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Summary
Background Artificial intelligence (AI) has repeatedly been shown to encode historical inequities in healthcare. We
aimed to develop a framework to quantitatively assess the performance equity of health AI technologies and to
illustrate its utility via a case study.

MethodsHere, we propose a methodology to assess whether health AI technologies prioritise performance for patient
populations experiencing worse outcomes, that is complementary to existing fairness metrics. We developed the
Health Equity Assessment of machine Learning performance (HEAL) framework designed to quantitatively assess
the performance equity of health AI technologies via a four-step interdisciplinary process to understand and quantify
domain-specific criteria, and the resulting HEAL metric. As an illustrative case study (analysis conducted between
October 2022 and January 2023), we applied the HEAL framework to a dermatology AI model. A set of 5420
teledermatology cases (store-and-forward cases from patients of 20 years or older, submitted from primary care
providers in the USA and skin cancer clinics in Australia), enriched for diversity in age, sex and race/ethnicity,
was used to retrospectively evaluate the AI model’s HEAL metric, defined as the likelihood that the AI model
performs better for subpopulations with worse average health outcomes as compared to others. The likelihood
that AI performance was anticorrelated to pre-existing health outcomes was estimated using bootstrap methods as
the probability that the negated Spearman’s rank correlation coefficient (i.e., “R”) was greater than zero. Positive
values of R suggest that subpopulations with poorer health outcomes have better AI model performance. Thus,
the HEAL metric, defined as p (R >0), measures how likely the AI technology is to prioritise performance for
subpopulations with worse average health outcomes as compared to others (presented as a percentage below).
Health outcomes were quantified as disability-adjusted life years (DALYs) when grouping by sex and age, and
years of life lost (YLLs) when grouping by race/ethnicity. AI performance was measured as top-3 agreement with
the reference diagnosis from a panel of 3 dermatologists per case.

Findings Across all dermatologic conditions, the HEAL metric was 80.5% for prioritizing AI performance of racial/
ethnic subpopulations based on YLLs, and 92.1% and 0.0% respectively for prioritizing AI performance of sex and age
subpopulations based on DALYs. Certain dermatologic conditions were significantly associated with greater AI model
performance compared to a reference category of less common conditions. For skin cancer conditions, the HEAL
metric was 73.8% for prioritizing AI performance of age subpopulations based on DALYs.

Interpretation Analysis using the proposed HEAL framework showed that the dermatology AI model prioritised
performance for race/ethnicity, sex (all conditions) and age (cancer conditions) subpopulations with respect to pre-
existing health disparities. More work is needed to investigate ways of promoting equitable AI performance across
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age for non-cancer conditions and to better understand how AI models can contribute towards improving equity in
health outcomes.
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Research in context

Evidence before this study
We searched the PubMed database from Jan 1, 2018 until Aug
31, 2022, for articles using the following search terms: ‘health
equity’ AND (‘machine learning’ OR ‘artificial intelligence’). In
addition, we searched relevant computer science journals and
conference proceedings using similar search terms. The
retrieved articles were analysed with respect to the proposed
framework components. Existing frameworks were either
qualitative (e.g., providing best practice checklists) or
borrowed quantitative metrics from artificial intelligence (AI)
fairness paradigms that strive for equality of AI performance,
but do not prioritise performance for groups experiencing
worse health outcomes. None of the existing frameworks
provided a quantitative approach towards health equity
assessment of machine learning performance that
incorporates existing disparities in health outcomes.

Added value of this study
This work describes the framework for Health Equity
Assessment of machine Learning performance (HEAL)
designed to quantitatively assess the performance equity of
health AI technologies via a four-step interdisciplinary process
to understand and quantify domain-specific criteria, and the
resulting HEAL metric. As an illustrative case study, we applied
the HEAL framework to a dermatology AI model using a
retrospective set of 5420 teledermatology cases.

Implications of all the available evidence
Analysis using the proposed HEAL framework showed that
the dermatology AI model prioritised performance for race/
ethnicity, sex (all conditions) and age (cancer conditions)
subpopulations with respect to pre-existing health disparities.
More work is needed to investigate ways of promoting
equitable AI performance across age for non-cancer
conditions and to better understand how AI models can
contribute towards improving equity in health outcomes.
Introduction
Health equity is a major societal concern worldwide
where health disparities are large, persistent and
widening.1–6 The causes of inequities in healthcare are
multifactorial and precipitated by barriers at all levels of
society. These include, but are not limited to, limitations
in access to healthcare, differential clinical treatment,
and even differences in diagnostic efficacy.7,8 Recent
advancement in artificial intelligence (AI) has acceler-
ated the transition from academic research to bedside
implementation of these technologies.9 While there is
optimism about the utility of AI technologies, intro-
ducing AI into clinical decision making carries the risk
of exacerbating pre-existing inequities.10 There is a
growing sense of urgency within the academic, clinical,
and regulatory communities to understand, monitor,
and improve the effect of AI technologies through a
health equity lens.11–17

Consequently, it is imperative that AI model devel-
opment incorporates health equity considerations.
Health equity is defined by public health organizations
as everyone having a fair opportunity to be as healthy as
possible (referred to as the ‘health equity principle’
below, see Table S1 for detailed definitions).
Importantly, equity is not the same as equality.18 Striving
for health equity means we need to consider that in-
dividuals with larger barriers to improving their health
require more and/or different, rather than equal, effort in
order to experience this fair opportunity. Similarly, eq-
uity is not fairness as defined in the AI for healthcare
literature. Whereas AI fairness often strives for equal
performance of the AI technology across different pa-
tient populations,19 this does not centre around the goal
of prioritizing performance with respect to pre-existing
health disparities.

