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A B S T R A C T

It is urgent to find an effective antiviral drug against SARS-CoV-2. In this study, 96 virus-drug associations
(VDAs) from 12 viruses including SARS-CoV-2 and similar viruses and 78 small molecules are selected. Complete
genomic sequence similarity of viruses and chemical structure similarity of drugs are then computed. A KATZ-
based VDA prediction method (VDA-KATZ) is developed to infer possible drugs associated with SARS-CoV-2.
VDA-KATZ obtained the best AUCs of 0.8803 when the walking length is 2. The predicted top 3 antiviral drugs
against SARS-CoV-2 are remdesivir, oseltamivir, and zanamivir. Molecular docking is conducted between the
predicted top 10 drugs and the virus spike protein/human ACE2. The results showed that the above 3 chemical
agents have higher molecular binding energies with ACE2. For the first time, we found that zidovudine may be
effective clues of treatment of COVID-19. We hope that our predicted drugs could help to prevent the spreading
of COVID.

1. Introduction

In the end of December 2019, a new coronavirus pneumonia named
COVID-19 by WHO, was found in Wuhan, Hubei, China [1]. The disease
was caused by a new coronavirus called SARS-CoV-2. Till June 15th,
2020, a total of 7,823,289 infection cases with 431,541 deaths have
been reported [2]. Therefore, it is emergent to identify effective treat-
ment options to prevent COVID-19.

SARS-CoV-2 is an emerging virus and there is no specific drug or
vaccine [3]. Developing a new antiviral drug or vaccine may be un-
realistic in such an urgent situation. However, SARS-CoV-2 is a single-
stranded positive-sense RNA virus [4] and strongly similar to SARS-CoV
[5] and MERS-CoV [6]. These three viruses may all cause severe re-
spiratory symptoms including fever, cough and shortness of breath [7].
Previous studies have repositioned many existing drugs for effectively
treating infectious diseases caused by single-stranded RNA viruses [8],
such as SARS [9], MERS [10] and influenza [11]. Similarly, selecting
potential antiviral drugs against SARS-CoV-2 from FDA-approved
compounds may be an effective option to combat COVID-19 [12].

In this study, complete genomic sequence similarity of viruses,
chemical structure similarity of drugs and virus-drug association (VDA)
network were first integrated. A KATZ-based VDA prediction model was
then developed to identify possible antiviral drugs against SARS-CoV-2.
The proposed VDA-KATZ method was compared with three state-of-the-
art association prediction methods, including SMiR-NBI [13], LRLSH-
MDA [14] and NGRHMDA [15]. The results showed that VDA-KATZ
obtained the best AUC of 0.8803 when the walking length is 2. Re-
mdesivir, oseltamivir, and zanamivir were predicted to be the top 3
small molecules associated with SARS-CoV-2.

Molecular docking is a theoretical simulation method to compute
the binding mode and affinity through electrostatic interactions [16],
hydrogen bond interactions [17], Van der Waals forces interactions
[18] and hydrophobic interactions [19] between molecules (for ex-
ample, ligands and receptors). Energy matching is the basis of the stable
combination between molecules. In this study, we further used Auto-
Dock, an open-source molecular simulation software, to measure mo-
lecular binding activities between the predicted top 10 antiviral drugs
and the SARS-CoV-2 spike protein [20]/human ACE2 [21]. The docking
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results suggested that the predicted top 3 chemical agents, with binding
energies of −7.4 kcal/mol, −4.73 kcal/mol, and − 5.48 cal/mol with
ACE2 respectively, may be the effective options to combat COVID-19.

2. Materials and methods

2.1. Materials

We considered 11 viruses similar to SARS-CoV-2 and obtained 96
VDAs between these 11 viruses and their associated 78 small molecular
drugs from the DrugBank [22], NCBI [23] and PubChem [24] data-
bases. These 96 VDA data is represented a matrix Am×n where Aij = 1 if
there is an association between the ith drug and jth virus, otherwise,
Aij = 0. Complete genomic sequence similarity matrix Kv of viruses was
computed using MAFFT, a multiple sequence alignment program [25].
Chemical structure similarity matrix Kd of small molecular drugs was
calculated using RDKit, an open-source cheminformatics tool [26]. The
detailed information is shown in Table 1.

Table 1
Viruses and drugs statistics.

Viruses No. of drugs Viruses No. of drugs

SARS-CoV 15 A-H1N1 4
MERS-CoV 9 A-H5N9 2
HIV-1 35 A-H7N9 4
HIV-2 3 Human Cytomegalovirus 6
HCV 15 Respiratory Syncytial Virus 2
Hendra Virus 1 SARS-CoV-2 0

Fig. 1. Flowchart of VDA prediction method based on KATZ.
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2.2. Method

2.2.1. Virus similarity matrix
Assume that the association profile of a virus is represented as a

binary vector used to encode whether there is an association between
the virus and all drugs in known VDA network, we further calculated
virus similarity matrix Gv based on GAPK. For a given virus vi, its as-
sociation profile AP(vi) is defined as the ith column of A. The GAPK
similarity Gv(vi,vj) between two viruses vi and vj is calculated by Eq. (1).

