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Abstract. Endometrial carcinoma (EC) is one of the most 
common female malignancies, and there is an urgent 
requirement to explore new therapeutic strategies. In the present 
study, Ishikawa H cells were treated with Momordica charantia 
protein (MCP30). The cell morphology, growth inhibition 
rate, cell cycle distribution, and expression of phosphate and 
tensin homolog, P‑AKT and AKT were measured. DNA 
fragmentation analysis and Annexin V‑fluorescein isothio-
cyanate/propidium iodide double staining assay were used 
to analyze cell apoptosis. MCP30 decreased the viability of 
Ishikawa H cells in a dose‑ and time‑dependent manner. The 
early apoptotic rates of Ishikawa H cells treated with MCP30 
at 666.67 pM reached to 16.07±0.15%, following 72 h of treat-
ment. DNA ladder was observed in cells treated with 333.33 
and 666.67 pM MCP30 following 72 h of treatment. MCP30 
blocks Ishikawa H cells from progressing between the S‑phase 
and the G2/M‑phase in a time‑ and concentration‑dependent 
manner. Western blotting revealed that MCP30 treatment 
decreased the levels of P‑AKT in a dose‑dependent manner. 
It was revealed that MCP30 decreases cell proliferation, and 
induces apoptosis and S‑phase cell cycle arrest through the 
AKT signaling pathway in Ishikawa H cells.

Introduction

Endometrial carcinoma (EC) is one of the most common 
female pelvic malignancies; it develops in ~142,000 women 
worldwide and is responsible for ~42,000 mortalities each 
year  (1). The 5‑year survival rate is 95, 67 or 16%, if the 
cancer is diagnosed at a local, regional or distant stage, 
respectively (2). In China, the number of women with newly 
diagnosed endometrial cancer has also significantly increased 
annually (3).

Current treatments for EC comprise surgery, hormonal 
therapy, radiotherapy and chemotherapy. Young patients (age, 
≤40 years) who suffer from endometrial atypical hyperplasia or 
well‑differentiated EC classified as Federation of Gynecology 
and Obstetrics stage IA (intramucous) may choose hormonal 
treatment if they decide to preserve fertility  (4). However, 
the risk of non‑response, tumor progression and recurrence 
remain (5). The cornerstone of treatment for EC is surgery (6); 
early‑stage patients can achieve a satisfying outcome, but the 
outcomes of high‑risk patients are not positive, and the patients 
also require adjuvant therapy, such as radiotherapy and/or 
chemotherapy. Radiotherapy, including vaginal brachytherapy 
and pelvic external beam radiotherapy, is the main method of 
postoperative adjuvant treatment, and can decrease the local 
recurrence rate (7), but no overall survival rate improvement 
can be found in the high‑risk group (8). The cytotoxic therapies 
available for the treatment of advanced‑stage, progressive and 
recurrent disease have shown limited success (9‑11). There-
fore, exploration of new therapeutic strategies continues to be 
urgently required.

Phosphate and tensin homolog (PTEN) is a tumor 
suppressor gene, and loss of function mutations are common 
and appear to be important in the pathogenesis of EC (12). 
Silencing of PTEN is frequently associated with advanced EC 
and is likely to play a critical role in promoting AKT activa-
tion (13).

Epidemiological evidence strongly suggests that diets rich 
in fruit and vegetables are associated with reduced risks of 
cancers (14). Momordica charantia (MC), often termed bitter 
melon, grows in tropical Asia. The fruit has been widely used 
as food and herbal medicine in China for centuries. However, 
little is known about the mechanism of the effect of MC, which 
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limits the use of MC worldwide. Recently, scientists have eluci-
dates that MC is capable of controlling plasma glucose, and 
has anti‑viral, anti‑fertility, immunomodulatory and antitumor 
effects  (15‑21). Our previous study successfully extracted 
a new protein with a molecular weight of 30 kDa from MC 
seeds and termed it MC protein (MCP30) (22). MCP30 is a 
ribosome inactivating protein (RIP), which is a type of protein 
that can inhibit protein synthesis in cell system or cell‑free 
system (23,24).

In the present study, the effects of MCP30 on proliferation, 
cell cycle arrest, apoptosis and the AKT signal pathway in 
the human endometrial carcinoma Ishikawa H cell line were 
investigated in vitro.

