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ABSTRACT: Lattice vibrational frequencies are related to many important
materials properties such as thermal and electrical conductivity as well as
superconductivity. However, computational calculation of vibrational frequen-
cies using density functional theory methods is computationally too demanding
for large number of samples in materials screening. Here we propose a deep
graph neural network based algorithm for predicting crystal vibrational
frequencies from crystal structures. Our algorithm addresses the variable
dimension of vibrational frequency spectrum using the zero padding scheme.
Benchmark studies on two data sets with 15,000 mixed-structure and 35,552
rhombohedra samples show that the aggregated R2 scores of the prediction
reach 0.554 and 0.724. We also evaluate the structural transferability by
predicting the vibration frequencies for 239 individual cubic target structures.
The R2 scores for more than 40% of the targets are greater than 0.8 and can
reach as high as 0.98 for the model trained with mixed samples, while the
average mean absolute error is 43.69 Thz showing low transferability across structure types. Our work demonstrates the capability of
deep graph neural networks to learn to predict lattice vibration frequency when sufficient number of training samples are available.

1. INTRODUCTION
Almost all solids, such as crystals, amorphous solids, glasses,
and glass-like materials have an ordered, disordered, or hybrid
ordered/disordered arrangement of atoms. Due to the thermal
fluctuation, all atoms in a solid phase vibrate with respect to
their equilibrium positions. The existence of a periodic crystal
lattice in solid materials provides a medium for characteristic
vibrations. The quantized, collective vibrational modes in solid
materials are called phonons. The study of phonons serves an
important part in solid-state physics, electronics, and photo-
electronics, as well as other emerging applications in modern
science and technology, as they play an essential role in
determining many physical and chemical properties of solids,
including the thermal and electrical conductivities of most
materials. Lattice vibrations have long been used for explaining
sound propagation in solids, thermal transport, elastic and
optical properties of materials, and even photoassisted
processes, such as photovoltaics. For instance, there are
numerous studies that explore the determinant role of
electron−phonon coupling in heat conduction,1−7 super-
conductivity,8−12 and photoelectronics.13−16 The acoustic
branch vibration mode softening has been identified as the
mechanism of superconducting transition rather than the
Fermi surface nesting in platinum diselenide, a type-II Dirac
semi-metal.17 A previous study also illustrates the pivotal role
played by electron−phonon coupling in photocurrent
generation in photovoltaics.18 Phonon-assisted up conversion

photoluminescence has been experimentally observed for
CdSe/CdScore/shell quantum dots,19 which could be
exploited as efficient, stable, and cost-effective emitters in
various applications. Therefore, predicting the basic behaviors
of lattice vibrations, i.e., the lattice vibrational frequencies, is
beneficial toward future design of novel materials with
controlled or tailored elastic, thermal, electronic, and photo-
electronic properties.
Despite the great importance of predicting vibrational

properties of crystalline materials, high-fidelity computing of
lattice vibrational frequencies using a considerably large data
set is not an easy task.20 The traditional method to obtain the
vibrational frequencies of a lattice is diagonalizing the
dynamical matrix of a crystal structure to get its eigenvalues
(frequencies). Herewith, we restrict all of our discussions to
the Γ-point frequency only. The difficulty lies in evaluating the
large amount of interatomic force constants (IFCs) of a lattice
in a highly efficient and accurate fashion, which is required for
obtaining the dynamical matrix associated with the vibrational

Received: May 8, 2022
Accepted: June 30, 2022
Published: July 21, 2022

Articlehttp://pubs.acs.org/journal/acsodf

© 2022 The Authors. Published by
American Chemical Society

26641
https://doi.org/10.1021/acsomega.2c02765

ACS Omega 2022, 7, 26641−26649

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nghia+Nguyen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Steph-Yves+V.+Louis"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Lai+Wei"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kamal+Choudhary"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ming+Hu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jianjun+Hu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.2c02765&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c02765?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c02765?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c02765?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c02765?fig=abs1&ref=pdf
https://pubs.acs.org/toc/acsodf/7/30?ref=pdf
https://pubs.acs.org/toc/acsodf/7/30?ref=pdf
https://pubs.acs.org/toc/acsodf/7/30?ref=pdf
https://pubs.acs.org/toc/acsodf/7/30?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.2c02765?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://acsopenscience.org/open-access/licensing-options/