= − −G AP APv v γ v v( , ) exp( ‖ ( ) ( )‖ )v i j v i j
2 (1)

where = ′ ∑ =( )APγ γ v/ ‖ ( )‖v v n k
n

k
1

1
2 denotes the normalized core band-

width based on bandwidth parameter γv′, and n is the number of
viruses.

We integrated Kv and Gv to compute the final virus similarity matrix
Sv by Eq. (2):

= + −S G Kw w(1 )v v v1 1 (2)

where w1 is a parameter ranging from 0 to 1 and used to balance the
importance between the complete genomic sequence similarity and the
GAPK similarity.

2.2.2. Drug similarity matrix
Similarly, for a given drug di, its association profile AP(di) is defined

as the ith row of A. The GAPK similarity Gd(di,dj) between two drugs di
and dj is calculated by Eq. (3).

= − −G AP APd d γ d d( , ) exp( ‖ ( ) ( )‖ )d i j d i j
2 (3)

where = ′ ∑ =( )APγ γ d/ ‖ ( )‖d d m k
m

k
1

1
2 denotes the normalized core band-

width based on bandwidth parameter γd′, and m is the number of drugs.
We obtained the final drug similarity matrix Sd by Eq. (4):

= + −S G Kw w(1 )d d d2 2 (4)

where w2 is a parameter ranging from 0 to 1 and used to balance the
importance between the chemical structure similarity and the GAPK
similarity.

2.2.3. VDA-KATZ model
KATZ is a network-based association prediction method based on

the similarity of nodes in a heterogeneous network [27]. It uses the
traversal times and step sizes between nodes as effective similarity in-
dicators. Inspired by the KATZ method, we represented VDA identifi-
cation as a problem of computing the number of connection paths be-
tween viruses and drugs in the heterogeneous virus-drug networks and
then developed a new VDA prediction model, VDA-KATZ.

The details are shown in Fig. 1. First, virus similarity matrix Sv, drug
similarity matrix Sd and known VDA network A are integrated into a
heterogeneous network A∗:

= ⎡
⎣⎢

⎤
⎦⎥

∗A S A
A S

v
T

d (5)

Assume that l-length walks between vi and dj are computed by Al

(i, j). All different length walks were integrated to compute the asso-
ciation probabilities between n viruses and m drugs by Eq. (6):

∑= = − −
=

∗ ∗ −P A I A Iβ β( )
l

k
l l

1

1

(6)

where βl (l = 1,2,…,k) is a non-negative parameter and used to re-
strain the contribution of different walks. In addition, we represent the
association probability matrix P in Eq. (6) as the block matrix in Eq. (7):

= ⎡
⎣

⎤
⎦

P
P P
P P

11 12

21 22 (7)

where P11 denotes virus-virus association probability matrix, P12 de-
notes VDA probability matrix, P21 represents drug-virus association

probability matrix, and P22 represents drug-drug association probability
matrix.

The constructed VDA matrix is sparse and it is meaningless to
consider the long-length walks in a sparse network, therefore, we set k
as 2, 3 and 4 to measure the influence of k on the prediction perfor-
mance:

= + +=P A S A A Sβ β· ·( · · )k
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v
T T
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2 (8)
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Finally, based on the prediction results by KATZ, we conducted
molecular docking between the predicted top 10 small molecules and
the SARS-CoV-2 spike protein/human ACE2. Molecular binding en-
ergies are computed to evaluate the binding activities between these
small molecules and target proteins.

2.2.4. Evaluation metrics
In this study, we evaluated the performance of VDA-KATZ predic-

tion method based on 5-fold cross-validation. Accuracy, sensitivity,
specificity and AUC were used to evaluate these methods. Accuracy,
sensitivity, and specificity are defined as Eqs. (11)–(13).

= + + + +Accuracy TP TN TP TN FP FN( )/( ) (11)

= +Sensitivity TP TP FN/( ) (12)

= +Specificity TN TN FP/( ) (13)

where TP, FP, TN, and FN are defined as Table 2.
AUC is the area under the ROC curve. The curve can be plotted by

true positive rate (TPR, i.e., Eq. (14)) and false positive rate (FPR, i.e.,
Eq. (15)). When the AUC value is 1, it denotes the optimal performance.
When the AUC value is in the range of (0.5,1), the larger AUC re-
presents the better performance.

= +TPR TP TP FN/( ) (14)

= +FPR FP FP TN/( ) (15)

3. Results

3.1. Experimental settings

In this section, we conducted a series of experiments to measure the
performance of our proposed VDA-KATZ method based on 5-fold cross
validation. All known VDAs in VDA network were randomly divided
into 5 mutually exclusive and roughly equal subsets. In each round, four
subsets were used as train set and the remaining was applied to test the
performance of models. The experiment was repeated 100 times and
the final result was averaged over 5-fold results for these 100 trials. For
VDA-KATZ, SMiR-NBI [13], LRLSHMDA [14] and NGRHMDA [15], we
conducted grid search to obtain the optimal values of parameters. In
VDA-KATZ, we set the parameter β, w1, w2, γv′ and γd′ in the range of
[0,0.01,0.02,…, 0.1], [0,0.1,0.2,…,1], [0,0.1,0.2,…, 1], [0.5,1,1.5,
…,3] and [0.5,1,1.5,…,3]. When these parameters were set as
β = 0.04, w1 = w2 = 0.9 and γv′ = γd′ = 2.5, VDA-KATZ obtained the

Table 2
Confusion matrix.