We propose a methodology to assess whether health
AI technologies prioritise performance for patient pop-
ulations experiencing worse outcomes (Fig. 1A) that is
complementary to existing fairness metrics. Specifically,
we develop the Health Equity Assessment for machine
Learning performance (HEAL) framework to quantita-
tively assess whether an AI tool’s performance is equi-
table, defined as performing better for groups with
worse average health outcomes as compared to others;
anchoring on the principle that health equity should
prioritise and measure model performance with respect
to disparate health outcomes, which may be due to a
number of factors that include structural inequities
www.thelancet.com Vol 70 April, 2024
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Fig. 1: Framework for Health Equity Assessment of machine Learning performance (HEAL). A: An intervention promotes health equity if it
contributes to reducing existing disparities in health outcomes. The light blue bars illustrate pre-existing health outcomes. The dark blue bars
illustrate the effect of an intervention on pre-existing health outcomes. B: The process of estimating the likelihood that a health AI technology
performs equitably entails four steps: (1) Identifying factors associated with health inequities and defining AI performance metrics;
(2) Identifying and quantifying pre-existing health outcome disparities; (3) Measuring the performance of the AI tool for each subpopulation;
(4) Measuring the likelihood that the novel AI tool prioritises performance with respect to health disparities. This 4-step process is designed to
inform improvements for making the AI performance more equitable. HEAL metrics should be re-evaluated on a regular basis. Note that this is
an iterative process. For example, the availability of health outcomes data in step (2) can inform the choice of demographic factors and brackets
in step (1).

Articles
(e.g., demographic, social, cultural, political, economic,
environmental and geographic). As an illustrative case
study, we apply the framework to a dermatology AI
model.20

With this work, we take a step towards encouraging
explicit assessment of the health equity considerations
of AI technologies, and encourage prioritization of ef-
forts during AI development to reduce health inequities
for subpopulations exposed to structural inequities that
can precipitate disparate outcomes. While the present
framework does not model causal relationships and,
therefore, cannot quantify the actual impact a new AI
technology will have on reducing health outcome
www.thelancet.com Vol 70 April, 2024
disparities, the HEAL metric may help identify cases
where model performance is not prioritised with respect
to pre-existing health disparities.
Methods
Development of the HEAL framework
An interdisciplinary working group, including health
equity researchers, social scientists, clinicians, bio-
ethicists, statisticians, and AI researchers, developed the
HEAL framework. The development process was itera-
tive. It involved reviewing existing literature, ideating
ways to address gaps in the literature, and grounding
3
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the feasibility of potential approaches in the context of a
case study. The literature review suggested that existing
AI fairness metrics typically do not account for pre-
existing inequities,21–25 and that existing health equity
frameworks are either qualitative (e.g., providing best
practice checklists)14,26–29 or borrow quantitative metrics
from AI fairness paradigms that strive for equality of AI
performance, but do not prioritise performance for
groups experiencing worse health outcomes.30–32 The
HEAL framework strives to bridge this gap by providing
a four-step process (Fig. 1B) that AI model developers
and researchers should undertake to produce a quanti-
tative metric that assesses prioritization of model per-
formance with respect to pre-existing health disparities.

Identify factors associated with health inequities and define
metrics to quantify tool performance
This step may involve a combination of reviewing sci-
entific literature and/or participatory methods, i.e.,
stakeholder engagement of clinicians, people with lived
experience of structural inequities or the health condi-
tion being examined, to identify societal factors (e.g.,
demographic, social, cultural, political, economic, envi-
ronmental and geographic) that have been associated
with inequities within the given medical domain.33 Each
factor of inequity identified in this step is used as input
to step (2) of the framework. Efforts should be taken to
map the dynamic and complex relationship between the
societal factors influencing health inequities.34 Note that
factors of inequity may vary by medical domain and the
conditions of interest, so this step needs to be repeated
when the HEAL framework is applied to a novel context.

Tool performance metrics should be chosen accord-
ing to the task for which the AI tool is designed to assist
(e.g., accuracy, sensitivity, specificity). Note that AI tool
performance should be placed within the context of a
care journey as part of mapping societal context. The AI
tool’s interdependence with other factors (e.g., condition
incidence and discovery, information seeking, access to
quality care, experiences in the clinical system) should
be taken into account where possible.

