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Abstract: In humans, oxidative stress is involved in the development of diabetes, cancer, hypertension, Alzheimers’ disease,
and heart failure. One of the mechanisms in the cellular defence against oxidative stress is the activation of the Nrf2-antioxidant
response element (ARE) signalling pathway. Computation of activity, efficacy, and potency score of ARE signalling pathway and
to propose a multi-level prediction scheme for the same is the main aim of the study as it contributes in a big amount to the
improvement of oxidative stress in humans. Applying the process of knowledge discovery from data, required knowledge is
gathered and then machine learning techniques are applied to propose a multi-level scheme. The validation of the proposed
scheme is done using the K-fold cross-validation method and an accuracy of 90% is achieved for prediction of activity score for

ARE molecules which determine their power to refine oxidative stress.

1 Introduction

Stress is broadly defined as a noxious factor (physical, chemical or
biological), which triggers a series of cellular and systemic events,
resulting in the restoration of cellular and organismal homeostasis
[1]. To cope with conditions of stress, organisms have developed
stress response mechanisms, acting at the cellular or organelle-
specific level. The cellular stress response is a wide range of
molecular changes that cells undergo in response to environmental
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stressors including extremes of temperature, exposure to toxins and
mechanical damage [2-4].

Cellular stress responses are primarily mediated through what
are classified as stress proteins. The cellular stress response
pathway is based on the induction of cytoprotective proteins the so-
called stress proteins [S]. One such signalling pathway is Nrf2-
antioxidant response element (ARE) signalling pathway [6].

The ARE possesses structural and biological features that
characterise its unique responsiveness to oxidative stress. It is
activated not only in response to HyO, but specifically by chemical
compounds with the capacity to either undergo redox cycling or be
metabolically transformed to a reactive or electrophilic
intermediate as shown in Fig. 1 [7].

The process of oxidation in the human body damages cell
membranes and other structures including cellular proteins, lipids,
and DNA. When oxygen is metabolised, it creates free radicals,
which steal electrons from other molecules, causing damage [8].

Oxidative stress is essentially an imbalance between the
production of free radicals and the ability of the body to counteract
or detoxify their harmful effects through neutralisation by
antioxidants as shown in Fig. 2.

A major mechanism in the cellular defence against oxidative or
electrophilic stress is the activation of the Nrf2-ARE signalling
pathway, which controls the elimination of reactive oxidants by
enhancing cellular antioxidant capacity [7].

Oxidative stress has been implicated in the pathogenesis of a
variety of diseases ranging from cancer to neurodegeneration [9].
The ARE signalling pathway plays an important role in the
amelioration of oxidative stress as shown in Fig. 3.

Machine learning (ML) provides methods, techniques, and tools
that can help to solve diagnostic and prognostic problems in a
variety of medical domains [10]. ML is being used for the analysis
of the importance of clinical parameters and their combinations for
prognosis, e.g. prediction of disease progression, extraction of
medical knowledge for outcome research, therapy planning, and
support and for the overall patient management [11].

ML methods can help the integration of computer-based
systems in the health care environment providing opportunities to
facilitate and enhance the work of medical experts and ultimately
to improve the efficiency and quality of medical care [12]. ML is
already being used in the field of genomics [13]. Modern biology
allows the high-throughput measurement of many cell variables,
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Fig. 3 Nrf2-antioxidant signalling pathway

including gene expression, splicing, and proteins binding to nucleic
acids [10].

Over the past several decades, ML tools, such as quantitative
structure activity relationship modelling, were developed that can
identify potential biological active molecules from millions of
candidate compounds quickly and cheaply [14]. Computational
tools have been developed and applied to drug discovery as cost-
effective alternatives to traditional experiment protocols. The
accurate identification of new hits from large chemical libraries by
computational models is desirable for the pharmaceutical industry
because it can reduce the costs and time associated with
experiments needed to obtain new drug candidates with optimised
pharmacodynamics and pharmacokinetic properties [15]. ML has
been used to predict levels of oxidative stress in human subjects
[16].