True class = 1 True class = 0

Predicted class = 1 True Positive (TP) False Positive (FP)
Predicted class = 0 False Negative (FN) True Negative (TN)
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best performance. The parameter lw in LRLSHMDA was set as lw = 0.1
where LRLSHMDA obtained the optimal performance. The parameters
γd, γw, α and β in NGRHMDA were set as 0.5 where NGRHMDA can
better predict VDA candidates.

3.2. Performance comparison of different methods

To evaluate the prediction performance of our proposed VDA-KATZ
method, SMiR-NBI [13], LRLSHMDA [14] and NGRHMDA [15] were
compared to VDA-KATZ (k= 2). SMiR-NBI [13] was used to predict the
responses of anticancer drugs on a heterogeneous network by a net-
work-based method. LRLSHMDA [14] used a Laplacian regularized
least square classifier to find new microbe-disease associations.
NGRHMDA [15] was applied to microbe-disease association prediction
combining neighbor-based collaborative filtering and graph-based
scoring. The above three methods had achieved good performance in
the corresponding areas. The experimental results were shown in
Table 3. The best results were denoted in bold in each row in Table 3.

As shown in Table 3, VDA-KATZ obtained better AUC, accuracy, and
specificity in the above four methods. The AUC values of these four
methods are shown in Fig. 2. AUC is the average area under ROC (the
receiver operating characteristics) curve. The ROC curve can be plotted
by the ratio of true positive rate to false positive rate based on different
thresholds. True positive rate denotes the ratio of the predicted true
VDAs to all known VDAs. False positive rate represents the ratio of the
predicted false VDAs to all known negative VDAs. AUC was a more
important evaluation metric although its sensitivity was slight lower
than SMiR-NBI [13]. Therefore, VDA-KATZ can better discover antiviral
drugs against SARS-CoV-2.

3.3. Performance comparison of different walking lengths

We conducted extensive experiment to measure the effect of dif-
ferent walking lengths on the prediction performance. The results were
shown in Table 4. The best results were denoted in bold in each row in
Table 4. As shown in Table 4, although VDA-KATZ computed the best
accuracy of 0.8145 and specificity of 0.8203 when k = 3, it obtained
the best AUC of 0.8803 and sensitivity of 0.6976 when k = 2. Fig. 3
showed the AUC values of different walking lengths. AUC is a more
important measurement compared with other three evaluation metrics.
Larger AUC denotes the better prediction performance. The AUC value
obtained from VDA-KATZ when k = 2 is better than those of k = 3. We
found that larger walking lengths may result in slight lower prediction
performance in the constructed dataset. Therefore, we selected k = 2 as
the optimal walking length.

3.4. Case study

We further analyzed possible VDAs related to SARS-CoV-2 after
confirming the performance of VDA-KATZ. We predicted the top 10
antiviral drugs against SARS-CoV-2 when k= 2. The results were shown
in Table 5. Among the predicted top 10 antiviral drugs against SARS-
CoV-2, 8 chemical agents have been reported by recent publications,
that is, 80% small molecules are supported to be the clues of treatment
of COVID-19 by related works.

We found that remdesivir obtained the highest association score
with SARS-CoV-2. Remdesivir is a nucleoside analogue with antiviral
activity [28]. It has broad-spectrum activities against RNA viruses [29],
such as SARS and MERS [30–32], and has been tested in a clinical trial
for Ebola [33].

Oseltamivir is an antiviral neuraminidase inhibitor [34] and used to
prevent the infection of influenza A virus (for example, A-H1N1 [35]

Table 3
Performance comparison of different methods.

SMiR-NBI NGRHMDA LRLSHMDA VDA-KATZ

AUC 0.5721 0.5831 0.8303 0.8803
Accuracy 0.2080 0.5806 0.5841 0.6691
Sensitivity 0.8437 0.5305 0.6702 0.6976
Specificity 0.1935 0.5842 0.5823 0.6684

Fig. 2. Prediction performance of different methods.

Table 4
Performance comparison of different walking lengths.

k = 2 k = 3 k = 4

AUC 0.8803 0.8692 0.8573
Accuracy 0.6691 0.8145 0.8026
Sensitivity 0.6976 0.5615 0.5595
Specificity 0.6684 0.8203 0.8082
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and A-H5N1 [36]) and influenza B virus. It can prevent the germina-
tion, replication and infectivity of the virus in the host cell. More im-
portantly, oseltamivir combined with other drugs has been reported to
inhibit the infection of SARS-CoV-2 [37].

Zanamivir is an antiviral drug and neuraminidase inhibitor used to
the treatment of non-complex acute diseases caused by influenza A and
influenza B viruses [38]. The small molecule shows potential function
as 3CLPRO main proteinase inhibitor. It is likely to be applied to the
treatment of COVID-19 [39].