Identify and quantify pre-existing health disparities
This step involves reviewing scientific literature and
databases to identify existing disparities in health out-
comes across factors of inequity, specifying the sub-
populations associated with these disparities, and
ranking subpopulations based on a quantitative health
outcome measure. Note that steps (1) and (2) can be
iterative. For example, the availability of health out-
comes data in step (2) can inform the choice of factors
and brackets in step (1). We use the term sub-
populations because factors of inequity may extend
beyond demographic factors. For example, the avail-
ability of outcome data and historical structural in-
equities may have strong associations with factors such
as zip codes or insurance status in some domains.
Measure performance of AI tool
This step involves measuring the AI tool performance
for each subpopulation. This can be done using a
retrospective dataset or in a prospective manner. It re-
quires a trusted reference standard and case-level met-
adata allowing sub-group analysis along the factors of
inequity identified in the previous steps. AI tool per-
formance per subpopulation is used as input to step (4)
below.

Measure likelihood that AI tool prioritises performance with
respect to health disparities
This step involves estimating the likelihood that the AI
tool performs better for groups with poorer health out-
comes using the HEAL metric. We next describe a case
study in applying the HEAL framework.

Dermatology AI case study
The AI tool considered is a dermatology AI model for
predicting potential dermatologic conditions based on
photos of a skin concern and patient metadata.
Dermatology is a suitable domain for a case study of the
HEAL framework given the existing body of literature
on factors associated with health inequities in derma-
tological care, and the risk that AI technologies may
exacerbate those inequities.35–38 The input to the model
consists of three photos of a skin concern along with
demographic information and a brief structured medi-
cal history, and the output consists of a ranked list of
possible matching skin conditions. The AI model uti-
lises a convolutional neural network similar to that
described in prior work,20 and was trained to classify 288
skin conditions using a development dataset of 29,087
cases (Table S2). Our study was conducted from October
2022 to January 2023.

Step 1: identifying factors associated with health
inequities and defining tool performance metrics
After taking into consideration data availability and
reviewing scientific literature to identify factors that
have been associated with health inequities in derma-
tological care, we selected the following demographic
factors: age, sex, race/ethnicity and Fitzpatrick skin type
(FST).35–38 FST is a classification system for human skin
based on its response to ultraviolet (UV) radiation,
particularly sunburn and tanning. The scale ranges
from FST I to FST VI, with each type representing a
different level of melanin production in the skin, eye,
and hair, and sensitivity to UV light. Other factors
relevant to dermatologic health outcomes (e.g., in-
dicators of socioeconomic status) were not available in
the datasets. Note that, in this study, we approximate
FST as a dermatologist-provided estimate based on
retrospective photo(s) of a skin concern (eFST; see
Dataset section).

While this case study emphasises scientific literature
review, we also encourage the use of participatory
www.thelancet.com Vol 70 April, 2024
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methods to identify and further elucidate potential fac-
tors of inequity, e.g., through focus groups involving
people with lived experience.

We selected “top-3 agreement” as an appropriate
performance metric to evaluate the dermatology AI.
Top-3 agreement was used to evaluate AI performance
because the AI output is a ranked list of possible
matching medical conditions,20 and is defined as the
proportion of cases where at least one of the top-3
conditions suggested by the AI matches the reference
diagnosis from a dermatologist panel. Although rec-
ommended as part of the process, we did not map the
societal context influencing health inequities as they
relate to the role of the AI tool within the care journey.
The goal of this mapping process would be to under-
stand how AI integration may impact existing inequities
or beget new inequities in the clinical domain of inter-
est. This is an important aspect of the framework that
we hope to incorporate in the future.

Step 2: identifying and quantifying pre-existing
health disparities
To determine a ranking of dermatologic health out-
comes per demographic factor, we consulted the Global
Burden of Disease (GBD) Results Tool,39 a widely-used
resource endorsed by the World Health Organization
(WHO). We used GBD statistics for all skin conditions
from the USA. Where available, we tabulated disability-
adjusted life years (DALYs)40 and determined the DALY
rate (per 100,000) for each population. DALYs, defined
as the number of years of healthy life lost, are the sum
of years of life lost (YLLs) and years lived with disability
(YLDs). For race/ethnicity, DALYs were not available
from GBD data. Instead, we used the YLL rate as a
health outcome measure.41

Skin cancers, also referred to as malignant neo-
plasms, are an area of particular concern in derma-
tology. We performed a sub-analysis on cancers to
understand the impact of AI performance in these high-
risk conditions. We used GBD categories “Non-mela-
noma skin cancer” and “Malignant skin melanoma” to
estimate health outcomes for all cancers, and GBD
category “Skin and subcutaneous diseases” for all non-
cancer conditions. Nuances of these categories are
described in Supplementary Methods section S4 “De-
tails of GBD taxonomy”.