Computational strategies have been used to generate novel
molecules with good affinity to the desired biological target [17].
Numerous ML techniques such as neural networks, support vector
machines (SVMs), random forests etc., have been used in the past
for detecting drugs useful in curing diseases [18]. Small-molecule
drug discovery has been viewed as a challenging multidimensional
problem in which various characteristics of compounds including
efficacy, pharmacokinetics, and safety need to be optimised in
parallel to provide drug candidates and for such tasks, artificial
intelligence tools have been proved to be handy [19].

Molecular classification using ML has been in trend for the past
many years. Conotoxins are disulphide-rich small peptides, which
are invaluable peptides that target ion channel and neuronal
receptors. Conotoxins have been demonstrated as potent
pharmaceutical in the treatment of a similar kind of disease as
targeted by ARE, such as Alzheimers’ disease, Parkinson's disease,
and others. ML-based computational tool for efficiently and
effectively recognising conotoxin types based on sequence
information has been used in [20]. Similarly, a novel method based
on binomial distribution and radial basis function network to
predict the types of ion-channel targeted conotoxins have been
presented here [21].

In another research, an evaluation platform was developed
using novel and statistically robust ternary models via different ML
models (i.e. linear discriminant analysis, classification and
regression tree, and SVMs). The platform is aimed at effectively
classifying chemicals with agonistic, antagonistic, or no oestrogen
receptor activities [22].

Looking at the role of ML in the medical domain, it motivates
us to use ML methods and algorithms that can be applied to
calculate the activity of ARE signalling pathway as it has already
been used to predict oxidative stress in chronic inflammatory
diseases [16].

The aim of this study is to propose a multi-level prediction
scheme to calculate the activity score, potency score, and efficacy
score of ARE stress signalling pathway, which contributes in a big
amount to the improvement of oxidative stress in humans.

2 Materials and methods
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2.1 Data set and its features

The Knowledge Discovery from Database generally abbreviated as
KDD process is a data mining process of discovering interesting
knowledge from a large amount of data stored in databases or other
information repositories [23]. The KDD process consists of an
iterative sequence of the following steps:

» Data integration: where multiple data sources may be combined

» Data cleaning: to remove noise and inconsistent data

e Data selection: where data relevant to the analysis task is
retrieved from the database

» Data mining: an essential process where intelligent methods are
applied in order to extract patterns

* Knowledge representation: to visualise the knowledge so
obtained

The unbalanced dataset chosen in the study consists of active and
inactive molecules of the ARE stress response pathway has been
taken from [24]. These are available in the form of .sdf file
extension format and data with features were extracted from the
same using the tool PaDEL Descriptor [25]. PaDEL is a software
to calculate molecular descriptors and fingerprints.

The data so decoded using the defined tool consists of 1444 1D
and 2D features and decoded value is noted in a file. The brief
description of a few features is given in Table 1.

Activity information of total 10,486 molecules was chosen,
which include active, inactive and inconclusive molecules. Inactive
molecules have an activity score as 0, inconclusive molecules do
have an activity score of 30 and active molecules do have their
activity score ranging from 40 to 100 (integral value). Both
inconclusive and active molecules have their potency varying from
0 to 68.59 and efficacy score ranging from 15 to 490 were
inconclusive molecules generally lie on the lower side of the band
and opposite for the active molecules [26].

2.2 Data pre-processing

Preprocessing the data chosen for study include some phases of the
KDD process and some other important techniques described
briefly below.

2.2.1 Data integration: The chosen data include two databases
one having the data related to active molecules while another
having inactive molecules. Both the databases were then merged to
get a single large database, which can be used for model building
and training process in subsequent phases. After this phase, the
dataset consists of 7149 tuples and 1444 attributes.

222 Dimensionality reduction using
FSelector: Dimensionality reduction or feature selection is the
process of narrowing down a subset of features or attributes to be
used in the predictive modelling process [27]. Feature selection is
useful on a variety of fronts: it is the best weapon against the curse
of dimensionality.