3.5. Molecular docking

We downloaded the chemical structures of the above 10 small
molecules and ACE2 from the DrugBank database and the RCSB Protein
Data Bank (ID:6 MJ0) [40]. The structure of the SARS-CoV-2 spike
protein was computed based on homologous modeling from zhanglab
[41]. We used AutoDock, an available bioinformatics tool, to conduct
molecular docking for the predicted antiviral drugs and the SARS-CoV-2
spike protein/ACE2. Search algorithm used genetic algorithm and grid
box selected the entire protein in AutoDock.

We computed the molecular binding energies of the predicted top
10 small molecules and the SARS-CoV-2 spike protein and ACE2. The
results were shown in Table 6. The results suggested that remdesivir has
high binding activities of −5.22 kcal/mol and − 7.4 kcal/mol with
these two proteins, followed by oseltamivir with −4.04 kcal/mol

and − 4.73 kcal/mol and zanamivir with −4.93 kcal/mol
and − 5.48 kcal/mol. More importantly, we predicted that zidovudine
has molecular binding energies of −6.54 kcal/mol and − 7.93 kcal/
mol. The drug is an effective HIV replication inhibitor. The chemical
agent can improve immune function, partially reverse HIV induced
neurological dysfunction, and other AIDS related clinical abnormalities
[42]. As an HIV nucleoside/nucleotide analogue reverse transcriptase
inhibitor, zidovudine is likely to be the clues of treatment of COVID-19
[43].

Figs. 4 and 5 show the molecular dockings of remdesivir, oselta-
mivir, zanamivir, and zidovudine with the SARS-CoV-2 spike protein/
human ACE2. Circle in each subfigure describes the binding site of the
drug with the target protein. For example, the amino acids L849, T827,
W1212, L144, and P504 were predicted to be the key residues for re-
mdesivir binding to the SARS-CoV-2 spike protein/ACE2 while A892,
K786, F438, and I291 were predicted as the key residues for zidovudine
binding to these two target proteins.

Fig. 3. AUC under different walking lengths.

Table 5
The predicted top 10 antiviral drugs against SARS-CoV-2 for k = 2.

Number Drugs References

1 Remdesivir PMID: 32127666, 32020029, 32023685,
32,022,370, 32,035,533, 31,971,553, 31,996,494

2 Oseltamivir PMID: 32034637
DOI:https://doi.org/10.1038/d41573-020-00016-0

3 Zanamivir PMID: 32294562
4 Ribavirin DOI:https://doi.org/10.1038/d41573-020-00016-0
5 Presatovir PMID: 32147628
6 Elvitegravir PMID: 32147628
7 Emtricitabine PMID: 32488835
8 Zidovudine DOI:10.26434/chemrxiv.12250199.v1
9 Laninamivir Unconfirmed
10 Peramivir Unconfirmed

Table 6
The molecular binding energies between the predicted top 10 antiviral drugs
and two target proteins.

Target proteins Drugs Binding energies

Spike protein Remdesivir −5.22
Oseltamivir −4.04
Zanamivir −4.93
Ribavirin −5.29
Presatovir −5.53
Elvitegravir −6.65
Emtricitabine −6
Zidovudine −6.54
Laninamivir −1.24
Peramivir −4.71

ACE2 Remdesivir −7.4
Oseltamivir −4.73
Zanamivir −5.48
Ribavirin −6.39
Presatovir −6.28
Elvitegravir −9.1
Emtricitabine −6.75
Zidovudine −7.93
Laninamivir −2.81
Peramivir −6.58
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4. Conclusions

COVID-19 is rapidly spreading around the world and it is urgent to
find effective treatment strategies. However, it is almost impossible to
develop a new antiviral drug against SARS-CoV-2 in such a short time.
Drug repositioning, aiming to find new uses for FDA-approved drugs,
provides new strategy. We can identify antiviral drugs applied in
COVID-19 by drug repositioning.

In our proposed VDA-KATZ method, we integrated complete
genomic sequences of viruses, chemical structures of small molecules,
and VDA network into a unified framework and developed a VDA
prediction method based on the KATZ model. The method is mainly
based on the assumption that similar drugs/viruses may associate with
the same or similar viruses (drugs). The originality of the proposed
method remains, identifying potential antiviral small molecules against
SARS-CoV-2 from FDA-approved drugs through new VDA prediction
based on drug repositioning. More importantly, VDA-KATZ integrated
topological features and different walking length in known VDA net-
work.

The comparative experiments showed better performance of VDA-
KATZ. We performed molecular docking for the predicted top 10 drugs
with the SARS-CoV-2 spike protein/ACE2. The results showed that re-
mdesivir, oseltamivir, and zanamivir have higher molecular binding
energy with these two target proteins. Higher AUC and molecular
binding energies suggested that the inferred chemical agents related to
SARS-CoV-2 are likely to be effective to combat COVID-19.
Interestingly, zidovudine was predicted as an antiviral drug against
SARS-CoV-2 although there is no works about its relationship with the
virus. In the future, we will further consider ensemble strategy [44] to

improve VDA prediction by integrating logistic matrix factorization
[45] and bipartite network projection [46]. We hope that our predic-
tion results may be helpful to prevent the rapid transmission of COVID-
19.