frequencies. Depending on the symmetry, composition, and
structural complexity (such as number of species and their
ratio) of the crystal, IFC calculations could be time and
resource consuming. In any case, the IFCs calculation can be
accomplished by either a quantum-mechanical approach,
which can be used to obtain a phonon’s dispersion relation
and even anharmonicity, or a semiclassical treatment of lattice
vibrations, which solves Newton’s law of mechanics with
empirical interatomic potentials. However, the quantum-
mechanical approach, despite its high accuracy, cannot be
used to evaluate or predict the lattice vibrational frequencies of
a large amount of crystals with diverse compositions and lattice
complexities, due to its high demand and unbearable
computation cost. On the other hand, the empirical potential
method, although very fast compared to the quantum-
mechanical approach, fails to give satisfactory results most of
the time. For example, if the interatomic interactions are not
accurately calculated, the dynamical matrix could be ill defined
and as a result there could be negative values in the obtained
frequencies. To this end, developing some algorithms that can
accurately and quickly screen and evaluate a large number of
crystals will be very promising for high-throughput computing
and novel materials design.
Big data and deep learning approaches have already brought

a transformative revolution in computer vision, autonomous
cars, and speech recognition in recent years. Machine learning
and deep learning algorithms have been increasingly applied in
materials property prediction21−26 and materials discovery.27,28

It has been well-acknowledged that machine learning has the
potential to accelerate novel materials discovery by predicting
materials properties at very low computational cost and
maintaining high accuracy sometimes even comparable to first-
principles level at the same time. Although most of the time
training a good machine learning model would require a
decent amount of high-quality data, which is usually obtained
through high-precision ab initio simulations, the machine
learning model is very efficient and attractive for screening and
predicting large amounts of unexplored structures and data,
which is orders of magnitude faster than traditional one-by-one
computation. Among all of the methods for materials property
prediction, the structure-based graph neural networks have
demonstrated,23 the best overall performance with big
advantage over composition-based methods and heuristic
structure feature-based approaches. In the field of lattice
vibration (phonon), their potential has yet to be implemented
due to the inherent difference between materials data and
image/audio data, and lack of sufficient materials data. Since
the vibrational frequencies of a crystalline material strongly
depend on its atomic structure and the structural patterns
strongly relevant to this property are not well understood, it is
highly expected that the strong learning capability of deep
graph neural networks’ representation can be used to train
deep learning models for vibrational-frequency prediction.
Benefited from 15,000 mixed-type structures and 35,552

rhombohedral structures with Γ-frequencies that we have
recently calculated, this work presents a new development of
graph neural network and deploys the trained neural network
model to predict lattice vibrational frequencies of crystal
materials. Benchmark studies on these two data sets showed
that our deeperGATGNN model can achieve very good
performance with an R2 score of 0.724 when the model is
trained and tested with the rhombohedron crystal structures. It
also shows good performance when applied to predict cubic

crystal structures. The model performance on the smaller data
set with mixed crystal structures is lower with an R2 score of
0.556. To the best of our knowledge, this is the first work that
uses a deep (graph) neural network to study phonon
frequencies.

2. METHODS
2.1. Data. To evaluate the performance of our graph neural

network model for vibrational-frequency prediction, we
prepared two data sets. The first data set is the Rhombohedron
data set which is composed of 35,552 rhombohedral crystal
structures obtained by density functional theory (DFT)
relaxation of the generated cubic structures of three prototypes
(ABC6, ABC6D6, and ABCD6) by our cubicGAN algorithm, a
deep learning based cubic structure generator.28 The second
data set consists of 15,000 crystal structures with mixed crystal
systems. For the Rhombohedron data set, we split it into a
training set with 28,441 samples and a test set with 7,111
samples. For the Mix data set, we split it into a training set with
12,000 samples and a testing set with 3,000 samples. The
calculation processes of both data sets are described below.