Materials and methods

Reagents. RPMI‑1640 medium, penicillin and streptomycin 
were obtained from Gibco (Thermo Fisher Scientific, Inc., 
Waltham, MA, USA). Fat‑free milk (5%) was obtained from 
Bright Dairy (Shanghai, China). Fetal bovine serum (10%; 
FBS) was purchased from ZhengJiang High Technology 
(Tianjin, China). Tween‑20, rabbit primary anti‑p‑AKT 
(dilution, 1:1,000; SAB4301414), anti‑AKT (dilution, 
1:1,000; SAB4500797) and anti‑PTEN (dilution, 1:1,000; 
SAB4300337) polyclonal antibodies, horseradish peroxidase 
(HRP)‑conjugated goat anti‑rabbit IgG secondary antibody 
(dilution, 1:10,000; A0545) and GAPDH antibody (dilution, 
1:1,000; G9545) were purchased from Sigma‑Aldrich (Merck 
Millipore, Darmstadt, Germany). The chemiluminescent 
substrate for HRP was obtained from Pierce (Thermo Fisher 
Scientific, Inc.). MCP30 was extracted from bitter melon seeds, 
prepared by Xiong et al, as previously described (22).

Cell culture. The Ishikawa H cell line was kindly provided by 
the Women's Hospital, School of Medicine, Zhejiang Univer-
sity (Hangzhou, China), and was cultured in RPMI‑1640 
medium, which was supplemented with 10% FBS, 100 U/ml 
penicillin and 100 mg/ml streptomycin, at 37˚C in a fully 
humidified incubator containing 5% CO2.

Cell viability assay. Cell viability in various concentrations of 
MCP30 (0, 8.33, 16.67, 33.33, 166.67, 333.33 and 666.67 pM; 
these concentrations were selected due to preliminary 
experiments) for 24, 48 and 72 h was assessed using the Cell 
Counting Kit‑8 (CCK‑8 kit; Dojindo Laboratories, Kumamoto, 
Japan), according to the manufacturer's protocol. In brief, 10 µl 
of CCK‑8 solution and 100 µl of cell culture supernatants 
(5x103 cells, log phase) were added to each well of the 96‑well 
plate (Corning, Inc., Corning, NY, USA). The reaction system 
was incubated at 37˚C for 1 h. The absorbance was detected 
at a 450‑nm wavelength using a microplate reader. Cell 
growth inhibition was measured using the following formula: 
Cell growth inhibition rate (%)=[1‑(value of experimental 
group‑value of blank group)/(value of control group‑value of 
blank group)]x100.

DNA fragmentation assay. The DNA of cells treated with a 
series of concentrations of MCP30 for 72 h was extracted using 
the selected DNA Ladder Extraction kit from Aidlab Biotech-
nologies (Beijing, China), according to the manufacturer's 

protocol. The DNA fragmentation was assayed by electropho-
resis on a 1.5% agarose gel and its pattern was examined on 
the images obtained under ultraviolet illumination. Images 
were captured by Image Lab Software (Bio‑Rad Laboratories, 
Hercules, CA, USA).

Annexin V‑fluorescein isothiocyanate (FITC)/propidium 
iodide (PI) double staining assay. The cell apoptosis assay 
was performed using flow cytometry (FACSCalibur; BD 
Biosciences, Franklin Lakes, NJ, USA) and was detected with 
the Annexin V‑FITC/PI Apoptosis Detection kit (BD Biosci-
ences). Subsequent to culture of cells in 666.67 pM MCP30 for 
72 h at 37˚C, apoptotic cells were treated with the agents of 
the Annexin V‑FITC/PI Apoptosis Detection kit (composed of 
Annexin V binding buffer, Annexin V‑FITC and PI staining 
solution), according to the manufacturer's protocol. In brief, 
cells were resuspended in 200 µl Annexin V binding buffer 
and subsequently incubated with 5 µl Annexin V‑FITC and 
10  µl PI for 15  min in room temperature. Subsequently, 
200 µl Annexin V binding buffer was added. After 1 h, the 
FITC/PI double staining reaction system was detected using 
flow cytometry (excitation wavelength, 488 nm; emission 
wavelength, 530 nm).

Cell cycle analysis. Cells were seeded in 12‑well plates at a 
density of 4x104 cells per well in 2 ml of complete culture 
medium. Subsequent to culturing with MCP30 (166.67, 333.33 
or 666.67  pM) for 48 or 72  h, cells were analyzed using 
Flow Cytometry Analysis of Cell Cycle kit (GenMed; Seisa, 
Plymouth, MN, USA) with a FACSCalibur Flow Cytometer 
(BD Biosciences) and distribution of the cell‑cycle phases was 
determined using CellQuest Software (BD Biosciences).