Data availability

Source code and dataset are freely available for download at
https://github.com/plhhnu/VDA-KATZ/.

Declaration of Competing Interest

Authors Geng Tian, Jialiang Yang, Qingqing Lu and Ruyi Dong were
employed by the company Geneis (Beijing) Co. Ltd. The remaining
authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be constructed as a
potential conflict of interest.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (Grant 61803151), the Natural Science Foundation
of Hunan province (Grant 2018JJ2461, 2018JJ3570). We are thankful
for help from Ming Kuang, and Longjie Liao from Hunan University of
Technology, Lebin Liang and Jidong Lang from Geneis (Beijing) Co.
Ltd., and Junlin Xu from Hunan University. We would like to thank all
authors of the cited references.

Fig. 4. Molecular docking between remdesivir, oseltamivir, zanamivir and zidovudine and the spike protein.

L. Zhou, et al. Genomics 112 (2020) 4427–4434

4432

https://github.com/plhhnu/VDA-KATZ/


Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.ygeno.2020.07.044.

References

[1] World Health Organization, WHO Director-General's Remarks at the Media Briefing
on 2019-nCoV on 11 February 2020, https://www.who.int/dg/speeches/detail/
who-director-general-s-remarks-at-the-media-briefing-on-SARS-CoV-2-on-11-
february-2020, (2020) (accessed 6th March 2020).

[2] World Health Organization, Coronavirus Disease (COVID-19): Situation Report-
147, https://www.who.int/docs/default-source/coronaviruse/situation-reports/
20200615-covid-19-sitrep-147.pdf?sfvrsn=2497a605_2, (2020) (accessed June
16th, 2020).

[3] C. Wu, Y. Liu, Y. Yang, P. Zhang, W. Zhong, Y. Wang, Q. Wang, Y. Xu, M. Li, X. Li,
M. Zheng, L. Chen, H. Li, Analysis of therapeutic targets for SARS-CoV-2 and dis-
covery of potential drugs by computational methods, J. Acta Pharm. Sin. B. 10 (5)
(2020) 766–788, https://doi.org/10.1016/j.apsb.2020.02.008.

[4] R. Yan, Y. Zhang, Y. Li, L. Xia, Y. Guo, Q. Zhou, Structural basis for the recognition
of the SARS-CoV-2 by full-length human ACE2, J. Sci. (2020), https://doi.org/10.
1126/science.abb2762.

[5] G. Simmons, J.D. Reeves, A.J. Rennekamp, S.M. Amberg, A.J. Piefer, P. Bates,
Characterization of severe acute respiratory syndrome-associated coronavirus
(SARS-CoV) spike glycoprotein-mediated viral entry, J. Proceed. Natl. Acad. Sci.
101 (12) (2004) 4240–4245, https://doi.org/10.1073/pnas.0306446101.

[6] The WHO MERS-CoV Research Group, State of knowledge and data gaps of Middle
East respiratory syndrome coronavirus (MERS-CoV) in humans, J. PLOS Curr.
Outbreaks 5 (2013), https://doi.org/10.1371/currents.outbreaks.
0bf719e352e7478f8ad85fa30127ddb8.

[7] World Health Organization, Q&A on Coronaviruses (COVID-19), https://www.who.
int/news-room/q-a-detail/q-a-coronaviruses, (2020) (accessed 15th Mar 2020).

[8] A. Anighoro, J. Bajorath, G. Rastelli, Polypharmacology: challenges and opportu-
nities in drug discovery, J. Med. Chem. 57 (19) (2014) 7874–7887, https://doi.org/

10.1021/jm5006463.
[9] W.K. Leung, K. To, P.K. Chan, H.L. Chan, A.K. Wu, N. Lee, K.Y. Yuen, J.J. Sung,

Enteric involvement of severe acute respiratory syndrome-associated coronavirus
infection, J. Gastroenterol. 125 (4) (2003) 1011–1017, https://doi.org/10.1016/j.
gastro.2003.08.001.

[10] E. De Wit, N. Van Doremalen, D. Falzarano, V.J. Munster, SARS and MERS: recent
insights into emerging coronaviruses, J. Nat. Rev. Microb. 14 (8) (2016) 523–534,
https://doi.org/10.1038/nrmicro.2016.81.

[11] J.S. Rossman, R.A. Lamb, Influenza virus assembly and budding, J. Virol. 411 (2)
(2011) 229–236, https://doi.org/10.1016/j.virol.2010.12.003.

[12] H. Lu, Drug treatment options for the 2019-new coronavirus (SARS-CoV-2), Biosci.
Trends. 14 (1) (2020) 69–71, https://doi.org/10.5582/bst.2020.01020.

[13] J. Li, K. Lei, Z. Wu, W. Li, G. Liu, J. Liu, F. Cheng, Y. Tang, Network-based iden-
tification of microRNAs as potential pharmacogenomic biomarkers for anticancer
drugs, J. Oncotarget. 7 (29) (2016) 45584–45596, https://doi.org/10.18632/
oncotarget.10052.

