is more surprising is that a significant proportion (al-

most 40%) of Venter deletions cannot be identified unambiguously,

even under our ideal conditions of error-free reads, stringent align-

ment scoring scheme that allows only for exact matches, highest-

possible coverage, and best-case scenario definition of deletion

ambiguity.

One source of information that can be used to resolve ambigu-

ities in split-alignments and the associated rearrangement predic-

tions is provided by paired-end reads. A paired-end read is obtained

by sequencing a DNA fragment, typically a few hundred base-pairs,

from both of its ends to obtain a pair of reads, also referred to as

mates. The extra positional information that can be obtained from

the mates can, in theory, be used in two ways. First, regions likely to

contain large variants can be spotted by checking for discordant

alignments, i.e. the case in which the distance between the align-

ments of the mates deviates significantly from what can be expected

from the fragment length distribution. Second, we might be able to

resolve the ambiguities in the split-alignment of a breakpoint-

containing read by considering the alignments of its mate.

Current methods have largely focused only on the former,

using discordant alignments in several ways. For instance, Delly

(Rausch et al., 2012) uses them to filter genomic intervals that

might contain large rearrangements, which are then searched for

split-alignments. Lumpy (Layer et al., 2014) has separate modules

to search for evidence from paired-end and split-alignments, proc-

essing the independently obtained call-sets in the final stage.

However, a serious limitation of using discordant-alignment sig-

nals is posed by the fact that fragment lengths are intrinsically

variable due to the steps involved in library preparation. A quick

analysis of 10 arbitrarily chosen NCBI SRA datasets of human-

genome-based experiments showed that the standard deviation

(SD) of fragment lengths can be as large as 128 bp (median of 80

bp). To accommodate for this variability, it is typical to not clas-

sify as discordant, cases in which the fragment length inferred

from alignments of mates is within a certain threshold. The impli-

cation of any choice of threshold can be understood in the light of

the deletion size distribution shown in Figure 2. The distribution

is exponential (except for a peak that can be attributed to Alu ele-

ments), and thus deletions shorter than 110–140 bp account for

most of the deletions. In this context, even with a stringent thresh-

old (e.g. 63� SD), we will miss a significant fraction of the

deletions.
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Fig. 1. (Left) From a deletion locus in the Venter genome, reads flanking the breakpoint are simulated, for all possible flank sizes. For one such read r, its left flank

and right flank have two and one exact matches, respectively, in the reference; and therefore the split-alignment ambiguity for r is 2. The ambiguity for this dele-

tion is the mininum split-alignment ambiguity among all its reads. (Right) Distribution of deletions based on their ambiguities, for deletions in the Venter genome

and for artificial deletions placed randomly in hg19
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Fig. 2. Size distribution of deletions (�20 bp) present in the Venter genome
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In this work, we take the latter approach, utilizing pairing infor-

mation during split alignment computation itself. Our method builds

on the work by Frith and Kawaguchi (2015), which employs a prob-

abilistic sequence alignment technique to capture information about

(split-) alignment uncertainty in the form of alignment column proba-

bilities. Our main idea is to use a Bayesian updating procedure to re-

vise these column probabilities based on information from paired-end

reads, and to choose appropriate columns to construct a split-

alignment. We do not know of any other split-aligner or variant caller

that uses paired-end information in such a manner. We compare our

method against several existing split-aligners and show that we find

split-alignments more accurately. By pairing the aligners with down-

stream variant callers, we show that the gain in alignment accuracy

translates directly into higher sensitivity and specificity of variant pre-

dictions, for simulated as well as real datasets.

2 Materials and methods

Let x be a read obtained from paired-end sequencing of a DNA

fragment f, and let y be its mate. Let us denote the reference

sequence by g. An overview of our method is as follows. First, we

find high-scoring local alignments of x and y, separately, to g. Next we

compute the probability of each column appearing in the alignments

of x. We update the column probabilities using information coming

from the alignments of y. Finally, we choose high-probability columns

to form an alignment (possibly split) of x. We repeat this process

for y with x as information source. These steps are described in

detail below.

2.1 Step 1. Computing local alignments and column

probabilities
We first compute local alignments of x and y to g, ignoring the pairing.

Suppose we obtain sets X ¼ fX1;X2; . . . ;XjXjg and Y ¼ fY1;Y2; . . . ;

YjYjg of high-scoring local alignments of x and y, respectively, to g. If X

contains only a single alignment or is empty, there is no split-alignment

of x to find. If there are multiple local alignments of x, parts of them

might constitute a split-alignment. However, if multiple alignments

overlap on (part of) the read, it might not be clear where along the read

the split occurs, if at all. Therefore, in the following steps, we consider

each read position separately.