We also propose and tested a second approach to
estimate health outcome rankings in the absence of
available data on health outcome metrics to illustrate
how health outcome measures can be derived from
public data sets in geographic regions or medical do-
mains where trusted health outcomes data is not readily
available (Supplementary Methods section S2 “Care
journey approach”). Conclusive health outcomes rank-
ings could not be derived for FST due to the lack of
publicly available data.
www.thelancet.com Vol 70 April, 2024
Step 3: measuring performance of AI tool
To understand the performance of the dermatology AI,
we measured top-3 agreement by comparing AI’s pre-
dicted ranked conditions with the reference diagnosis
on an evaluation dataset (see Dataset section for details),
stratified by subpopulations based on age, sex, race/
ethnicity and eFST. The reference diagnosis was estab-
lished by aggregating the differential diagnoses from a
panel of three US-board certified dermatologists per
case via a voting procedure.20 We report 95% confidence
intervals computed using the Normal approximation of
the binomial proportion confidence interval.

Step 4: measuring likelihood that AI tool prioritises
performance with respect to health disparities
To quantify the HEAL metric for a health AI tool, our
framework requires two inputs for each subpopulation:
(1) a quantitative measure of pre-existing health out-
comes, and (2) the AI performance. We first compute
the anticorrelation between health outcomes and AI
performances among all subpopulations for a given
factor of inequity (e.g., race/ethnicity) as follows:

R = −corr[ (HO1, HO2, …, HON), (AI1, AI2, …, AIN) ]
where corr: Spearman’s rank correlation.

HOi: pre-existing health outcome for subpopulation i.
AIi: AI tool performance for subpopulation i.
N: number of subpopulations considered.
Note that we define R to be the negated correlation

coefficient, such that higher positive values of R corre-
spond to a greater priority for AI performance for sub-
populations with worse health outcomes: values of R
close to 1.0 imply that AI performances are strongly
anti-correlated with health outcomes. In other words,
the subpopulation with the worst outcome has the
highest AI performance, the subpopulation with the
second-worst outcome achieves the second-best perfor-
mance, and so forth. As illustrated in Fig. 1A, such a
trend suggests that the AI tool prioritises model per-
formance with respect to pre-existing health outcomes.
Negative values close to −1.0 imply the opposite. Small
values suggest that performance is mostly uncorrelated
with health outcomes.

Next, the final HEAL metric, defined as p (R >0),
measures how likely the AI technology is to prioritise
performance with respect to pre-existing health out-
comes. To obtain this metric, distributions of R were
estimated via 9999 bootstrap samples. For each boot-
strap sample, the entire set of patient cases was
resampled with replacement, AI performance was
calculated per subpopulation, and R was computed us-
ing the resulting AI performances in conjunction with
health outcome measures. From this distribution we
can empirically compute the HEAL metric, p (R >0), by
counting the number of bootstrap samples with positive
R. The HEAL metric ranges from 0 to 100%; a HEAL
5
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Characteristics Num. Cases (%)

No. of cases 5420

No. of images included in study 14,303

No. of patients included in study 4180

Female (%) 2980 (55.0%)

Age, median (25th, 75th percentiles) 55 (39, 67)

Race and ethnicitya

White, non-Hispanic (%) 698 (32.2%)

Asian and Pacific Islander, non-Hispanic (%) 261 (12.0%)

Hispanic (%) 867 (40.0%)

Black, non-Hispanic (%) 291 (13.4%)

Other/Not specified (%) 51 (2.4%)

Estimated Fitzpatrick skin types

I or II (%) 2621 (48.4%)

III or IV (%) 2026 (37.4%)

V or VI (%) 262 (4.8%)

N/A (%) 511 (9.4%)

Skin conditions
based on reference
diagnosis

Num. Cases
(%)

Skin conditions
based on reference
diagnosis

Num. Cases
(%)

Acne 135 (2.5%) Psoriasis 93 (1.7%)

Actinic keratosis 357 (6.6%) SCC/SCCISb 493 (9.1%)

Allergic contact
dermatitis

57 (1.1%) SK/ISK 377 (7.0%)

Alopecia areata 46 (0.8%) Scar condition 61 (1.1%)

Androgenetic
alopecia

45 (0.8%) Seborrheic
dermatitis

46 (0.8%)

Basal cell carcinomab 518 (9.6%) Skin tag 37 (0.7%)

Cyst 111 (2.0%) Stasis dermatitis 36 (0.7%)

Eczema 159 (2.9%) Tinea 35 (0.6%)

Folliculitis 53 (1.0%) Tinea versicolor 31 (0.6%)

Hidradenitis 44 (0.8%) Urticaria 17 (0.3%)

Lentigo 152 (2.8%) Verruca vulgaris 44 (0.8%)

Melanocytic nevus 563 (10.4%) Vitiligo 41 (0.8%)

Melanomab 195 (3.6%) Other condition 1636 (30.2%)

Post-inflammatory
hyperpigmentation

38 (0.7%)

Enrichment was performed to mitigate skew towards common demographics
and dermatologic conditions, and additionally to include all available cases with
race/ethnicity information. The table includes 26 common skin conditions,
representing 80% of cases seen in primary care,20 and an additional category
grouping other conditions. aRace/ethnicity information was unavailable for the
skin cancer dataset. Case counts and percentages for race/ethnicity therefore
reflect only cases from the tele-dermatology dataset where race/ethnicity was
generally available. bSkin cancers.