Western blot analysis. Total proteins from the cells were 
prepared by cell lysis buffer (Applygen Technologies 
Inc., Beijing, China) and phenylmethylsulfonyl fluoride 
(Sigma‑Aldrich; Merck Millipore) inactivated protease. The 
protein concentration was determined using the bicinchoninic 
acid method. Protein extracts were fractionated on 12% poly-
acrylamide SDS gel and then transferred to a polyvinylidene 
fluoride membrane. The membrane was blocked with 5% 
fat‑free milk in Tris‑buffered saline with Tween‑20 (0.1%), 
followed by incubation with rabbit anti‑rat primary anti‑p‑AKT 
(dilution, 1:1,000), anti‑AKT (dilution, 1:1,000) and anti‑PTEN 
(dilution, 1:1,000) polyclonal antibodies at 4˚C for 20 h. Subse-
quent to washing the membrane with TBST, the membrane was 
treated with HRP‑conjugated goat anti‑rat secondary antibody 
IgG‑HRP (dilution, 1:10,000) for 1 h at room temperature via 
agitation. The enhanced HRP‑DAB substrate solution was 
added to the membrane and incubated for 5 min. Bands were 
visualized by chemiluminescence and exposed to X‑ray. The 
GAPDH antibody (dilution, 1:1,000) was used as an internal 
control. The relative optical density (ratio to GAPDH) of each 
blot band was quantified by Quantity One 1‑D analysis soft-
ware (Bio‑Rad Laboratories, Inc., Hercules, CA, USA).

Statistical analysis. Each experiment was repeated in tripli-
cate. All data were analyzed using SPSS Statistics 19.0 (IBM 
Co., Armonk, NY, USA), and data were expressed as the 
mean ± standard deviation. For comparisons among groups, 
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independent‑samples t‑test and two‑way analysis of variance 
were performed, as appropriate. If the test of homogeneity 
of variances was satisfied, then Tukey pairwise comparison 
was used for post hoc analysis. If not, Dunnet's T3 test was 
selected. P<0.05 was considered to indicate a statistically 
significant difference.

Results

MCP30 decreased the viability of Ishikawa H cells in a dose‑ and 
time‑dependent manner. The effect of different concentrations 
of MCP30 on cell viability was shown in Fig. 1. MCP30 signifi-
cantly decreased the cell viability in a dose‑ and time‑dependent 
manner (two‑way analysis of variance; time, F=89.529, P<0.001; 
concentration, F=56.119, P<0.001). Following a 72 h incubation 
with 33.33 pM MCP30, the viability of the cells was reduced by 
40.26% (33.33 pM group vs. control group). Additionally, 166.67 
pM MCP30 reduced cell viability by 58.84% (166.67 pM group 
vs. control group). The half‑maximal inhibitory concentration of 
MCP30 for 72 h was ~62.00 pM (data not shown). These results 
indicated that treatment with MCP30 decreased the viability of 
Ishikawa H cells.

MCP30 induced early apoptosis in Ishikawa H cells. The 
results of Annexin FITC/PI staining revealed that cell 
viability decrease was associated with early apoptosis. The 
early apoptotic rates of Ishikawa H cells treated with MCP30 
at 666.67  pM reached to 16.07±0.15% following 72  h of 
treatment. By contrast, the control cells showed early apop-
tosis rates of only 5.08±0.19% (t=76.589; P<0.001) (Fig. 2). 
Furthermore, DNA ladder was observed in cells treated with 
333.33 pM and 666.67 pM MCP30 following 72 h of treatment 
(Fig. 2D; lanes 3 and 4), while no DNA ladder was found in the 
blank control and 8.33 pM groups (lanes 1 and 2).

MCP30 affected the cell cycle distribution of Ishikawa H cells 
in a time‑ and concentration‑dependent manner. Cell cycle 

analysis was performed by flow cytometry (Fig. 3). Treatment 
with different concentrations (166.67, 333.33 and 666.67 pM) 
of MCP30 for 48 h resulted in the distribution of the cell 
phase changing so that the higher the concentration added, 
the lower the G0/G1‑phase rate and the higher the S‑phase 
rate (G0/G1‑phase rate, F=106.866, P<0.001; S‑phase rate, 
F=99.686, P<0.001). The G2/M‑phase rate remained consis-
tent. A similar result was obtained when the time of treatment 
was prolonged to 72 h (G0/G1‑phase rate, F=169.836, P<0.001; 

Figure 1. Inhibition rate of cells treated with various concentrations MCP30 
for three periods. MCP30 significantly decreased the cell viability in a dose‑ 
and time‑dependent manner. All data are expressed as the percentage change 
in comparison with the control group, which was the cells treated with 0 pM 
MCP30 and assigned a 0% inhibition rate. The data are expressed as the 
mean ± standard deviation of 3 independent experiments performed in trip-
licate. *P<0.05 and **P<0.01 compared with next lowest concentration group. 
MCP30, Momordica charantia protein. 