[14] F. Wang, Z. Huang, X. Chen, Z. Zhu, Z. Wen, J. Zhao, G. Yan, LRLSHMDA: Laplacian
regularized least squares for human microbe-disease association prediction, J. Sci.
Rep. 7 (1) (2017), https://doi.org/10.1038/s41598-017-08127-2 7601–7601.

[15] Y. Huang, Z. You, X. Chen, Z. Huang, S. Zhang, G. Yan, Prediction of microbe–-
disease association from the integration of neighbor and graph with collaborative
recommendation model, J. Transl. Med. 15 (1) (2017), https://doi.org/10.1186/
s12967-017-1304-7 209–209.

[16] F.S. Lee, A. Warshel, A local reaction field method for fast evaluation of long-range
electrostatic interactions in molecular simulations, J. Chem. Phys. 97 (5) (1992)
3100–3107, https://doi.org/10.1063/1.462997.

[17] M. Meyer, P.W. Wilson, D. Schomburg, Hydrogen bonding and molecular surface
shape complementarity as a basis for protein docking, J. Mol. Biol. 264 (1) (1996)
199–210, https://doi.org/10.1006/jmbi.1996.0634.

[18] H.L. Kramer, D.R. Herschbach, Combination rules for van der Waals force constants,
J. Chem. Phys. 53 (7) (1970) 2792–2800, https://doi.org/10.1063/1.1674404.

[19] P.L. Privalov, S.J. Gill, Stability of protein structure and hydrophobic interaction, J.
Adv. Protein Chem. 39 (1988) 191–234, https://doi.org/10.1016/S0065-3233(08)
60377-0.

[20] L.E. Gralinski, V.D. Menachery, Return of the coronavirus: 2019-nCoV, J. Viruses.
12 (2) (2020) 135, https://doi.org/10.3390/v12020135.

[21] Y. Zhao, Z. Zhao, Y. Wang, Y. Zhou, Y. Ma, W. Zuo, Single-cell RNA expression

Fig. 5. Molecular docking between remdesivir, oseltamivir, zanamivir and zidovudine and ACE2.

L. Zhou, et al. Genomics 112 (2020) 4427–4434

4433

https://doi.org/10.1016/j.ygeno.2020.07.044
https://doi.org/10.1016/j.ygeno.2020.07.044
https://www.who.int/dg/speeches/detail/who-director-general-s-remarks-at-the-media-briefing-on-SARS-CoV-2-on-11-february-2020
https://www.who.int/dg/speeches/detail/who-director-general-s-remarks-at-the-media-briefing-on-SARS-CoV-2-on-11-february-2020
https://www.who.int/dg/speeches/detail/who-director-general-s-remarks-at-the-media-briefing-on-SARS-CoV-2-on-11-february-2020
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200615-covid-19-sitrep-147.pdf?sfvrsn=2497a605_2
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200615-covid-19-sitrep-147.pdf?sfvrsn=2497a605_2
https://doi.org/10.1016/j.apsb.2020.02.008
https://doi.org/10.1126/science.abb2762
https://doi.org/10.1126/science.abb2762
https://doi.org/10.1073/pnas.0306446101
https://doi.org/10.1371/currents.outbreaks.0bf719e352e7478f8ad85fa30127ddb8
https://doi.org/10.1371/currents.outbreaks.0bf719e352e7478f8ad85fa30127ddb8
https://www.who.int/news-room/q-a-detail/q-a-coronaviruses
https://www.who.int/news-room/q-a-detail/q-a-coronaviruses
https://doi.org/10.1021/jm5006463
https://doi.org/10.1021/jm5006463
https://doi.org/10.1016/j.gastro.2003.08.001
https://doi.org/10.1016/j.gastro.2003.08.001
https://doi.org/10.1038/nrmicro.2016.81
https://doi.org/10.1016/j.virol.2010.12.003
https://doi.org/10.5582/bst.2020.01020
https://doi.org/10.18632/oncotarget.10052
https://doi.org/10.18632/oncotarget.10052
https://doi.org/10.1038/s41598-017-08127-2
https://doi.org/10.1186/s12967-017-1304-7
https://doi.org/10.1186/s12967-017-1304-7
https://doi.org/10.1063/1.462997
https://doi.org/10.1006/jmbi.1996.0634
https://doi.org/10.1063/1.1674404
https://doi.org/10.1016/S0065-3233(08)60377-0
https://doi.org/10.1016/S0065-3233(08)60377-0
https://doi.org/10.3390/v12020135


profiling of ACE2, the putative receptor of Wuhan SARS-CoV-2, J. bioRxiv. (2020),
https://doi.org/10.1101/2020.01.26.919985.

[22] D.S. Wishart, Y.D. Feunang, A.C. Guo, E.J. Lo, A. Marcu, J.R. Grant, T. Sajed,
D. Johnson, C. Li, Z. Sayeeda, N. Assempour, I. Iynkkaran, Y.F. Liu, A. Maciejewski,
N. Gale, A. Wiilson, L. Chin, R. Cummings, D. Le, A. Pon, C. Knox, M. Wlson,
DrugBank 5.0: a major update to the DrugBank database for 2018, J. Nucleic Acids
Res. 46 (D1) (2018) D1074–D1082, https://doi.org/10.1093/nar/gkx1037.