In this study, the FSelector [28] is available under License
GPL-2 and defines functions for selecting attributes from a given
dataset. Attribute subset selection is the process of identifying and
removing as much of the irrelevant and redundant information as
possible. The formula representing target as an equivalent of
selected attributes is shown as

Activity = f(naAromAtom, ATSOm, AATS7v, ...,
n3HeteroRing, VR3_D, AMW)

The filter method for feature selection used here is cfs [29], in
which the algorithm finds attribute subset using correlation and
entropy measures for continuous and discrete data. The algorithm
makes use of bestfirst—search for searching the attribute subset
space. Doing dimensionality reduction the dataset now contains
7149 records having 27 attributes.
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Table 1 Molecular descriptors calculated by PaDEL

Descriptor type Descriptor ID Class
AcidicGroupCount nAcid 2D
ALOGP ALogP, ALogP2, AMR 2D
APol Apol 2D
aromatic atoms count naAromAtom 2D
aromatic bonds count nAromBond 2D

atom count nAtom, nHeavyAtom, nH, nB, 2D
nC, nN, nO, nS, nP, nF, nCl,
nBr, nl
BasicGroupCount nBase 2D
BondCount nBonds, nBonds2, nBondsS, 2D
nBondsS2, nBondsS3,
nBondsD, nBondsD2, nBondsT,
nBondsQ
BPol Bpol 2D
carbon types C1SP1, C2SP1, C1SP2, 2D

C2SP2, C3SP2, C1SP3,
C2SP3, C3SP3, C4SP3

HBondAcceptorCount nHBAcc, nHBAcc2, nHBAcc3, 2D
nHBAcc_Lipinski
HBondDonorCount nHBDon, nHBDon_Lipinski 2D
LargestChain nAtomLC 2D
LargestPiSystem nAtomP 2D
LongestAliphaticChain nAtomLAC 2D
MannholdLogP MLogP 2D
McGowanVolume McGowan_Volume 2D
MLFER MLFER_A, MLFER_BH, 2D
MLFER_BO, MLFER_S,
MLFER_E, MLFER_L
ring count nRing, n3Ring, n4Ring, n5Ring, 2D
n6Ring, n7Ring, n8Ring,
n9Ring, n10Ring, n11Ring,
n12Ring, nG12Ring, nFRing,
nF4Ring, nF5Ring, nF6Ring,
nF7Ring, nF8Ring, nF9Ring,
nF10Ring, nF11Ring,
nF12Ring, NFG12Ring, nTRing,
nT4Ring, nT5Ring, nT6Ring,
nT7Ring, nT8Ring, nT9Ring,
nT10Ring, nT11Ring,
nT12Ring, nTG12Ring
rotatable bonds count nRotB 2D
rule of five LipinskiFailures 2D
topological polar surface TopoPSA 2D
area
van der Waals volume VABC 2D
weight MwW 2D
XLogP XLogP 2D
charged partial surface PPSA-1, PPSA-2, PPSA-3, 3D
area PNSA-1, PNSA-2, PNSA-3,

DPSA-1, DPSA-2, DPSA-3,

FPSA-1, FPSA-2, FPSA-3,

FNSA-1, FNSA-2, FNSA-3,
WPSA-1, WPSA-2, WPSA-3,
WNSA-1, WNSA-2, WNSA-3,

RPCG, RNCG, RPCS, RNCS,

THSA, TPSA, RHSA, RPSA

MOMI-X, MOMI-Y, MOMI-Z, 3D
MOMI-XY, MOMI-XZ, MOMI-

YZ, MOMI-R
Hierarchal element countsRings fingerprint
in a canonic extended smallest
set of smallest rings ring
setSimple atom pairsSimple
atom nearest
neighboursDetailed atom
neighbourhoodsSimple
SMARTS patternsComplex
SMARTS patterns

moment of inertia

Pubchem fingerprint
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2.2.3 Data cleaning by removing missing values: The data so
obtained is not clean in the sense that it consists of missing values.
The tuples having missing values are ignored for further
consideration. This is usually done when a class label is missing or
some attributes’ value is not defined. After this phase, the dataset
consists of 6504 records and 27 attributes. In this dataset, 1084
records are active molecules and 5420 are inactive molecules.