Figure 2. (A) Flow cytometry analysis of apoptotic Ishikawa H cells in the 
control group and (B) cells treated with 666.67 pM MCP30 for 72 h. The 
upper left region shows necrotic cells, the upper right region shows necrotic 
cells and late‑apoptotic cells, the lower left region shows normal live cells, 
and the lower right region shows early‑apoptotic cells. (C) Early‑apoptosis 
rates in the control and 666.67 pM MCP30 groups. Data is expressed as 
the mean ± standard deviation of 3 independent experiments performed in 
triplicate. **P<0.01. (D) DNA fragmentation assay. Lanes 1‑4 show DNA 
fragmentation from cells treated with 0 (lane 1), 8.33 (lane 2), 333.33 (lane 3) 
and 666.67 pM (lane 4) of MCP30 for 72 h. DNA ladder was observed in lane 
3 and lane 4. MCP30, Momordica charantia protein. 
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S‑phase rate, F=742.190, P<0.001). This indicated that MCP30 
blocks Ishikawa H cells from progressing between the S‑phase 
and the G2/M‑phase in a time‑ and concentration‑dependent 
manner.

MCP30 induced Ishikawa H cell apoptosis and S‑phase 
arrest through the AKT signaling pathway. Finally, in order 
to evaluate the effect of culture time on the P‑AKT expression 
level, 666.67 pM MCP30 was added to the cell culture system 

for various time points (0, 3, 6, 12, 24, 48 and 72 h). With 
increased culture time, the P‑AKT level decreased (F=286.582, 
P<0.001), but this change stopped when the time reached 12 h, 
and no subsequent decrease was observed (Fig. 4A and B). 
Thus, it was hypothesized that 12 h is the best culture time 
for cells with MCP30. The levels of P‑AKT were detected by 
western blot analysis following incubation with MCP30 for 
72 h (Fig. 4C and D). MCP30 treatment decreased the levels 
of P‑AKT in a dose‑dependent manner (F=975.799; P<0.001). 

Figure 3. (A) G0/G1‑phase rate of cells treated with 166.67, 333.33 and 666.67 pM for 48 and 72 h. **P<0.01, compared with the control group between different 
concentrations. *P<0.05, **P<0.01, compared between different timepoints within the same concentration. (B) S‑phase rate of cells treated with 166.67, 333.33 
and 666.67 pM for 48 and 72 h. **P<0.01 compared with the control group between difference concentrations. *P<0.05, **P<0.01 compared between different 
timepoints within the same concentration. (C) G2/M‑phase rate of cells treated with 166.67, 333.33 and 666.67 pM for 48 and 72 h. Data is expressed as the 
mean ± standard deviation of 3 independent experiments performed in triplicate. (D) Cell cycle distribution of cells treated with 666.67 pM MCP30 between 
48 and 72 h. These findings indicate that MCP30 induced S‑phase arrest. MCP30, Momordica charantia protein.

Figure 4. (A) MCP30 decreased total P‑AKT expression in a time‑dependent manner. (B) The relative density (P‑AKT/AKT) compared to the control group 
at different treatment times. **P<0.01 compared with the control group. (C) MCP30 decreased total P‑AKT expression in a dose‑dependent manner. (D) The 
relative density (P‑AKT/AKT) compared to the control group at various concentrations of MCP30. (E) Ishikawa H cells lost PTEN expression. P‑AKT, 
phosphorylated AKT; PTEN, phosphate and tensin homolog; MCP30, Momordica charantia protein.
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Furthermore, it was verified that Ishikawa H Cells lost PTEN 
expression (Fig. 4E).

Discussion

Endometrial carcinoma (EC) is a leading female pelvic 
malignancy, and the incidence rates of endometrial cancer are 
increasing in Chinese women (3). Although the mortality rate 
of EC has been significantly decreased due to adjuvant thera-
pies, the increased incidence, high relapse rate and metastasis 
rate following treatment result in EC remaining a major clin-
ical hurdle (25). Current treatments for EC comprise surgical 
resection, radiotherapy hormonal therapy and chemotherapy; 
for the latter, there are numerous studies investigating synthe-
sized and natural medicinal components (26,27). However, 
currently available and newly found drugs for the treatment of 
patients with advanced‑stage, progressive or recurrent disease 
have shown limited success (9‑11). Therefore, exploration of 
new effective drugs continues to be urgently required.