We digress slightly to review the notion of column probability.

Let s, t be two DNA sequences. Consider bases s i½ � and t j½ �. Let A be

the set of all possible alignments between s and t, and let us assume

that we have a probability distribution P over A. Let Aij be the

subset of A comprising those alignments containing the (s i½ �; t j½ �)
column, i.e. in which s i½ � and t j½ � are aligned to each other. The prob-

ability Pij
st that s i½ � is aligned to t j½ �, often referred to as ‘column

probability’ can be computed as:

Pij
st ¼

P
A2Aij

P Að ÞP
A2AP Að Þ : (1)

For the case where A consists only of non-split (i.e. conventional co-

linear) alignments, it is well known how to efficiently compute the

column probabilities for all pairs of bases (Durbin et al., 1998).

In fact, this can also be done for the case where A allows split-

alignments (Frith and Kawaguchi, 2015). We refer the readers to the

corresponding references for details regarding the underlying prob-

abilistic model and the algorithms for computation of column prob-

abilities, for each case.

Returning to our problem setting, consider base x i½ �, and suppose

that out of the alignments in X, it appears in mi alignments

Xi1 ;Xi2 ; . . . ;Ximi
. To simplify the presentation, we assume for now

that these alignments are gapless. Then, for each j; 1 � j � mi, let

g ij
� �

be the position in g to which x i½ � aligns in Xij . Let Pij be the

probability that the alignment column x i½ �; g ij
� �� �

is correct, which

is given by the column probability P
i;ij
xg . We assume here that the

aligner used to find the local alignments also provides us with the

column probabilities. This is in fact the case with LAST (Frith and

Kawaguchi, 2015), and our method relies on it for this step.

2.2 Step 2. Updating the column probabilities based on

pairing information
Next we update the column probabilities associated with each pos-

ition i in x based on the information coming from its mate y in the

form of the set of alignments Y. We will frame this as a Bayesian hy-

pothesis testing scenario with the set fHi
j j1 � j � mig of hypothe-

ses, where each Hi
j states that x i½ � has been sequenced from position

g ij
� �

. Mate y will function as data in our setting. We set P Hi
j

� �
, the

prior probability of Hi
j as the column probability Pij obtained in

Step 1.

In order to compute the posterior probability P Hi
j jy

� �
, we need

to define the likelihood P yjHi
j

� �
. We distinguish two cases: (i) con-

joint, when read y is informative about the alignment of x i½ �, and (ii)

disjoint when it’s not. The latter accounts for cases such as chromo-

somal translocation or inversion in which x i½ � and y correspond to

disjoint regions in g. A binary indicator variable I represents the two

cases. Then the likelihood of having observed an alignment Yk,

1 � k � jYj, is:

P Yk; IjHi
j

� �
/

P lf
� �
� eS Ykð Þ � P I ¼ 0ð Þ if conjoint

1

2lg
� eS Ykð Þ � P I ¼ 1ð Þ if disjoint;

8><
>:

(2)

where S Ykð Þ is the alignment score of Yk, lg is the length of the refer-

ence g, and lf is the length of the fragment length that can be inferred

from g ij
� �

and the first reference position in Yk. Since an alignment

score under traditional alignment scoring schemes are log-likelihood

ratios, eS Ykð Þ is proportional to the probability of Yk (if the scoring

scheme uses a scaling factor, say T, then we must first rescale the

score to S Ykð Þ=T). The term 2� lg accounts for the number of bases

in the two strands of a haploid genome. To compute the probability

P lf
� �

, we assume that fragment length follows a normal distribution,

the parameters of which can be learnt from a sample of read pairs

for which we can obtain confident unique alignments on the refer-

ence. We use a default value of P I ¼ 1ð Þ ¼ 0:01, but can be adjusted

to suit the study—for instance higher values might be suitable for

reads obtained from, say cancer genomes, where it is more likely

that read pairs are disjoint. One way to estimate P I ¼ 1ð Þ is to align

a sufficiently large sample of paired reads, and from confidently

aligning pairs in the sample, to observe the fraction of read pairs for

which their alignments are at a distance that is highly unlikely under

the estimated fragment size distribution.