2.2.4 Balancing the dataset: Imbalanced class distribution is a
scenario where the number of observations belonging to one class
is significantly lower than those belonging to the other class. Same
is the problem with the dataset in hand, as molecules which are
active (minority class) are far less in number compared to inactive
molecules (majority class). To handle this problem two techniques
are applied:

e Oversampling: It was done by increasing the frequency of
minority class (active molecules). The synthetic minority over-
sampling technique (SMOTE) algorithm is one of the first and
still the most popular algorithmic approach to generating new
dataset samples. The algorithm works by oversampling the
underlying dataset with new synthetic points [30]. The SMOTE
algorithm is parameterised with k-neighbours and the number of
new points you wish to create. Each step of the algorithm will

(1) Randomly select a minority point.

(i) Randomly select any of its k-neighbours belonging to the
same class.

(iii) Randomly specify a lambda value (constant required during
the procedure) in the range [0, 1].

(iv) Generate and place a new point on the vector between the
two points, located lambda per cent of the way from the original
point.

* The detailed algorithmic steps are mentioned in [30]. Chose -
neighbours as 50 and number of new points to be created as
4336.

* Applying the oversampling technique, only 4336 new entities
have been created during oversampling so that minority and
majority classes come equally in number. The dataset is divided
into five balanced sub-datasets as entities belonging to the
majority class are five times in number as compared to minority
class entities.

» Each sub-dataset having an equal number of active and inactive
molecules to train the prediction model and then ensemble the
results to get an overall final prediction.

* Undersampling: It was done by decreasing the frequency of the
majority class (inactive molecules.) Applying the undersampling
technique, the dataset is chosen by randomly selecting majority
class samples equal in number as that of minority class samples,
S0 as to get a balanced dataset.

2.3 ML methods

In this work, six ML models are used for prediction of the activity
of various molecules. All five sub-datasets after balancing are
trained using these models and an overall consensus is derived
using the ensembling technique with equal weightage given to
results obtained from every sub dataset [31]. The models are
available in R open source software. R is licensed under GNU
GPL. These models used with available package in R statistical
tool along with their tuning parameters are shown in Table 2.

3 Methodology
The methodology followed by the proposed model is as follows:

» Data acquisition from [24].
» Feature extraction using PADEL descriptor [25].
» Data preprocessing using KDD process.

LEVEL 1:
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Table 2 ML models used for classification of molecules

Model Method Package Tuning Parameter(s) Ref.
M1 ada boost ada kernlab, rpart, ada, hmeasure maxdepth, cp, minsplit, xval, iter [32]
M2 decision tree rpart rpart, hmeasure parms, control [33]
M3 linear model multinom car, nnet, hmeasure maxit [34]
M4 neural network nnet nnet, hmeasure size, MaxNWTs, maxit [35]
M5 random forest randomForest randomForest, hmeasure ntree, mtry [36]
M6 SVM ksvm e1071, kernlab, heasure rules, pruned, kernel [37]

New molecule |

| Inactive molecule |«

| Active Molecule |

| Activity Score

v
__—Regression —__

.. _VVTechnique_v e #\ Potency Score

v

| Efficacy Score |

Fig. 4 Multi-level proposed prediction scheme for new molecules

» Training ML models for binary classification of the dataset into
two classes (active or inactive).

» Testing trained models in the above step and evaluate using
evaluation parameters for classification and in last, to find out
the best model.

LEVEL 2:

» Training ML models for regression dataset of activity, potency
and efficacy scores.

 Testing the proposed scheme.

* Result analysis.

For any new molecule, the work flow to find its class (active or
inactive) using classification and then its activity, potency and
efficacy score using the regression model would be as shown in
Fig. 4.