A large variety of natural compounds exhibit antitumor 
effects, a number of these compounds have been used as tradi-
tional herbs and are present in our daily diet (14). The plant 
MC, also termed bitter melon, grows in tropical Asia, where it 
is utilized as medicinal herb and food for centuries. Previously, 
studies have found that the protein extracted from MC seeds 
have numerous pharmacological properties, such as plasma 
glucose control  (16), and antiviral  (17), anti‑fertility  (18), 
immunomodulatory  (19) and antitumor activities  (28‑31). 
However, to the best of our knowledge, studies investigating 
the effect of MCP30 on endometrial cancer have not yet been 
published. In the present study, it was found that MCP30 
exhibited potent cytotoxic activity in EC cells.

EC is classified into two types (types 1 and 2), with the 
most common lesions (type 1) typically being hormone‑sensi-
tive  (6). Therefore, the Ishikawa H cell line, a type of 
estrogen‑dependent endometrial cancer cell line  (32), was 
chosen. The CCK‑8 results showed that MCP30 inhibited cell 
viability in a dose‑ and time‑dependent manner. In the cell 
cycle experiment, it appeared that MCP30 may induce S‑phase 
arrest in EC cells. In addition, previous studies have suggested 
that MCP30 is a type I RIP (33). At present, it is acknowledged 
that RIPs are classified into two major types (34). Type I RIPs 
consist of only a single rRNA‑cleaving domain and have a 
molecular weight ~30 kDa, while type II RIPs have another 
B chain, which make them manifest marked cytotoxicity, 
such as ricin (35). Proteins that are classed as RIPs are mainly 
present in plants (36), and have the ability to inhibit protein 
synthesis in a cell system or cell‑free system (24,37). RIPs 
have been shown to exhibit RNA N‑glycosidase activity and 
to modify two nucleoside residues, G4323 and A4324, in 28 S 
rRNA of the eukaryotic 60 S ribosomal subunit, resulting in 
the failure of combination with elongation factor and making 
RIPs protein synthesis inhibitors (23). It is well known that 
S‑phase is a period for DNA duplication and the synthesis 
of histones and other necessary proteins (38). If either of the 
synthesis processes is interrupted, cells arrest in S‑phase. 
Wang et al reported that MCP30 has DNase‑like enzymatic 
activity and can nick closed circular Pet‑32a(+) plasmid DNA 
to open circular conformation, making plasmid DNA exhibit a 
linear formation (39). Our previous study has also revealed that 

MCP30 has potential histone deacetylase inhibitor function 
that selectively increases histone acetylation in neoplastic pros-
tate cell lines (22). Zhang et al found that low concentrations 
of trichosanthin, another type 1 RIP that shares 59% sequence 
similarity with MCP30, induces apoptosis and S‑phase cell 
cycle arrest in two laryngeal cancer cell lines (40). Additional 
studies investigating the effect of MCP30 on certain S cell 
cycle regulating proteins, such as cyclin A, checkpoint kinase 
(Chk) 1, Chk2 and p53, are required.

It was revealed in the present study that MCP30 exhib-
ited cell cycle arrest and apoptosis‑inducing activities. Flow 
cytometry analysis using Annexin V/PI showed that MCP30 
dose‑dependently induces early apoptosis in the Ishikawa H cell 
line. Subsequently, typical DNA fragmentation ladders were 
found subsequent to treatment. The AKT pathway has been 
widely studied and plays an important role in cellular growth 
and survival. This pathway is commonly considered to be an 
important target for cancer chemotherapy (41). AKT has been 
reported as overexpressed in numerous malignancies (42,43), 
including EC (44). PTEN, a tumor suppressor gene, is the major 
negative regulator of the AKT pathway (45). Loss of function 
mutations of PTEN are common and appear to be important in 
the pathogenesis of type I EC (12). In the present study, PTEN 
loss was also verified in the Ishikawa H cell line, which is consis-
tent with previous findings (32). There was an apparent negative 
associated between MCP30 concentrations and the P‑AKT 
level (Fig. 4B). Previously, Somasagara et al found MCP30 
effectively decreased AKT phosphorylation and viability of 
gemcitabine‑resistant pancreatic cancer cells (46). Overall, in the 
present study MCP30 showed cytotoxicity to EC cells, partially 
through decreasing activation of the AKT pathway.

Previously, extensive efforts in developing inhibitors of the 
AKT pathway as therapeutic agents to treat cancers in which the 
AKT pathway is hyperactivated have been thwarted by unac-
ceptable toxicity or poor pharmacokinetics (47‑52). MCP30 as a 
type I RIP, devoid of a cell‑binding B chain, have less cytotoxic 
effects than the majority of type II RIPs (53). These observa-
tions suggested that MCP30 has good potential as a cytotoxic 
agent against EC cells and warrants additional investigation.
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