2.1.1. Data Calculation and Collection. All of the first-
principles calculations are carried out using the projector
augmented wave (PAW) method as implemented in the
Vienna ab initio simulation package (VASP) based on
DFT.29,30 Please note commercial software is identified to
specify procedures. Such identification does not imply
recommendation by National Institute of Standards and
Technology (NIST). The initial crystal structures were taken
from the Materials Project database. We then optimized each
crystal structure with both the atomic positions and lattice
constants fully allowed to relax in spin-unrestricted mode and
without any symmetry constraints. The maximal Hellmann−
Feynman force component was smaller than 10−3 eV/A, and
the total energy convergence tolerance was set to be 10−6 eV.
The Opt-B88vdW functional was taken into account to deal
with the long-term interactions in the exchange−correlation
interaction.31 All Γ-point frequencies were calculated using
VASP. The Γ-point frequencies were extracted from elastic
constant calculations using VASP with parameters IBRION = 6
and NFREE = 4, where the Hessian matrix (matrix of the
second derivatives of the energy with respect to the atomic
positions) and the Γ-point vibrational frequencies of a system
can be determined by the finite displacement difference
method. The k-points for such elastic constant calculation were
generally 4 by 4 by 4 for most of the systems, while for some
large cell systems we reduce the k-points to 2 by 2 by 2. The
focus of this work is on training and the prediction of
vibrational frequency, while the elastic constant data are used
for training other models in a separate work.

2.1.2. Constructing Training and Testing Data Sets. For
each crystal structure, we parse its OUTCAR file for
vibrational frequencies. Because some of the vibrational
frequencies are imaginary, they would be represented as
negative values. Additionally, since each crystal structure has a
variable number of atoms, the output has a variable number of
vibrational frequencies. Therefore, we first identify the crystal
with the largest number of atoms to determine the maximum
number of frequencies to predict. For instance, since the
crystal with the largest number of atoms in our data set has 14
atoms, it would have 42 vibrational frequencies. Then, the
output vector dimension is set as 42 for all crystal structures in
the data set, formatted as [first frequency, second frequency,
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third frequency, ..., 42nd frequency]. If the number of
vibrational frequencies is less than 42, the remaining values
are padded with zero.
2.2. Definition of the Vibrational-Frequency Predic-

tion Problem: Task Modeling.We approach the vibrational-
frequency prediction task as a variable-dimension regression
problem (Figure 1). For an input POSCAR file, we need to
predict its vibrational frequencies as a vector of variable
dimension. While we recognize that calculation of many
materials properties would require the full phonon dispersion
and even corresponding phonon modes, in this study, we focus
on the vibration-frequency prediction.
2.3. Scalable Global Attention Graph Neural Net-

work. To learn the sophisticated structure to property
relationship between the crystals and their vibrational
frequency, we use our recently developed scalable deeper
graph neural networks with a global attention mechanism.32

Our deeperGATGNN model (Figure 2) is composed of a set
of augmented graph attention layers with ResNet style skip
connections and differentiable group normalization to achieve
complex deep feature extractions. After several such feature
transformation steps, a global attention layer is used to
aggregate the features at all nodes and a global pooling

operator is further used to process the information to generate
a latent feature representation for the crystal. This feature is
then mapped to the vibrational frequencies using a few fully
connected layers. To train the model, first we convert all crystal
structures of the data set into graph structures using a radius
threshold of 8 Å and the maximum number of neighbor atoms
to be 12. The graph representation of our data set allows us to
automatically achieve translation and rotation invariant feature
extraction.
One of the major advantages of our deeperGATGNN model

for materials property prediction lies in its high scalability and
state-of-the-art prediction performance as benchmarked over
six data sets.32 The scalability allows us to train a very deep
network with 10 or more graph attention layers to achieve
complex feature extraction without the performance degrada-
tion that many other graph neural networks suffer due to the
oversmoothing issue. Another advantage is that the deep-
erGATGNN model has demonstrated good performance
without the need of computationally expensive hyperparameter
tuning. The only major parameter is the minimum number of
graph attention layers.

2.3.1. Differentible Group Normalization. One of the key
issues of standard graph neural networks is the oversmoothing

Figure 1. Representative atomic structure of AlB2 (a) and corresponding phonon dispersions (b). The number of phonon frequencies is triple the
number of atoms within the unit cell.

Figure 2. Architecture of the deeperGATGNN neural network. It is composed of several graph convolution layers with differentiable normalization
and skip connections plus a global attention layer and final fully connected layers. Reproduced with permission from ref 32. Copyright 2022
Elsevier (in Patterns).
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problem, which leads to the homogenization of the node
representation with the stacking of an increasing number of
graph convolution layers. To address this issue and build a
deeper graph neural network, we used a differentiable group
normalizer33 to replace the standard batch normalization. This
operator first tries to cluster the nodes on the basis of their
representation and then cluster them and do normalization for
each cluster.