4 Model evaluation parameters

Ideally, the estimated performance of a model tells how well it
performs on unseen data, i.e. making predictions on future data.
Various performance measures are

(1) Receiver operating characteristics (ROC)
(i1) H-measure (H)

(iii) Gini coefficient (G)

(iv) Accuracy

(v) Correlation

(vi) Coefficient of determination (R2)

4.1 Receiver operating characteristic (ROC)

The ROC curve, which is defined as a plot of test sensitivity
(=TPR) as the y-coordinate versus its 1-specificity (=FPR) as the x
coordinate is an effective method of evaluating the performance of
diagnostic tests. Sensitivity and specificity, which are defined as

sensitivity = TP/(TP 4 FN) €))
specificity = TN/(FP + TN) 2
where TP is the number of true positive decisions, TN is the

number of true negative decisions, FN is the number of false
negative decisions and FP is the number of false positive decisions.
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Several summary indices are associated with the ROC curve.
One of the most popular measures is the area under the curve
(AUC). AUC is a combined measure of sensitivity and specificity.

In binary classification, the class prediction for each instance is
often made based on a continuous random variable X, which is a
‘score’ computed for the instance. Given a threshold parameter 7,
the instance is classified as ‘positive’ if X > T and ‘negative’
otherwise. X follows a probability density f,(x) if the instance
actually belongs to class ‘positive’, and f,(x) if otherwise.
Therefore, the true positive rate is given by:

TPR(T) = / Si(x)dx 3
T
and the false positive rate is given by:

FPR(T) = f ” Fox)dx 4
T

The ROC curve plots parametrically TPR(7) versus FPR(7) with T
as the varying parameter.

The AUC is given by (the integral boundaries are reversed as
large T has a lower value on the x-axis):

A= / _OOTPR(T)d(FPR(T)) 5)

It is used as an evaluation parameter for classification models.

4.2 H-measure

The H-measure is a measure of classification performance
proposed in [38].

The threshold parameter 7 (as mentioned in Section 4.1) allows
the end user to ‘tune’ a classier in order to trade-off FPs for FNs or
vice versa. An extreme example is where one classifies all objects
as positive, for T = — oo regardless of their description, enabling
one to never ‘miss a case’ (FN =0), at the cost of a large number of
‘false alarms’(high FP). Conversely, for 7' = oo, no objects will
ever be classified as positive, forcing FP = 0 at the cost of incurring
a maximum number of FNs.

The AUC has come under criticism for handling the
aforementioned trade-off in a fundamentally incoherent manner, in
the sense that it treats the relative severities of misclassifications
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differently when different classifiers are used. A coherent
alternative proposed known as the H-measure that can optionally
accommodate expert knowledge regarding misclassification costs,
whenever that is available [38].

Most of the metrics discussed in Section 4.1 attempt to take a
balanced view of the trade-off between FPs and FNs. A principled
way to achieve this is to introduce the notion of misclassification
costs, which seek to quantify the relative severity of one type of
error over the other. Let ¢ in [0,1] denote the ‘cost’ of
misclassifying a class 0 object as class 1 (i.e. FP), and 1 — ¢ the
cost of misclassifying a class 1 object as class 0 (i.e. FN). Let the
total cost be denoted by

L(c;T) ©6)

It is realistic to specify a distribution instead, w(c), over different
values of ¢, capturing the end user's uncertainty about the exact
values of the costs

L, = / L(c; T)w(c)dc (7

This notion of averaged minimum cost-weighted loss allows
formulating a criticism of the AUC which in turn motivates the H-
measure.

The H-measure can be calculated from here as

L,
L\l:/‘la)(

H=1-

®)

where Ly represents the max value of L.

4.3 Gini coefficient

Gini coefficient (G) is a measure of statistical dispersion and
inequality in the distribution is measured through the Gini
coefficient. It is closely related to the AUC as

AUC = (G+ 1)/2 )
It is used as an evaluation parameter for classification models.

4.4 Accuracy

The accuracy is calculated as the percentage deviation of predicted
value (p) with the actual value (a) for n number of observations

100
Accuracy = Tizl qi
- 10
1 if p=g (10)

4= 0 otherwise

It is used as an evaluation parameter for classification models.
While the formula for finding the accuracy of the regression model
is

100 ¢
Accuracy = T,-Z:l qi
- an
1 if abs(p; — a;) < error

qi = .
" 10 otherwise

4.5 Correlation (r)

The relationship between two sets of variables used to describe or
predict information is known as correlation. It is the degree to
which the change in a set of variables is related. It is calculated as

L nyay—Yx¥y
VnZ2 = (T2 [n Xy = (Zy)]

IET Syst. Biol., 2019, Vol. 13 Iss. 5, pp. 243-250

(12)

where 7 is the number of observations, x is the actual value and y is
the predicted value. It is used as an evaluation parameter for
regression models.