Table 1: Patient characteristics in the curated evaluation dataset.
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metric exceeding 50% implies that most of the bootstrap
samples have R >0, suggesting higher likelihood of
equitable performance. A HEAL metric less than 50%
implies that most of the bootstrap samples have R ≤0,
suggesting lower likelihood of equitable performance.
Note that 50% is used as an illustrative value in this
context to explain the concrete relationship between the
HEAL metric and the underlying bootstrap sample,
rather than serving as a binary cut-off threshold. Details
can be found in Supplementary Methods section S1
“Health Equity Metric Considerations”.

Statistical analysis
We used a multivariable logistic regression analysis to
understand the effect of demographic variables (spe-
cifically age, sex, race/ethnicity, eFST) and dermato-
logic conditions on AI performance. Demographic
variables and dermatologic conditions were used as
independent variables and the correctness of the AI
prediction was used as the binary dependent variable.
The log odds for each variable were calculated along
with the confidence intervals. Reference categories for
the logistic regression analysis were 70+ years for age,
male for sex, White for race/ethnicity, N/A for eFST,
and “Other” for skin condition. Note that the multi-
variable logistic regression analysis is not an integral
step of the HEAL framework, but rather was used in
our case study to determine which subgroup analyses
would be helpful to further elucidate via HEAL metric
calculation. Rationales for the choices of reference
groups in logistic regression analysis are orthogonal to
specifics of the HEAL framework and are provided in
Supplementary Methods section S3 “Reference cate-
gories for logistic regression analysis.” Subgroup ana-
lyses were performed to determine HEAL metrics
across age groups for cancer and non-cancer condi-
tions separately and AI tool performance across FST
subpopulations (Table S3). A supplementary intersec-
tional analysis was performed to determine the HEAL
metric across sex, age and race/ethnicity (Table S4). A
sensitivity analysis was performed to derive health
outcome rankings via an alternative approach
(Table S6). Python packages NumPy version 1.26.2 and
Statsmodels version 0.12.2 were used for data analysis
and statistical methods.

Dataset
To measure AI performance, we curated an evaluation
dataset of 5420 store-and-forward cases (Table 1) with
reference diagnoses, which was sampled from two
sources. The first was a tele-dermatology dataset from
the USA (California, Hawaii) of mostly low-to-medium
risk conditions, and with age, sex and self-reported
race/ethnicity information available. The second data-
set was from several skin cancer clinic sites in
Australia to enrich for malignant neoplasms, with age
and sex, but no race/ethnicity information. Patients
with race/ethnicity information were of a single race/
ethnicity group, i.e., either of Hispanic ethnicity or
belonging to one of four racial groups (Black, Asian
and Pacific Islander, American Indian and Alaska
Native, or White). No cases of mixed race/ethnicity
were available for evaluation. eFST was estimated for
each case via the majority vote among three indepen-
dent dermatologist assessments based on retrospective
photos. All cases came from 2020 or before, with exact
dates not available due to de-identification.
www.thelancet.com Vol 70 April, 2024
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Race/Ethnicity N Health outcomes AI tool performance HEAL metric

YLLs (per 100,000) Ranking Top-3 agreement (95% CI) Ranking

White, non-Hispanic 698 223.7 4 80.7% (77.5, 83.5) 2 R = 0.4 p (R >0) = 80.5%

Asian and Pacific Islander, non-Hispanic 261 45.2 1 76.6% (71.0, 81.6) 4

Hispanic 867 70.4 2 84.7% (82.1, 87.0) 1

Black, non-Hispanic 291 131.4 3 80.1% (75.0, 84.5) 3

Other/Not specified 51 N/A N/A 80.4% (66.9, 90.2) N/A

R/E info unavailable for dataset 3252 N/A N/A 72.0% (70.4, 73.5) N/A

Age group (yrs) N Health outcomes AI tool performance HEAL metric

DALYs (per 100,000) Ranking Top-3 agreement (95% CI) Ranking

20–24 309 557.4 1 89.0% (85.0, 92.3) 1 R = −1.0 p (R >0) = 0.0%

25–49 1941 606.1 2 78.8% (76.9, 80.6) 2

50–69 2052 942.6 3 73.5% (71.5, 75.4) 3

70+ 1118 1418.7 4 71.6% (68.8, 74.2) 4

Sex N Health outcomes AI tool performance HEAL metric

DALYs (per 100,000) Ranking Top-3 agreement (95% CI) Ranking

Female 2980 832.6 2 76.6% (75.0, 78.1) 1 R = 1.0 p (R >0) = 92.1%

Male 2440 830.6 1 75.0% (73.2, 76.7) 2

Table 2: HEAL metrics for all dermatologic conditions including health outcomes (DALYs or YLLs per 100,000), AI performances (top-3 agreement), and rankings for health
outcomes and tool performances, with breakdowns by race/ethnicity, age group, and sex.