2.3.2. Residual Skip Connection. We also added a set of
residual skip connections to our GATGNN models, which is a
well-known strategy to allow training of deeper neural
networks as first introduced in the ResNet framework34 and
later used in graph neural networks too.35 For each of our
graph convolution layers, we added one skip connection to it.
2.4. Evaluation Measures. Our study uses a graph neural

network to create a model that predicts vibrational frequency.
In order to evaluate its performance, we use mean absolute
error (MAE) and the coefficient of determination (R2). Their
formulas are as shown below:
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where n is the number of data points and yi and ŷi are
respectively the actual and predicted values for the ith data
point in the data set. The variable y̅ is the mean value of all of
the yi data points. In Figures 3, 5, and 8, the R2 value represents
the proportion of the variation of the predicted frequencies
that is predictable from the actual frequencies, in accordance
with their linear regression lines.

3. EXPERIMENTAL RESULTS
3.1. Overall Performance of Vibrational-Frequency

Prediction. We first trained a deeperGATGNN model over
the more homogeneous structure data set, the Rhombohedron
data set for vibrational-frequency prediction. We randomly
picked 28441 samples for training and a remaining 7111
samples for testing. The following hyperparameters are used
for our graph neural network model training: learning rate =
0.004, graph convolution layers = 10, and batch size = 128. No
dropout is used as it always deteriorates the prediction
performance. We calculate the MAE for both testing samples
and training samples respectively. The average MAE for the
training samples is 4.28943 THz, while the average MAE for
the testing samples is 4.28879 THz. To further check the
model performance, we show the predicted vibrational
frequencies versus the ground truth values for all of the test
samples in the same scatter plot as shown in Figure 3. First, we
find that most of the points are located around the diagonal
indicating a high prediction performance, with its R2 score
reaching 0.724. There are a few outliers gathering around the
low-frequency ground truth area. The majority of prediction
errors occur for points on the bottom line where a certain
proportion of ground truth vibrational frequencies are
predicted as zero, which may be due to the systematic
unbalance of the data set with a majority of positive vibration
frequencies that our current model cannot handle well. But
overall, a majority of vibrational frequencies have been
predicted correctly as shown in Figure 3 with high precision.
To check the generalization performance of our deep-

erGATGNN model for vibrational-frequency prediction, we
plot the histogram of the prediction MAEs over both the
training set and the test set of our Rhombhedron data set
(Figure 4). It is found that most frequency MAEs are around
2.5 THz, while there is another small peak around 9 THz. It is
interesting to find that the MAE histogram over the test set has
very similar distribution, indicating the good generalization
performance of our model for vibrational-frequency prediction.
In order to further verify the performance of our

deeperGATGNN model, we trained another model using the
Mix data set with more complex and diverse structures
compared to the Rhombhedron data set, which has 15000
crystal structures. We used a training set with 12000 samples
and a testing set with 3000 samples and then calculated the
MAEs and R2 score. As shown in Figure 5, the scatter plot of
the predicted vibrational frequencies versus the ground truth
values for all test materials has a much wider distribution
around the regression line compared to the result in Figure 3.
The R2 score here is 0.556, which is significantly lower than
0.724 obtained for the Rhombhedron data set, indicating the
much higher challenge in predicting the vibrational frequency
of mixed structures. Another possible reason is that the Mix
data set has a much smaller number of samples: 15000 versus
35550. However, we can still see that our deeperGATGNN
model has achieved a reasonably good performance overall, as
shown by the clear trend of the regression line.
To check the generalization performance of our deep-

erGATGNN model on the Mix data set, we show the MAE
distributions for both the training set and the testing set in
Figure 6. We find that the MAE histograms of the training set
and the testing set from the Mix data set are almost the same,
indicating its good generalization performance. An interesting

Figure 3. Performance of deeperGATGNN for vibrational-frequen-
cies prediction over the Rhombohedron data set. The scatter plot
shows the predicted versus ground truth vibrational frequency for all
test materials.
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observation is that the MAE distribution for the Mix data set
has only one peak, while it has two peaks as shown in Figure 3.

3.1.1. Training Process and Effect of Training Set Size. To
understand the model training process of the deeperGATGNN
model for vibrational frequency, we plotted the training and
validation errors during the training process as shown in Figure

7a. It can be found that the training error keeps going until
becoming stagnant, while the larger validation errors also go
down and become stable after about 300 epochs, indicating the
good fitting of the model (no overfitting). We further checked
how the training set size may affect the model performance by
training different models using a different number of training
samples of the Rhombhedron data set. The results are shown
in Figure 7b. We found that the prediction MAEs keep going
down when more training samples are used. But when the
training sample number reaches 20000, there is no significant
performance improvement.