We can now express the probability of having observed read y as:

P yjHi
j

� �
¼
X

k

X
I

P Yk; IjHi
j

� �
; (3)

which leads to the computation of the posterior as:

P Hi
j jy

� �
¼

P yjHi
j

� �
� P Hi

j

� �
P

l P yjHi
l

� �
� P Hi

l

� � : (4)

We perform this column probability-updating procedure separ-

ately for each position in x.
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To keep the description simple, we have deliberately omitted a

few details: it might be the case that the prior probabilities of Hi
j do

not add up to 1, or that x i½ � is aligned to a gap character in one of

the local alignments. To handle such cases, we need to make slight

adjustments to our scheme, which we describe in the Supplementary

Material.

2.3 Step 3. Computing a final alignment
We wish to report a final alignment for x, in which each base of x

appears at most once. Therefore we need to make a choice of which

columns will appear in the reported alignment. For each base of x,

we simply choose the column that has the highest posterior prob-

ability, and report the collection of all such columns as the final

alignment. Although this ensures that a base appears at most once, it

could in theory, result in alignments with unrealistic splits—for in-

stance, i and i þ 2 in x align to position j and j þ 2 in g, respectively,

but i þ 1 aligns to a distant position. For the 75 million pairs of

reads that we simulated for performance testing described in the

next section, we encountered no such cases; and therefore we

assume that such pathological cases are not much of a concerning

issue in practice.

Finally, we repeat the procedure for y, this time with the align-

ments in X treated as data.

3 Results

We compared the performance of our method (LAST-SPLIT-PE)

with other aligners capable of split-alignment, using both simulated

and real datasets. Of the methods compared, BWA can take paired

reads, but we do not know of any document describing how it incor-

porates this information into split-alignments. YAHA does not

consider pairing, but it employs a specialized algorithm for split-

alignment. LAST-SPLIT also does not consider pairing, but since

our method relies on it for finding initial local alignment and col-

umn probabilities, including it in the comparison allows us to inves-

tigate the gain from leveraging pairing information. Parameters used

for each aligner is detailed in the Supplementary Material.

We performed three kinds of tests. First, using reads simulated

from a reconstruction of the Venter genome, we examined how well

each aligner can split-align reads that come from breakpoint regions.

Next, we investigated the effect of split-alignment accuracy on the

end goal of variant detection by feeding the output of each aligner to

a common variant-calling tool (LUMPY). Finally, we applied the

aligner-and-variant-caller pairings to a real read dataset obtained

from the CHM1 cell line, for which a set of structural variants have

been determined using an independent sequencing technology. In

the following sections, we describe the specifics of each test and the

corresponding results we obtained.

All data and scripts used for evaluation are available at the soft-

ware website.

3.1 Evaluation of split-alignment accuracy
We first evaluated split-alignment accuracy using DNA reads simu-

lated from the diploid genome of a human individual (C. Venter),

which was reconstructed from the reference genome hg19 based on

the variants present in the Venter genome (Levy et al., 2007). The

Venter variants make for a good benchmarking set as they are re-

portedly of high quality, having been obtained by aligning Sanger

reads which are known for being accurate and long. As opposed to

the (common) practice of simulating large variants by placing them

in random locations of the reference, our simulation technique cap-

tures the difficulties of split-alignment (see Fig. 1).

Paired-end reads (length ¼ 101 bp, mean fragment length ¼ 300 bp

and SD ¼ 30 bp, total no. ¼ 75 million pairs) were randomly drawn

from the Venter genome. Sequencing errors were simulated by intro-

ducing errors in the reads, based on the per-base error probability

encoded in the fastq file of the ERR1813601 dataset.

We examined the alignments of reads that come from sites of

large deletions � 20 bp in the reconstructed Venter genome.

Specifically, we looked at those reads that cross a deletion break-

point such that their flanks on either side are at least 20 bp. Of the

total reads, there were about 42, 000 such reads. We define a read

flank to be correctly aligned if at least one of bases in the flank is

correctly aligned, and a read flank to be wrongly aligned if none of

the bases is correctly aligned. A read is said to be correctly split-

aligned if both the flanks are correctly aligned, and it is said to be

wrongly split-aligned if either of the flanks is wrongly aligned. Note

that we exclude the case in which an aligner only reports a correct

local alignment for only one of the flanks. Although such alignments

are not strictly wrong, they do not help the end goal of variant

detection.

Figure 3 shows the results. Comparing LAST-SPLIT-PE to

LAST-SPLIT, we can clearly see that there is a definite gain in

utilizing pairing information in split-alignments. Our method also

outperforms both BWA and YAHA over the whole range of

mapping quality/error probability threshold values. It is also worth

noting that even in the least stringent setting, we manage to

correctly split-align only roughly a third of the 42 000 reads,

while wrongly aligning many more reads. This is not surprising,

given our observation about alignment challenges in deletion loci in

Figure 1.