Articles
We applied exclusion criteria and sampling to enrich
the dataset for demographics and conditions tradition-
ally underrepresented in datasets to maximise sample
sizes for each intersectional subpopulation. We
excluded patients under 20 years of age to match age
brackets from GBD data. For the tele-dermatology
dataset, we included all cases to maximise the case
count with race/ethnicity information available. For the
skin cancer clinic dataset, we formed distinct in-
tersections across 4 age groups (20–24 yrs, 25–49 yrs,
50–69 yrs, 70 + yrs), 2 sexes, 6 eFSTs, and 60 skin
conditions, and randomly sampled up to 20 cases from
each intersection. See Table S4 for the number of cases
across each intersectional subpopulation across age
(binarised), sex and race/ethnicity.

Table 1 summarises patient characteristics in the
curated evaluation dataset. Details on case exclusions
can be found in Figure S3, and a comprehensive list of
all dermatologic conditions in the dataset is provided in
Table S5.

Ethics
Given the retrospective nature of this study and the use
of de-identified datasets, the need for further review
was waived by the Advarra Institutional Review Board
(IRB).

Role of the funding source
This study was funded by Google LLC and the majority
of co-authors had a Google affiliation while contributing
to this work, including study design, data collection,
data analyses, interpretation, and writing of the report.
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Results
Table 2 summarises health outcomes across age, sex
and race/ethnicity groups for all dermatologic condi-
tions. For race/ethnicity, we observed the best outcomes
(lowest YLL rate) for the Asian and Pacific Islander
subpopulation (45.2 YLLs), followed by Hispanic (70.4
YLLs), Black (131.4 YLLs) and White (223.7 YLLs). For
sex, the GBD data suggest that the male subpopulation
(830.6 DALYs) have slightly better health outcomes than
the female subpopulation (832.6 DALYs). With respect
to age, across all conditions, the oldest age group of 70+
year-olds experiences the worst health outcomes, fol-
lowed by 50–69 year-olds. Across all conditions (Table 2)
and for cancers (Table 3A), the trend continues with
health outcomes improving for 25–49 year-olds and
20–24 year-olds. For non-cancer conditions (Table 3B),
the ranking is reversed for the two youngest age groups.

In Table 2, we summarise the HEAL analysis across
age, sex, and race/ethnicity. For race/ethnicity, the
analysis was performed on four subpopulations (His-
panic, Black, Asian/Pacific Islander, White), and the
HEAL metric was 80.5%. For sex, the HEAL metric was
92.1%.

For age, we observed a HEAL metric of 0.0%
computed across four subpopulations (20–24 years,
25–49 years, 50–69 years, 70+ years), suggesting a low
likelihood of prioritizing performance with respect to
health disparities across age groups. Logistic regression
analysis (Fig. 2) revealed that, in addition to age, certain
dermatologic conditions had a significant effect on AI
performance. For example, the AI performed more
accurately for some cancers (basal cell carcinoma,
7
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3. A Cancer conditions.

Age group (yrs) N Health outcomes AI tool performance HEAL metric

DALYs (per 100,000) Ranking Top-3 agreement (95% CI) Ranking

25–49 178 67.4 1 73.0% (65.9, 79.4) 3 R = 1.0 p (R >0) = 73.8%

50–69 543 257.1 2 79.7% (76.1, 83.0) 2

70+ 495 475.7 3 83.4% (79.9, 86.6) 1

3. B Non-cancer conditions

Age group (yrs) N Health outcomes AI tool performance HEAL metric

DALYs (per 100,000) Ranking Top-3 agreement (95% CI) Ranking

20–24 308 545.3 2 89.0% (84.9, 92.2) 1 R = −0.8 p (R >0) = 0.0%

25–49 1763 538.6 1 79.4% (77.4, 81.2) 2

50–69 1509 685.5 3 71.2% (68.9, 73.5) 3

70+ 623 943.0 4 62.1% (58.2, 65.9) 4

Table 3: HEAL metrics for cancer (3.A) and non-cancer (3.B) dermatologic conditions including health outcomes (DALYs per 100,000) and AI
performances (top-3 agreement) across age groups. For cancer conditions, the youngest age group (20–24 yrs, 12.1 DALYs per 100,000) was excluded
due to insufficient sample size (N = 1).

Articles

8

squamous cell carcinoma) and less accurately for other
conditions (e.g., cyst) compared to a reference category
of other less common conditions, when controlling for
demographic factors.

To further explore the relationship between derma-
tologic conditions and age groups, we performed HEAL
analysis across age separately for cancer (Table 3A) and
non-cancer conditions (Table 3B). For cancers, we
observed a HEAL metric of 73.8%, suggesting a high
likelihood of prioritizing performance with respect to
health disparities. However, among non-cancer condi-
tions, the HEAL metric was 0.0%. The group of 70+
year-olds had the poorest health outcomes paired with
lowest AI performance. Through this analysis, we were
able to identify a specific disease group (non-cancers)
and factor (age) across which AI performance needs to
be improved to increase the likelihood of equitable
performance.