3.1.2. Hyperparameter Study. It is well-known that
hyperparameters of graph neural networks might strongly
affect their final performance. To figure out their impact and
obtain the optimal settings, we conducted a series of
hyperparameter tuning experiments. The main hyperpara-
meters of our model include the number of graph convolution
layers, the learning rate, the batch size, and the dropout rate
(for controlling the overfitting issue). The results are shown in
Table 1. First we found that whenever we add the dropout to
our model, it leads to worse performance, which is in contrast
to the deep neural network models in the computer vision. So
no dropout is used in our experiments. Second, we find that
with a given learning rate ranging from 0.001 to 0.005, the
larger batch size (256) usually generates lower performance
compared to the result with batch size 128. The optimal
performance is obtained with learning rate 0.004, 10 graph
convolution (AGAT) layers, and batch size of 128 for all
experiments on both data sets.
3.2. Case Analysis of Prediction Quality of Different

Target Materials. To further understand how the deep-
erGATGNN model performs for the vibrational-frequency

Figure 4. Histograms of MAE prediction errors over the training
samples and the testing samples for the Rhombhedron data set.

Figure 5. Performance of deeperGATGNN for vibrational-frequen-
cies prediction over the Mix data set. The scatter plot shows the
predicted versus ground truth vibrational frequency for all test
materials.

Figure 6. Histograms of MAE prediction errors over the training
samples and the testing samples for the Mix data set
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prediction, we used our model trained with the Mix data set to
predict 100 test samples and show results of six crystal
structures with high prediction accuracy R2 scores, including
Fe2H6, B6H18O18, B48O6, C44F28, Be2BH3O5, and C120F36. The
six case study target materials contain binary, ternary, and
quaternary materials with diverse structures. The numbers of
atoms within their unit cells range from 8 to 156.
In Figure 8, we present each of the target structures and

their scatter plots showing the predicted vibrational
frequencies versus the ground truths. We can divide them
into two groups for discussion on the basis of the distribution
of their vibrational frequencies. In group one, the frequencies
are coarsely distributed evenly within the whole range of their
vibrational frequencies, as shown in Figure 8d−f,k. This group
includes Fe2H6, B6H18O18, B48O6, and Be2BH3O5. For this
group of materials, our deeperGATGNN model achieves very
good performance with the R2 scores of 0.98, 0.968, 0.954, and
0.95, respectively. In group two, the vibrational frequencies are
distributed within two extreme clusters at the two ends of the
frequency range, as shown in Figure 8j,l. It includes two
materials: C44F28 and C120F30. Usually these types of
distributions are difficult to achieve good regression results
for However, our prediction model obtains high R2 scores of
0.953 and 0.947 for C44F28 and C120F30, respectively. Overall,
we find the R2 scores are all above 0.9 for all six target
structures: the best score is 0.98 for Fe2H6, and the lowest one
is 0.947 for C120F36. However, despite the high R2 scores, we
find that the predicted absolute values are very different from
the true values by DFT with the average MAE being 43.7 Thz.
We notice that the predicted vibrational frequencies show very
high linear correlations with the true frequencies, which,
however, differing for each material. To exploit the linear

relationship for improving the vibration-frequency prediction,
we train two composition-based neural network models to
predict the slope and intercept for the linear relationship for
each material so that the linear model can map raw output
from our graph neural networks to their final predictions. We
use the Roost algorithm,36 a composition-based graph neural
network algorithm for composition-based property prediction,
to train the slope and intercept linear model using the
calculated linear models. We then use them to map the
deeperGATGNN predicted vibration frequency to calibrated
values. We find that the average MAE can be reduced to 33
Thz.
To check the individual structure level R2 performance of

our model for vibrational-frequency prediction, we plot a
histogram of all R2 scores for the 239 cubic test structures
whose vibration frequencies are predicted by the model trained
with the Mix data set (Figure 9). We find that the overall
performance is very strong with more than 55% of them having
R2 scores greater than 0.65 and more than 40% of them having
R2 scores more than 0.8. However, we find that the average
MAE for these 239 test structures is 43.7 Thz, which is
relatively high. This demonstrates that our deeperGATGNN
model has a certain but limited transferability for vibrational-
frequency prediction across structure types: the lack of
sufficient cubic samples in the Mix data set impedes the
prediction performance over these cubic structures.
Before closing, it is worth pointing out the advantage of our

trained models in predicting negative vibrational frequencies.
In our training data, we include the negative vibrational
frequencies in the training process. Therefore, after training,
our model automatically has the capability to predict negative
vibrational frequencies of new structures. In materials science,