3.2 Base-level precision
Since our definition of a correctly split-aligned read seems somewhat

generous, it is useful to check the precision of correct split-

alignments at the base-level. For each aligner and for each mapping

quality threshold used in Figure 3, we counted the total number of

correctly aligned bases in those reads that were considered to be cor-

rectly split-aligned. This number expressed as a fraction of the total

number of bases in the correctly split-aligned reads, does not vary

much over the different mapping quality thresholds (Fig. 4).

Averaged over all operating points, LAST-SPLIT-PE has a 97.38%

precision, which is comparable to LAST-SPLIT (97.48) and slightly

better than BWA (96.93) and YAHA (94.2). This result implies that

when aligners align correctly, they are also precise at the base-level.
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This also affords justification for our earlier definition of correct

alignment.

So far in this section, we have not considered false positives, i.e.

cases in which a read is mistakenly split-aligned when it should not

be. We remedy this situation in the following evaluation.

3.3 Evaluation of the effect on variant calling
Using the same read set as before, we fed the alignments of all reads

produced by each aligner to LUMPY, a method that makes

structural-variant calls based on signals from discordant alignments

of mates and split-alignment of single reads. We leave out LAST-

SPLIT as its SAM-format output is not compatible with LUMPY.

To contrast the strategy of LUMPY to that of DELLY, which first

filters genomic intervals likely to contain structural variants based

on discordant alignments of mates, we fed the same alignments from

BWA to DELLY. The parameters used are documented in the

Supplementary Material.

We evaluated the performance of the aligner-caller pairs based

on their deletion calls. The set of Venter deletions �20 bp were set

as positive examples (total of 13 495 instances). A true positive call

is one that correctly identifies the start and end coordinates of a true

deletion, allowing for some shifts in the predicted positions, to ac-

count for the micro-homologies that are present at deletion break-

points. The amount of shift allowed is specific to each deletion and

is set as follows. Let l (similarly, r) be the length of the longest

common suffix (prefix) between the deleted sequence and the up-

stream (downstream) flank in the reference. For each true deletion

with start and end coordinates s and e, we allow the predicted start

and end coordinates to be in the interval s� l; sþ r½ Þ and

e� l; eþ rð �, respectively.

The results are shown in Figure 5. Since variant calling is

impacted by the fragment length characteristics, it is informative

to divide the deletion calls into three groups based on their

lengths: 20 bp to 1 � SD, 1 � SD to 3 � SD and larger than 3 � SD,

where SD is the standard deviation of the fragment length

distribution.

For the first and second groups, our method paired with LUMPY

overwhelmingly outperforms the other methods, showing remark-

able sensitivity while maintaining high precision. However, in the

third group, the precision of our method degrades for less stringest

operating points. The operating point shown as a larger dot corre-

sponds to mapping quality threshold of 20 (i.e. error probability of

0.01); and judging from the three panels, a slightly stricter threshold

(e.g. 30), seems to be a good default choice when running LAST-

SPLIT-PE.

Since DELLY relies heavily on discordant paired-end reads, most

of the BWA-DELLY calls are present in the last group. There it

shows good specificity, but does not match the sensitivity of BWA-

LUMPY and LAST-SPLIT-PE-LUMPY. It is intriguing how, given

the same set of BWA alignments, LUMPY and DELLY behave dif-

ferently in this group. For the BWA-LUMPY combination, using our

split-alignment extraction script instead of the default, greatly

improves the sensitivity of LUMPY for smaller variants (first and se-

cond groups). For the third group, the two BWA-LUMPY curves co-

incide, as expected.

A key observation—and a rather disappointing one—is that, of

the >13 000 Venter deletions � 20 bp, the LAST-SPLIT-PE-and-

LUMPY combination can only find around 3300 of them, even at a

setting that prioritizes sensitivity (mapping quality threshold of 5).

This number is smaller for other aligner-variant-caller pairs. This is,

however, consistent with our observation in Section 3.1 that only a

third of reads from breakpoint regions could be correctly split-

aligned. Also, this performance is much worse than the ideal-

scenario empirical performance bound we presented in Section 1

(Fig. 1), where we showed that around 60% of deletions had ambi-

guity value of 1. Overall, this reconfirms the serious limitations of
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which cannot catch small splits that are reported as a single-line SAM record, and BWA-LUMPY-2 corresponding to using ours, which resolves this issue
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short reads in detecting structural variants, even the supposedly sim-

pler case of deletions.