[23] D.L. Wheeler, D.M. Church, R. Edgar, S. Federhen, W. Helmberg, T.L. Madden,
J. Pontius, G.D. Schuler, L.M. Schriml, E. Sequeira, T.O. Suzek, T. Tatusova,
L. Wagner, Database resources of the national center for biotechnology information,
J. Nucleic Acids Res. 32 (1) (2004) 13–16, https://doi.org/10.1093/nar/gkh073.

[24] S. Kim, P.A. Thiessen, E.E. Bolton, J. Chen, G. Fu, A. Gindulyte, L.Y. Han, J. He,
S. He, B.A. Shoemaker, J. Wang, B. Yu, J. Zhang, S.H. Bryant, PubChem substance
and compound databases, J. Nucleic Acids Res. 44 (2016) 1202–1213, https://doi.
org/10.1093/nar/gkv951.

[25] K. Katoh, H. Toh, Recent developments in the MAFFT multiple sequence alignment
program, J. Brief. Bioinforma. 9 (4) (2008) 286–298, https://doi.org/10.1093/bib/
bbn013.

[26] G. Landrum, RDKit: Open-Source Cheminformatics. Release 2014.03.1, (2014),
https://doi.org/10.5281/zenodo.10398.

[27] L. Katz, A new status index derived from sociometric analysis, J. Psychometrika. 18
(1) (1953) 39–43, https://doi.org/10.1007/BF02289026.

[28] M. Wang, R. Cao, L. Zhang, X. Yang, J. Liu, M. Xu, Z. Shi, Z. Hu, W. Zhong, G. Xiao,
Remdesivir and chloroquine effectively inhibit the recently emerged novel cor-
onavirus (2019-nCoV) in vitro, J. Cell Res. 30 (2020) 269–271, https://doi.org/10.
1038/s41422-020-0282-0.

[29] C.J. Gordon, E.P. Tchesnokov, J.Y. Feng, D. Porter, M. Gotte, The antiviral com-
pound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle
East respiratory syndrome coronavirus, J. Biol. Chem. (2020), https://doi.org/10.
1074/jbc.AC120.013056.

[30] V. Yethindra, Role of GS-5734 (Remdesivir) in inhibiting SARS-CoV and MERS-CoV:
The expected role of GS-5734 (Remdesivir) in COVID-19 (2019-nCoV)-VYTR hy-
pothesis, Int. J. Res. Pharm. Sci. 11 (SPL1) (2020) 1–6, https://doi.org/10.26452/
ijrps.v11ispl1.1973.

[31] T. Sheahan, A.C. Sims, S.R. Leist, A. Schafer, J. Won, A.J. Brown, S.A. Montgomery,
A. Hogg, D. Babusis, M.O. Clarke, J.E. Spahn, L. Bauer, S. Sellers, D. Porter,
J.Y. Feng, T. Cihlar, R.E. Jordan, M.R. Denison, R.S. Baric, Comparative therapeutic
efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta
against MERS-CoV, J. Nat. Commun. 11 (1) (2020) 222, https://doi.org/10.1038/
s41467-019-13940-6.

[32] N.C. Peeri, N. Shrestha, M.S. Rahman, R. Zaki, Z. Tan, S. Bibi, M. Baghbanzadeh,
N. Aghamohammadi, W. Zhang, U. Haque, The SARS, MERS and novel coronavirus
(COVID-19) epidemics, the newest and biggest global health threats: what lessons
have we learned? Int. J. Epidemiol. (2020), https://doi.org/10.1093/ije/dyaa033.

[33] E.P. Tchesnokov, J.Y. Feng, D. Porter, M. Gotte, Mechanism of inhibition of Ebola

virus RNA-dependent RNA polymerase by remdesivir, J. Viruses. 11 (4) (2019) 326,
https://doi.org/10.3390/v11040326.

[34] DrugBank, Oseltamivir: Description, https://www.drugbank.ca/drugs/DB00198,
(2020) (accessed 1th July 2020).

[35] A. Meijer, A. Lackenby, O. Hungnes, B. Lina, S.V. Der Werf, B. Schweiger, M. Opp,
J. Paget, J.V. De Kassteele, A. Hay, M. Zambon, Oseltamivir-resistant influenza
virus A (H1N1), Europe, 2007/08 season, J. Emerg. Infect. Dis. 15 (4) (2009)
552–560, https://doi.org/10.3201/eid1504.081280.

[36] M.D. De Jong, T.T. Thanh, T.H. Khanh, V.M. Hien, N.V. Chau, B. Van Cam, P.T. Qui,
Y. Guan, T.T. Hien, J. Farrar, Oseltamivir resistance during treatment of influenza a
(H5N1) infection, N. Engl. J. Med. 353 (25) (2005) 2667–2672, https://doi.org/10.
1056/NEJMoa054512.

[37] Z. Zhang, X. Li, W. Zhang, Z. Shi, Z. Zheng, T. Wang, Clinical features and treatment
of 2019-nCov pneumonia patients in Wuhan: report of a couple cases, J. Virol. Sin.
(2020) 1–7, https://doi.org/10.1007/s12250-020-00203-8.