In the absence of quantitative health outcomes data
by eFST subgroups, we report AI performance by eFST
in Table S3, suggesting a trend towards greater AI
performance for people with darker skin.

We recognise the importance of intersectionality in
health equity. In Table S4, we report an extended HEAL
analysis across intersections of age, sex and race/
ethnicity enabled by the fine-grained GBD health out-
comes measures (YLL rate). Overall, we observed a
HEAL metric of 17.0%. To dive deeper into the results,
we focused on intersections ranked in the lower half for
both health outcomes and AI performance and identi-
fied subpopulations for which AI performance needs to
be improved to increase the likelihood of prioritizing
performance with respect to health disparities: female/
50+/Hispanic, female/50+/Black, female/50+/White,
male/20–49/White, and male/50+/Asian and Pacific
Islander.
Discussion
Here, we proposed the HEAL framework to quantify the
likelihood of equitable performance for AI tools in
health. The framework comes with a metric grounded in
prioritizing performance with respect to pre-existing
health disparities, that is straightforward to implement
and interpret. The HEAL case study suggests that the
dermatology AI prioritises performance with respect to
pre-existing health disparities across race/ethnicity and
sex and, for cancers, across age groups. Finally, we
identified subpopulations where further AI improve-
ments are needed: across age groups for non-cancers.

Other work has emphasised the need for operation-
alizing equity and fairness in AI for healthcare.11,12

Recent work addressing this call has discussed ethical
considerations of fairness and equity in the context of AI
for healthcare,42–47 suggested best practices to incorpo-
rate health equity in the algorithm development
lifecycle,14,26–29,48 and proposed operational
definitions.30–32 Existing operational definitions have
largely borrowed from the AI fairness literature,21–24

proposing metrics based on statistical parity in AI per-
formance across subpopulations. Our contribution to
this space is to anchor quantitative evaluation of AI on
pre-existing health disparities. The framework can
potentially be extended beyond healthcare and beyond
the use of AI-driven tools given reliable ways to measure
outcomes.

The framework can be applied to a range of medical
domains, AI tasks and personal or contextual attributes.
Some steps need to be adapted when applied in a new
context. For example, demographic factors and health
outcomes rankings can be reused when applying the
framework to a different AI model within the same
domain. The choice of appropriate performance metrics
depends on the AI task. We use top-3 agreement as an
www.thelancet.com Vol 70 April, 2024
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Fig. 2: Logistic regression analysis for understanding the effect of demographics factors and skin conditions on the correctness of AI predictions.
Blue indicates statistical significance. Asterisk (*) indicates that there was no separation of cases into distinct outcomes within a given sub-
population and, as a result, log odds have extreme values. Fitzpatrick skin type was estimated for each case via the majority vote among three
independent dermatologist assessments based on retrospective photos.
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example of a metric appropriate for evaluating ranked
lists of predictions; for binary classification tasks, other
metrics, such as the area under the receiver-operating
characteristic (ROC) curve (AUC), may be more suit-
able. While our case study focuses on specific de-
mographics, the framework can be applied to any
grouping dimension (e.g., social determinants of health)
along which health outcomes and AI performance can
be quantified. Note that application of the framework in
real-world monitoring settings, will require nuanced
consideration of additional aspects such as comorbidity.

For holistic evaluation, the HEAL metric should be
contextualised alongside competing performance factors
(e.g., computational efficiency and data privacy), ethical
values (e.g., doing no harm and increasing overall util-
ity), and forms of bias that may influence the results
(e.g., selection bias or differences in representativeness
of the evaluation data across demographic groups).49 In
other words, if the HEAL metric is to be employed, it
cannot be interpreted and acted upon in isolation, but
needs to be combined with other metrics and consid-
erations based on the target intended application and
population. For example, the HEAL metric can be arti-
ficially improved by deliberately reducing AI perfor-
mance for the most advantaged subpopulation until AI
performance for that subpopulation is worse than all
other subpopulations. For illustrative purposes, given
subpopulations A and B where A has worse health
outcomes than B, consider the choice between two
models: Model 1 (M1) performs 5% better for subpop-
ulation A than for subpopulation B. Model 2 (M2) per-
forms 5% worse on subpopulation A than B. The HEAL
metric would be higher for M1. However, M1 has ab-
solute performances of just 75% vs 70% for sub-
populations A and B respectively, while M2 has absolute
performances of 75% and 80% for subpopulations A
and B respectively. Choosing M1 over M2 would lead to
worse overall performance for all subpopulations. This
is ethically problematic because some subpopulations
are rendered worse-off while no subpopulation is better-
off. Accordingly, the HEAL metric ought to be used
alongside a Pareto condition that restricts model im-
provements to just those improvements such that each
subpopulation is at least as well-off and some subpop-
ulation is better-off compared to the status quo. This is
to avoid situations where applying the framework leads
to poorer AI performance for every subpopulation. To
mitigate settings where application of the HEAL
framework leads to violation of this Pareto condition, it
also may be reasonable to consider an adaptation of the
HEAL metric that correlates pre-existing health out-
comes with performance improvements, rather than with
the AI’s absolute performance values. This ensures safe
performance levels for all subpopulations while
focusing further performance improvement efforts
specifically on subpopulations exposed to structural
inequities that can precipitate worse health outcomes.
While the detailed operationalization of the Pareto
principle for the HEAL metric is beyond the scope of
this work, possible techniques for specifically improving
AI model performance in subpopulations of interest
may include targeted data collection or modified
training procedures (such as data sampling or loss
function weighting). Future research may explore and
recommend concrete ways to contextualise the HEAL
metric alongside competing constraints in the process
of model development and deployment decisions.