Figure 7. Characteristics of the deeperGATGNN model training process. (a) MAE changes during training. (b) How training set size affects
performance

Table 1. Prediction Performance (MAEs (THz)) of Different Parameter Settings

learning rate 0.001 learning rate 0.002 learning rate 0.003 learning rate 0.004 learning rate 0.005

AGAT
layers

batch size
128

batch size
256

batch size
128

batch size
256

batch size
128

batch size
256

batch size
128

batch size
256

batch size
128

batch size
256

5 1.948 2.331 1.642 1.893 1.676 1.740 1.538 1.527 1.389 1.459
10 2.198 2.504 1.758 1.927 1.519 1.945 1.470 1.540 1.524 1.761
15 1.999 2.392 1.597 1.969 1.593 1.689 1.534 1.507 1.523 1.539
20 2.811 2.930 1.581 2.403 1.459 1.767 1.477 1.596 1.539 1.513
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it is well-known that negative vibrational frequencies usually
mean the corresponding structures are either not thermody-
namically stable at all, i.e., likely to decompose into substances
with lower energies, or only not stable in a certain temperature
range, i.e., likely to undergo a phase transition into a different
space group. In either case, prediction of the negative
vibrational frequencies is valuable for large-scale material
screening. For example, one can use the trained model to filter
out materials that are not stable. We have used our model to
predict the vibrational frequencies of new structures, and we
do find that a large portion of the structures have negative
vibrational frequencies. We further checked the formation

energy and energy above the hull of those structures with
negative vibrational frequencies, and we found that significant
amounts of structures are not thermodynamically stable in
terms of positive formation energy and high (positive) energy
above the hull values. It is also worth pointing out that, the Γ-
point-frequency prediction using the machine learning
approach is the very first step in the thermal science
community and understanding more phonon-related material
properties would require the knowledge from a full phonon
spectrum and corresponding phonon modes. M.H.’s group is
currently training large-scale neural network models to predict
full phonon dispersions and related phonon modes, based on

Figure 8. Prediction performance of vibrational frequencies by deeperGATGNN. Group one: (a−c, h) structures of four materials Fe2H6,
B6H18O18, B48O6, and Be2BH3O5 along with their predicted vibrational frequencies (d−f, (k) and the regression R2 scores of 0.98, 0.968, 0.954, and
0.95, respectively. The vibrational frequencies of this group are spread all over the whole range. Group two: (g, i) structures of two materials C44F28
and C120F36 and their predicted frequencies (j, l) with R2 scores of 0.953 and 0.947, respectively. Their vibrational frequencies are clustered at two
ends of the frequency range.
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more time- and resource-consuming DFT calculations. Those
results will be reported in separate subsequent publications in
the near future.

4. CONCLUSION
We have proposed a deep global graph attention neural
network algorithm for the prediction of vibrational frequency
of a given crystal material given their structure information. We
formulate it as a variable-dimension vector target regression
problem. Extensive experiments on two data sets with 35552
and 15000 samples show that our graph network model can
handle the varying sizes of the training samples and can predict
the vibrational frequency with good performance for the
rhombohedral crystal materials with R2 score reaching 0.724.
For the data set with mixed structures, the vibrational-
frequency prediction is much more challenging with the R2

score around 0.556. However, we find that our model has low
structural transferability when the model trained with mixed
samples is used to predict the vibration frequencies of cubic
structures, which leads to high MAEs of the predicted vibration
frequencies despite the high correlations of the predictions
with the ground truths. We find increasing the number of
training samples can significantly reduce the prediction error,
which is widely recognized in other materials property
prediction tasks. Further research such as collecting more
training data with diverse structures or algorithm improvement
is needed to build more accurate models and to improve the
transferability of the trained models for phonon vibrational-
frequency prediction.
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■ EDITOR'S NOTE
The data that support the findings of this study can be
downloaded from figshare.com at https://figshare.com/
articles/dataset/Mixed_system15K/17704223 and https://
figshare.com/articles/dataset/Rhombohedron35K_dataset_
of_vibration_frequency/17704211.
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