3.4 Evaluation on a real dataset
Next we evaluated the performance of the aligner–caller combina-

tions using real reads. The SRX652547 is a dataset containing short

reads from the CHM1 cell line. For our evaluation, we used its sub-

set, SRR1514950, which contains roughly 216 million pairs of 101

bp-long reads. For the same cell line, there exists a compilation of

structural variants, which have been obtained from analyzing

PacBio long reads (Chaisson et al., 2015). As in the simulated case,

we evaluate the methods on their deletion calls, using as positive

examples all deletions �20 bp (totalling 11 273 deletions) from the

PacBio-based study.

The results are shown in Figure 6, where we have again grouped

the calls based on their sizes and the standard deviation of the frag-

ment size distribution, which we estimated to be 80 bp. The first

group however starts at 50 bp—this is to accommodate the fact that

the CHM1 dataset is conspicuously depleted in deletions <50 bp

(compare Fig. 7 with Fig. 2). We can observe similar trends as in the

case of the simulated dataset, with LAST-SPLIT-PE-LUMPY exhib-

iting significantly higher sensitivity than other methods.

3.5 Running time and memory usage
Figure 8 shows the running time of the aligners. All methods scale

linearly with input size. Comparing the running time of LAST-

SPLIT-PE and LAST-SPLIT, we can see that our paired-end compu-

tation takes only a small amount of extra time. While the running

time of LAST-SPLIT-PE is slower than BWA, we provide multi-

threading option to handle large datasets within reasonable time

bounds—e.g. using 16 threads, we can align reads amounting to

coverage-40 of the whole human genome, in under a day. The local

alignment phase can be made faster—at the cost of sensitivity—by

adjusting parameters such as the seed search step size parameter k

(Supplementary Material).

The memory usage of each tool is dominated by the size of

its reference index. LAST-SPLIT and LAST-SPLIT-PE build a suffix

array, BWA constructs an index based on the Burrows-Wheeler
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transform, and YAHA builds a lookup table for k-mers.

Consequently, for a human reference genome, memory usage

amounts to 20 GB for LAST-SPLIT and LAST-SPLIT-PE, 5.2 GB for

BWA, and 12 GB with k ¼ 11 for YAHA.

4 Discussion

We have proposed a split-alignment method that combines align-

ment column probabilities obtained from probabilistic alignment

techniques, with information from read pairs from paired-end

sequencing. We demonstrated that our method produces more ac-

curate split-alignments than existing methods, and as a consequence

leads to more accurate identification of large variants from whole

genome DNA-sequencing reads.

Regarding the generality of our tool, while this work describes

its usage in conjunction with LAST, the proposed framework can be

applied to any alignment tool that can report alignment column

probabilities. If an aligner reports high-scoring local alignments, but

does not provide column probabilities, it might still be theoretically

possible to estimate them using the method described in (Frith

and Kawaguchi, 2015). Also while we have based our evaluation on

finding large deletions, our method is applicable to other kinds

of structural variants such as chromosomal translocations or

inversions.

Split-alignments arise in scenarios other than DNA read align-

ment. Analysis of RNA-seq data often require aligning short reads

that span splicing junctions. It was recently reported that most

RNA-seq alignment tools do not perform well in the task of identify-

ing splicing junctions when the dataset is challenging (Baruzzo et al.,

2017). Applying our idea might be one way to improve prediction

accuracy. However since in the case of RNA-seq aligners, other

sources of information such as splicing signals and genomic annota-

tion are also important, we do not investigate this issue in this

article.

Several experimental techniques that use high-throughput

sequencers to investigate RNA structure and interaction have been

proposed recently (Aw et al., 2016; Ramani et al., 2015). A common

theme among these methods is that they generate chimeric reads

which are signals of interacting RNA bases. The analysis pipeline

for such data requires first that the read be split-aligned to the gen-

ome or transcriptome. This might be another interesting area to

apply our method.

As we showed in Figure 1 and as indicated by our benchmarking

results, a major concern of short reads is that their length imposes a

serious limitation in the ability to identify simple deletions, let alone

complex rearrangements. In this regard, the recent emergence of

long-read technologies, such as Oxford NanoPore and PacBio, is a

promising development. However, it seems they are still far from

being adapted as widely as short-read technology—for instance, of

the entries in the DDBJ DRA archive, the number of Illumina-based

studies is many orders larger than the number of those using PacBio

or Oxford Nanopore. For the time-being, short reads will perhaps

continue to be the mainstay for a wide range of sequencing-based

studies, and therefore every measure to improve alignment accuracy

by using supplemental information is important.
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