The HEAL framework, in its current form, assesses
the likelihood that an AI model prioritises performance
for subpopulations with respect to pre-existing health
disparities for specific subpopulations exposed to
structural inequities that can precipitate disparate health
outcomes, which differs from the goal of understanding
whether AI can help reduce disparities in outcomes
across subpopulations (since the latter requires a causal
understanding of steps in the care journey that happen
both before and after use of the AI model). Future re-
finements to the HEAL framework should work to
address this gap. One potential approach to doing so
involves developing a dynamic hypothesis, in the form
of a system dynamics causal model, of the underlying
socio-technical context and structure that produces
specific disparate health outcomes and in which the AI
tool would operate.33,34,50 Such a model would incorpo-
rate AI tool outputs as key factors that can monotonically
affect other contextual factors, such as trust and
screening, and allow the evaluation of the impact of AI
tool performance on downstream health outcomes. An
important aspect of this approach is to consider the
systemic and structural causes of health disparities and
the potential for the AI tool to counteract them. We
further acknowledge that application of the HEAL
framework requires a grounding in existing literature
which, in itself, may encode structural inequities, and as
such may impose limitations on how accurately historic
disparities can be captured. That said, we encourage
careful review of the resources used to derive health
outcome measures to avoid perpetuation of structural
inequities as may be encoded in the literature.

This study has limitations. First, even though the
dataset was sampled to balance demographics and
dermatologic conditions, there were still fewer cases of
American Indian/Alaska Native populations and eFST V
and VI. For breakdowns by race/ethnicity, the available
GBD health outcomes were limited to YLLs (rather than
DALYs), whereas the subset of the evaluation dataset
sourced from skin cancer clinics did not have race/
ethnicity information available. Second, while we
consider DALYs a useful health outcome measure, we
recognise that limitations of the measure pertaining to
disability weightings have been critiqued, and
acknowledge the challenge in selecting appropriate
health outcome measures when applying the HEAL
framework, especially in geographic regions or medical
www.thelancet.com Vol 70 April, 2024
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domains where public health data sets are scarce.51 We
acknowledge that HEAL is sensitive with respect to the
choice of a specific health outcome measure, and
therefore strongly encourage careful consideration of
which outcome measure to choose and cautious inter-
pretation of HEAL metric values in that context. Addi-
tional applications of this framework could be
considered that use information such as structural
disadvantage instead of health outcomes to determine
the priority order. Third, although we were able to
perform eFST annotation on the evaluation dataset,
there is no publicly available health outcomes data
across FSTs. While FST is a widely-accepted skin type
classification system in dermatology, limitations such as
inadequate representation of black and brown skin
tones are known. Further, the eFST labels in this dataset
did not contain self-reported tanning propensity, but
were instead estimated retrospectively by dermatologists
based on visible factors such as healthy skin surround-
ing the condition, hair color, and tan lines. Finally, pa-
tient cases and health outcomes representing
intersectional race/ethnicity groups (e.g., Black people
of Hispanic ethnicity) or finer granularity (e.g., sub-
populations within the Asian category)52 were not avail-
able for evaluation. Further study to address nuanced
considerations of representativeness is warranted,
including research into the effect that sampling tech-
niques for the evaluation dataset as well as
subpopulation-specific disease prevalence may have on
calculated metric values.

To conclude, the HEAL framework enables a quan-
titative assessment of the likelihood that health AI
technologies prioritise performance with respect to
health disparities. The case study demonstrated how to
apply the framework in the dermatological domain,
highlighting high likelihood that model performance is
prioritised with respect to health disparities across sex
and race/ethnicity, but also the potential for improve-
ments for non-cancer conditions across age. The case
study also illustrated limitations in our ability to apply all
recommended aspects of the framework (e.g., mapping
societal context, availability of data), thus highlighting
the complexity of health equity considerations of AI
tools. This work is a proposal towards addressing a
grand challenge for AI and health equity, and may
provide a useful evaluation framework not only during
model development, but during pre-implementation
and real-world monitoring stages, e.g., in the form of
health equity dashboards. We hold that the strength of
the HEAL framework is in its future application to
various AI tools and use cases and its refinement in the
process. Finally, we acknowledge that a successful
approach towards understanding the impact of AI
technologies on health equity needs to be more than a
set of metrics.53,54 It will require a set of goals agreed
upon by a community that represents those who will be
most impacted by a model.
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