4.6 Coefficient of determination (R?)

The coefficient of determination (R2) summarises the explanatory
power of the regression model for target value or data point y by
the predictor x is computed from the sums-of-squares terms

._SSR _ . SSE
R=35st=1-3sT (13)
where

* SSR is the ‘regression sum of squares’ and quantifies how far
the estimated regression line, y’, is from the sample mean or y

SSR= (' =)

* SSE is the ‘error sum of squares’ and quantifies how much the
data points, y, vary around the estimated regression line, y’

SSE= ) (v-y

» SST is the ‘total sum of squares’ and quantifies how much the
data points, y, vary around their mean, y

SST= Y (y-3)

R? describes the proportion of variance of the dependent
variable explained by the regression model. If the regression model
is perfect, SSE is zero, and R? is 1. If the regression model is a total
failure, SSE is equal to SST, no variance is explained by the
regression, and R? is zero. It is used as an evaluation parameter for
regression models.

5 K-fold cross validation

A large number of comparisons are always preferred to compare
the performance of the model. To run K-fold cross validation
multiple times or increase the number of comparisons, repeated K-
fold cross validation is useful. In K-fold cross-validation, only &
comparisons are performed. In cross-validation, in each fold,
random data is provided to do the comparisons. Here, ten-fold
cross-validation is repeated for three times.

6 Results

The ML models used for binary classification as described in
Table 2 are trained on the dataset obtained from [24] and evaluated
for the parameters discussed in Section 4. These parameters of
various models calculated for the dataset used in the study are
shown in Table 3.

It can be easily analysed from Tables 3 and 4 that the random
forest model outperforms all other models for the dataset chosen in
the study, with the highest AUC (0.8608 and 0.862), H-measure
(0.47 and 0.451), Gini coefficient (0.7216 and 0.723) and accuracy
(72% and 79.2%) (respectively, in oversampling and under-
sampling results). In terms of accuracy, the random forest model is
then followed by Ada boost (62.5% and 75.0%) and SVM (55%
and 72.29%).

The ROC curves for all the models used in the study are shown
in Figs. 5 and 6. A test with perfect discrimination (no overlap in
the two distributions) has a ROC curve that passes through the
upper left corner (100% sensitivity, 100% specificity). Therefore
the closer the ROC curve is to the upper left corner, the higher the
overall accuracy of the test.

The accuracy of other classifiers is low compared to the random
forest classifier. However, measures such as sensitivity and
specificity are also important criteria in developing models for
imbalanced datasets. Hence, the ROC curves of other classifiers
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Fig. 5 ROC curves of models used for binary classification by oversampling
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Fig. 6 ROC curves of models used for binary classification by under-
sampling

need to be compared to the ROC curve for the random forest. ROC
curves for all the models used are shown in Figs. 5 and 6 using a

colouring scheme mentioned in graphs. It can be analysed from the
curves that the random forest's curve is most upper left compared
to curves of other models in nearly all the graphs.

Attributing to the same characteristic of the graphs, it can be
analysed from Fig. 5 using Table 5 that ROC curve of the random
forest with maximum AUC is obtained for Fig. 5a followed by
Figs. 5b, e, d and ¢, which implies the order of how well trained the
obtained models are on the dataset considered for oversampling.

Chosen dataset enlist both active and inactive molecules. Using
classification technique of ML, it is concluded that for a dataset of
ARE molecules random forest model is the best model with the
highest accuracy to predict the class of activity for any new
molecule to be tested.

Table 6 describes the average root-mean-square error (RMSE),
R? and mean absolute error (MAE) of the proposed model. The
RMSE has been recorded by applying ten-fold cross-validation
three times.