[38] DrugBank, Zanamivir: Pharmacodynamics, https://www.drugbank.ca/drugs/
DB00558, (2020) (accessed 1th July 2020).

[39] D.C. Hall Jr., H.F. Ji, A search for medications to treat COVID-19 via in silico
molecular docking models of the SARS-CoV-2 spike glycoprotein and 3CL protease,
Travel Med. Infect. Dis. 35 (2020) 101646, https://doi.org/10.1016/j.tmaid.2020.
101646.

[40] H.M. Berman, T. Battistuz, T.N. Bhat, W.F. Bluhm, P.E. Bourne, K. Burkhardt,
Z. Feng, G.L. Gilliland, L. Iype, S. Jain, P. Fagan, J. Marvin, D. Padilla,
V. Ravichandran, B. Schneider, N. Thanki, H. Weissig, J.D. Westbrook, C. Zardecki,
The protein Data Bank, J. Acta Crystallogr. Sec. D-Biol. Crystallogr. 58 (6) (2002)
899–907, https://doi.org/10.1107/S0907444902003451.

[41] Zhanglab, C-I-TASSER 2019-nCov, https://zhanglab.ccmb.med.umich.edu/C-I-
TASSER/2019-nCov/, (2020) (accessed 6th June 2020).

[42] DrugBank, Zidovudine: Description, https://www.drugbank.ca/drugs/DB00495,
(2020) (accessed 1th July 2020).

[43] D.C. Copertino Jr., B. Lima, R. Duarte, T. Wilkin, R. Gulick, M.D. Mulder Rougvie,
D. Nixon, Antiretroviral drug activity and potential for pre-exposure prophylaxis
against COVID-19 and HIV infection, chemRxiv (2020), https://doi.org/10.26434/
chemrxiv.12250199.v1.

[44] H. Hu, L. Zhang, H. Ai, H. Zhang, Y. Fan, Q. Zhao, H. Liu, HLPI-Ensemble:
Prediction of human lncRNA-protein interactions based on ensemble strategy, RNA
Biol. 15 (6) (2018) 797–806, https://doi.org/10.1080/15476286.2018.1457935.

[45] H. Liu, G. Ren, H. Chen, Q. Liu, Y. Yang, Q. Zhao, Predicting lncRNA-miRNA in-
teractions based on logistic matrix factorization with neighborhood regularized,
Knowl. Based Syst. 191 (2020) 105261, https://doi.org/10.1016/j.knosys.2019.
105261.

[46] Q. Zhao, H. Yu, Z. Ming, H. Hu, G. Ren, H. Liu, The Bipartite Network Projection
Recommended Algorithm for predicting long noncoding RNA–protein interactions,
Mol. Therapy-Nucleic Acids 13 (2018) 464–471, https://doi.org/10.1016/j.omtn.
2018.09.020.

L. Zhou, et al. Genomics 112 (2020) 4427–4434

4434

https://doi.org/10.1101/2020.01.26.919985
https://doi.org/10.1093/nar/gkx1037
https://doi.org/10.1093/nar/gkh073
https://doi.org/10.1093/nar/gkv951
https://doi.org/10.1093/nar/gkv951
https://doi.org/10.1093/bib/bbn013
https://doi.org/10.1093/bib/bbn013
https://doi.org/10.5281/zenodo.10398
https://doi.org/10.1007/BF02289026
https://doi.org/10.1038/s41422-020-0282-0
https://doi.org/10.1038/s41422-020-0282-0
https://doi.org/10.1074/jbc.AC120.013056
https://doi.org/10.1074/jbc.AC120.013056
https://doi.org/10.26452/ijrps.v11ispl1.1973
https://doi.org/10.26452/ijrps.v11ispl1.1973
https://doi.org/10.1038/s41467-019-13940-6
https://doi.org/10.1038/s41467-019-13940-6
https://doi.org/10.1093/ije/dyaa033
https://doi.org/10.3390/v11040326
https://www.drugbank.ca/drugs/DB00198
https://doi.org/10.3201/eid1504.081280
https://doi.org/10.1056/NEJMoa054512
https://doi.org/10.1056/NEJMoa054512
https://doi.org/10.1007/s12250-020-00203-8
https://www.drugbank.ca/drugs/DB00558
https://www.drugbank.ca/drugs/DB00558
https://doi.org/10.1016/j.tmaid.2020.101646
https://doi.org/10.1016/j.tmaid.2020.101646
https://doi.org/10.1107/S0907444902003451
https://zhanglab.ccmb.med.umich.edu/C-I-TASSER/2019-nCov/
https://zhanglab.ccmb.med.umich.edu/C-I-TASSER/2019-nCov/
https://www.drugbank.ca/drugs/DB00495
https://doi.org/10.26434/chemrxiv.12250199.v1
https://doi.org/10.26434/chemrxiv.12250199.v1
https://doi.org/10.1080/15476286.2018.1457935
https://doi.org/10.1016/j.knosys.2019.105261
https://doi.org/10.1016/j.knosys.2019.105261
https://doi.org/10.1016/j.omtn.2018.09.020
https://doi.org/10.1016/j.omtn.2018.09.020