Table 3 Evaluation results of models used for binary classification by oversampling

Model AUC H-measure Gini Accuracy, %
M1 ada boost 0.849 0.4328 0.6976 62.5
M2 decision tree 0.7502 0.26328 0.5002 53.0
M3 linear model 0.7634 0.3202 0.5268 51.5
M4 neural network 0.7162 0.21 0.4322 48.5
M5 random forest 0.8608 0.47 0.7216 72.0
M6 SVM 0.8248 0.3792 0.649 55.0
Table 4 Evaluation results of models used for binary classification by undersampling

Model AUC H-measure Gini Accuracy, %

M1 ada boost 0.836 0.385 0.672 75.0
M2 decision tree 0.743 0.233 0.486 70.86
M3 linear model 0.777 0.286 0.554 71.01
M4 neural network 0.739 0.222 0.478 68.1
M5 random forest 0.862 0.451 0.723 79.2
M6 SVM 0.796 0.32 0.591 72.39
248 IET Syst. Biol., 2019, Vol. 13 Iss. 5, pp. 243-250
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Table 5 AUC values for red curves in Fig. 5

Curve Fig. 5a Fig. 5b Fig. 5¢ Fig. 5d Fig. 5e

AUC 0.905 0.895 0.808 0.830 0.866

Table 6 Cross-validation results [2] Welch, W.J.: ‘How cells respond to stress’, Sci. Am., 1993, 268, (5), pp. 56-64
[3] Schneiderman, N., Ironson, G., Siegel, S.D.: ‘Stress and health:

mtry RMSE R? MAE psychological, behavioral, and biological determinants’, Annu. Rev. Clin.

2 0.1655441 0.9145148 0.09410988 [l gSyChOé, 2005, I,Pg- 6(')17;1628 R ) i dex o/

tress-Response:  Available at http://gothealternativeway.com/index.php,
3 0.1640467 0.9148280 0.08907119 2017/06/07/best-stress-reducing-anxiety-relieving-products. Triggers to stress
4 0.1642636 0.9139220 0.08748790 response, accessed on 5 May 2018

Table 7 Regression model evaluation results for predicting
activity, efficacy and potency score

Model for Correlation R2 Accuracy, %
1 activity score 0.86 0.74 90
2 potency score 0.6 0.36 82.5
3 efficacy score 0.68 0.46 80

Every active molecule has some activity score associated with
it. By training the random forest model for regression dataset of
activity, potency and efficacy scores of active molecules one could
predict the same parameters for any new molecule to be evaluated
subject to its activeness using the multi-level proposed scheme.

Three random forest models were trained on the dataset of
activity information of 10,486 molecules described in Section 2.1
and found to have accuracy as mentioned in Table 7 with some
other evaluation parameters. It can be observed that accuracy as
high as 90% is achieved to predict the activity score for training
data while for potency and efficacy the measure is 82.5 and 80%,
respectively. Also, the highest correlation and R? are gained while
predicting activity score (0.86) in comparison with potency (0.6)
and efficacy (0.68).

Comparing the result obtained from the proposed multi-level
prediction scheme to the work done in past, it can be seen that an
overall highest accuracy is obtained for SVM, in [22], was 76.6%,
while a similar score obtained in [21] was 85.7%, whereas the
overall score obtained in the work proposed in this study is 90%,
along with the cross-validation test, indicating that the method is
superior to other state-of-the-art methods.

7 Conclusion

Several drugs that stimulate the Nrf2-ARE pathway are being
studied for the treatment of diseases that are caused by oxidative
stress. The proposed multi-level prediction scheme best suits the
aim to detect the activity of any new molecule of ARE signalling
pathway which is validated by suitable evaluation parameters. If
found active then a selected model is able to successfully predict
the activity score of the molecule under consideration with an
accuracy of 90%.

Interestingly, oxidative stress pathways are commonly found in
advanced-stage kidney tumours and are important factors to
consider and potentially target when developing therapeutic
approaches. The proposed scheme would be highly beneficial in
detecting the drug's potential to tap the disease from spreading
further and cure the same.
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